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Abstract

Most cross-domain unsupervised Video Anomaly Detection

(VAD) works assume that at least few task-relevant target do-

main training data are available for adaptation from the source

to the target domain. However, this requires laborious model-

tuning by the end-user who may prefer to have a system that

works ªout-of-the-box.º To address such practical scenarios,

we identify a novel target domain (inference-time) VAD task

where no target domain training data are available. To this

end, we propose a new ‘Zero-shot Cross-domain Video Anomaly

Detection (zxVAD)’ framework that includes a future-frame

prediction generative model setup. Different from prior future-

frame prediction models, our model uses a novel Normalcy

Classifier module to learn the features of normal event videos by

learning how such features are different ªrelativelyº to features

in pseudo-abnormal examples. A novel Untrained Convolu-

tional Neural Network based Anomaly Synthesis module crafts

these pseudo-abnormal examples by adding foreign objects in

normal video frames with no extra training cost. With our novel

relative normalcy feature learning strategy, zxVAD general-

izes and learns to distinguish between normal and abnormal

frames in a new target domain without adaptation during infer-

ence. Through evaluations on common datasets, we show that

zxVAD outperforms the state-of-the-art (SOTA), regardless of

whether task-relevant (i.e., VAD) source training data are avail-

able or not. Lastly, zxVAD also beats the SOTA methods in

inference-time efficiency metrics including the model size, total

parameters, GPU energy consumption, and GMACs.

1. Introduction

Unsupervised Video Anomaly Detection (VAD) methods

[3±33] have been widely used in security and surveillance appli-

cations [34±36] over the supervised or weakly-supervised VAD

methods [37±45]. This is mainly because unsupervised VAD

methods do not need training videos containing abnormal events

which are rare and laborious to annotate [35, 36]. Hence, with

only normal events in training videos, the unsupervised VAD

methods mark the activities unexplained by the trained model as

anomalies during testing. Recently, unsupervised VAD works

Figure 1: Problem overview. Current unsupervised cross-domain

VAD works (xVAD) entail adapting to the target domain, assuming

access to at least a few training examples [1, 2]. We relax this assump-

tion of having such access to training data from the target domain and

tackle a more stringent, yet practical, case using our proposed zero-shot

xVAD or zxVAD framework.

under cross-domain settings have been introduced [1, 2, 46, 47].

Given the video data containing only normal events from a

source domain, the goal is to perform VAD in a different tar-

get domain. However, these cross-domain VAD (xVAD) works

[1, 2, 46, 47] are methods which need access to either the source

and target domain VAD training data [1, 2] or strong supervision

from pre-trained object detectors (e.g., YOLOv3 [48] in [47]).

Collecting such data in the target domain and adapting or tuning

the model may not be feasible by the end-user who may want a

system that works ªout-of-the-boxº [49, 50]. Moreover, granting

access to such video data may be time-consuming to third-party

corporations due to intellectual property and security concerns

[51, 52]. This renders the current xVAD works ineffective as

they assume access to at least some target domain training data.

Problem Statement. Based on the aforesaid issues, we

formally identify the following new unsupervised xVAD

problem of detecting anomalies in the target domain with

strictly no access to target domain training data and no prior

knowledge of its anomaly types. More specifically, our goal is

to detect anomalies in the target domain’s testing set, without

having any training data on the target side. Fig. 1 contrasts this

problem setup with prior xVAD problem definitions.

Proposed framework. We tackle this new problem using a

novel xVAD framework, namely ‘Zero-shot Cross-domain
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Video Anomaly Detection’ (zxVAD). The term zero-shot

implies no training videos available from the target domain

for adaptation to perform anomaly detection. zxVAD has a

generator [53] in a future-frame prediction setup [3] similar to

xVAD approaches [1, 2]. However different from these methods,

zxVAD’s generator training is assisted by a novel Normalcy

Classifier (NC) module and an Untrained Convolutional

Neural Network (CNN) Anomaly Synthesis (O) module. Prior

unsupervised xVAD works learn features from only videos with

normal events. This leads to overfitting to the source domain

distribution and the poor generalizing ability for target domain

VAD [2]. In contrast, zxVAD’s generator uses NC and O

modules to learn features of normal activities in input videos,

by focusing on how such features are relatively different from

features of abnormal frames. This ªrelativeº learning strategy

enhances the generator’s ability in identifying anomalies in

target domain without any adaptation at test time.

Normalcy, by definition, is always contextually dependent

[42, 54] (e.g., running in playgrounds vs highways). Hence, to

generalize across new target domains (without its training data)

where we have no prior knowledge about anomaly types, we pro-

pose to learn normal event features that consider the contextual

or relative difference between ªnormalº and ªabnormalº pat-

terns. More concretely, rather than learning only the normalcy

features (i.e. features of normal video frames), our model learns

the relative normalcy features (i.e. difference between features

of normal and abnormal video frames) using our proposed NC

module. These pseudo-abnormal frames are created through our

proposed O module which is capable of localizing objects from

both Task-Relevant or VAD data and Task-Irrelevant (TI) or non-

VAD data (i.e., data irrelevant to the VAD task). The O module

crafts pseudo-abnormal frames by localizing objects in input TI

or VAD video frames and pasting them (with random location

and size) on normal VAD video frames. Furthermore, a major

advantage of introducing TI data to our problem setup is that

they can be treated as video distributions for learning patterns

of normal activities and also assist in creating diverse anomalies.

Hence, along with the strategy of learning the relative normalcy

difference, zxVAD aims to mitigate the generalizing issue via

learning this relative normalcy with respect to abnormal frames

having different kinds of foreign objects (either from VAD or TI

frames). This allows zxVAD to avoid being limited to specific

anomaly types in the source domain, making it fundamentally

different from supervised specific anomaly learning.

Our NC module is designed to distinguish between a

pseudo-abnormal and the predicted normal future-frame

through novel loss functions. The highlighting attribute of

these functions is to consider different properties of normal

and abnormal frames through our NC’s logit predictions and

derived attention maps. Our O module is uniquely capable of

using VAD or TI data with an untrained randomly initialized

CNN to create anomalies at no extra training cost. To sum up,

we make the following key contributions:

Table 1: Characteristic comparison. Better than prior unsupervised

VAD works (e.g., C0: [54±60], C1: [3±25], C2: [46, 47, 61], C3 (our

baselines): [1, 2]), zxVAD needs no prior knowledge (e.g. object

extraction from VAD videos), can perform cross-domain VAD with no

VAD training data, and uses an untrained CNN to create anomalies.

Unsupervised VAD Method Conditions
Unsupervised VAD Categories

C0 C1 C2 C3 zxVAD (ours)

no prior knowledge required? ✗ ✓ ✗ ✓ ✓

show efficacy in cross-domain VAD? ✗ ✗ ✓ ✓ ✓

works with no source domain VAD training data? ✗ ✗ ✗ ✗ ✓

create pseudo-anomalies with an untrained network? ✗ ✗ ✗ ✗ ✓

1. We formally introduce a new problem setup in xVAD

where the model is trained on the source domain to detect

anomalies (at test time) in a different target domain without

any adaptation via target-domain training data or using any

supervision from pre-trained models (e.g. YOLOv3).

2. A novel xVAD method namely zxVAD is proposed, where

the model learns the relative difference between normal and

abnormal frames in source domain and generalize VAD to

target without needing target domain training data or any

external support from pre-trained models.

3. This ªrelativeº difference learning is achieved via a novel

Normalcy Classifier that uses a new pseudo-anomaly

synthesis module based on an untrained CNN where

anomalies are created with no extra training cost.

4. Notably, for the first time in VAD literature (to the best of

our knowledge), we also show that zxVAD outperforms

the SOTA xVAD works in the proposed problem setup when

trained only with TI data, in four common benchmarks.

5. zxVAD beats the SOTA xVAD works in the proposed

problem setup both in AUC on most benchmarks, and in

inference-time efficiency metrics (e.g., model size, model

parameters, GPU energy consumption, and GMACs).

2. Related Works

Unsupervised VAD works. Early unsupervised VAD works

formulated the anomaly detection using handcrafted features to

characterize the normal event or regular pattern distribution [4±

12]. However, these methods were outperformed by the CNN

approaches [3, 13±25] (both categorized as C1 in Tab. 1). Some

of these CNN based unsupervised VAD works use generators

[53] to model the normal frame distributions [3, 18, 20±22, 58],

and further introduce memory modeling networks to record

various normal event patterns in videos [1, 2, 18, 21, 58].

Another category of works (C0 in Tab. 1) [54±60] proposed

computationally heavy approaches that used strong priors like

object extraction (using pre-trained object-detectors [54, 57])

for VAD, in order to focus only on specific objects to detect

anomalies. Compared to aforesaid VAD works in C0 and C1,

zxVAD (a) is designed to tackle unsupervised cross-domain

VAD problem, (b) is a future-frame prediction method with

a memory module, and (c) needs no strong prior knowledge

from object extraction. Finally, few works [47, 54, 60, 62±64]
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have shown different VAD strategies where pseudo-anomalies

are used. For example, [54, 64] uses a generator to create fake

anomaly data. [62, 63] propose two different temporal pseudo

anomaly synthesizers to craft anomalies from normal videos.

Needing no aforesaid extra training efforts, zxVAD uses a

novel strategy to create anomalies using an untrained randomly

initialized CNN (details in Sec. 3) at no extra training cost.

Cross-domain setting. The cross-domain scenario in unsu-

pervised VAD has been introduced in [1, 2, 46, 61, 65]. These

works operate under the regime of few-shot target domain scene

adaptation. For example, [1, 2] (C3 in Tab. 1) use meta-learning

approaches [66] and adapt to the target domain with few scenes

for anomaly detection. In contrast, zxVAD is specifically

designed for cross-domain VAD without any target domain

adaptation. [46, 47, 61] (C2 in Tab. 1) provide prior knowledge

based methods where videos are subject to object-extraction

using pre-trained object detectors [48, 67]. However, zxVAD

needs no strong priors like object extraction using pre-trained

detectors. zxVAD is also capable of solely using TI data and

outperforming the SOTA in proposed cross-domain VAD setup.

Finally, zxVAD uses a simple training strategy (details in

Sec. 3) rather than using a meta-learning approach to avoid

non-trivial computational and memory burdens, as well as

vanishing gradients issues [46, 68].

3. Proposed zxVAD Framework

Method Overview. We are provided with source domain VAD

normal videos to learn features that should ideally transfer

across different target domains without needing target domain

adaptation. To achieve this no adaptation-based cross-domain

VAD property, we introduce a novel zxVAD framework

(illustrated in Fig. 2) based on a future-frame prediction setup

that can be trained end-to-end. It consists of an untrained

CNN based pseudo-anomaly Synthesis module (Sec. 3.1)

where an untrained randomly initialized CNN helps in creating

pseudo-anomalies without any extra training burden. These

pseudo-abnormal frames along with predicted future-frame are

utilized in our novel Normalcy Classifier module (Sec. 3.2) to

regularize the backbone generator to learn relative normalcy

features. This learning strategy makes zxVAD capable of

more generalizable VAD performance across different target

domains than existing xVAD methods.

Notations. We denote a sample video from VAD datasets

as [v1, v2, ··· , vLv
] ∈ R

Lv×C×H×W , and TI datasets as

[u1,u2,··· ,uLu
]∈R

Lu×C×H×W , where each video contains

Lv and Lu number of frames, and each frame is of height H,

widthW , and C channels. Our future-frame prediction frame-

work zxVAD contains a memory-augmented generator [18]

G(·)with weights θG and memory moduleM, and a discrimina-

torD(·)with weights θD. As shown in [18, 69, 70], the memory

moduleM∈R
K×Q is a matrix with mi∈R

Q,∀i∈ [K] vectors

(or memory items) that learns to register the prototypical

normal features during training. M takes the output vector

z ∈R
Q from G(·)’s encoder and outputs ẑ=wM∈R

Q that

is forwarded to G(·)’s decoder. Here, w∈R
1×K is termed as a

soft addressing vector [18]. Each element wi of w is computed

using softmax operation on the cosine similarity between z

and mi [18, 71]. Our proposed anomaly synthesis module

is denoted as O and contains a CNN denoted as R(·) with

weights θR. Further, our proposed normalcy classifier module

contains a CNN classifier denoted as N (·) with weights θN .

We denote the expectation operator, lp-norm operator, and

element-wise multiplication by E[·], ∥·∥p, and⊙, respectively.

Backbone description. Given N source domain training

videos (with only normal events), we aim to learn a future-

frame prediction generator that takes in T input frames and

predicts a future frame v̂T+1, i.e., G
(
[v1,v2,··· ,vT ]

)
= v̂T+1.

G(·) is adversarially trained against D(·) in the Least-Square

GAN [53, 72] setup where D(·) aims to distinguish between

v̂T+1 and the ground truth frame vT+1. Similar to [2, 18], we

introduce a memory moduleM. In zxVAD, G(·) is further

regularized usingN (·) with our proposed four novel objectives

(explained in Sec. 3.2) which uses pseudo-anomaly examples

generated using an untrained CNN based strategy. Following

prior works [1, 73], we optimize G(·)with the mean square error

loss LMSE=∥v̂T+1−vT+1∥
2
2, structure similarity loss LSSM=

1−SSIM
(
v̂T+1,vT+1

)
, where SSIM represents the structural

similarity index measure [74] between v̂T+1 and vT+1, and

Gradient loss LGD [3, 73]. To optimizeM and encourage mod-

eling normal videos using sparse but most relevant memory slots,

we follow [18] and apply a hard-shrinkage onM’s memory ad-

dressing vectors wi using continuous ReLU activation function

with a shrinkage factor λ set as 0.0005. Next, we normalize each

element ŵi← ŵi/∥ŵ∥1∀i and get ẑ= ŵM. We also apply a

sparsity regularizer on ŵ by minimizing its entropy as LMEM=∑N
i=1−ŵilog

(
ŵi

)
[18]. We combine these losses as

LBB=LREC+αMEMLMEM, (1)

where the reconstruction loss is LREC =LMSE+LSSM+LGD.

We set the loss weight αMEM=0.0025 following [18]. Totally,

the weights θG, θD and θN are updated during training, while

θR is randomly initialized before training and remains fixed.

Better than prior works which do not consider the relative

difference between normal and abnormal events, zxVAD

introduces a novel strategy to regularize this backbone generator

by learning normal features with respect to pseudo-abnormal

features. As our normalcy classifier module utilizes pseudo-

anomalies to learn the relative normalcy features, we first

present our pseudo-anomaly creation strategy.

3.1. Pseudo-Anomaly Synthesis via Untrained CNN

Prior works [54] have focused on creating anomalies using

pre-trained object detectors (i.e., YOLOv3 [48] in [54]) that

result in issues like additional training overheads. Different

from such methods, we present a training-free strategy to extract

objects from video frames. These objects can be obtained
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Figure 2: Framework overview. Our zxVAD framework contains a Future-Frame Prediction backbone (top-left) guided by our Normalcy

Classifier module (right). To enforce the prediction backbone to learn generalizable features from source domain normal videos and avoid overfitting,

we encourage the generative model to learn normalcy features relative to pseudo-abnormal frames using four novel loss functions. These abnormal

frames are created using an untrained randomly-initialized CNN through our novel anomaly synthesis module O (bottom-left).

on both VAD and TI video frames (i.e., vt and ut). For

brevity, we refer to the input frame as x. Given an input frame

x∈R
C×H×W , we denote the output of a CNN R(·) (before

the classification layer) as tensor G∈R
d×h×w. For example,

ifR(·) is ResNet152 [75], G is the output of ‘conv5 x’ with

size 2048×8×8 if input size is 3×256×256. We employ

SCDA [76] to perform channel-wise summation on G to obtain

an attention map A ∈ R
h×w. We then obtain a binary mask

M from A as follows. We set M(i,j) =1 if A(i,j) > ς, or 0

otherwise. Here, (i,j) represents position in h×w locations.

We empirically set ς=0.1. M(i,j)=1 indicates the foreground

objects. Finally, M is resized from h×w toH×W . As noted

in [77], the idea behind this surprising property that randomly

initialized CNN can localize objects is: because the background

in the input frame x is relatively texture-less in comparison

to the foreground objects in the scene, these background

regions have higher chances to be deactivated by nonlinear

activation functions like ReLU [78]. The object is finally

localized as Mx=M⊙x. To create pseudo-abnormal frame

ṽ, we combine Mx and one of the input frames to G(·), i.e.,

vt ∈{v1,v2,···,vT} by pasting Mx on vt at random location

rz with random size rx×ry. We discuss the method to choose

the location rz and size rx × ry in Supplementary Material.

Note that most of the video frames used for creating pseudo-

anomalies happen to contain at least one foreground object for

the untrained CNN to extract. Even if there are no such objects,

our untrained CNN will still focus on some patches (on the input

frame) and treat them as anomaly on normal event VAD frame.

3.2. Learning Normality w.r.t. Abnormality

Our Normalcy Classifier Module is a classifierN (·) that is opti-

mized by the following four loss functions. These loss functions

are complementary to each other as follows: normalcy loss

and attention affirmation loss focus on the difference between

normal and abnormal frames, whereas relative normalcy loss

and relative attention affirmation loss focus on how relatively

Figure 3: Pseudo-abnormal examples. We show pseudo-abnormal

frames (marked as (b)) created using our pseudo-anomaly synthesis

strategy. The untrained randomly initialized CNN is ResNet50 [75]

which localizes objects in the TI frames (marked as (a)). We also show

examples of ground-truth masks M̃ used in loss LRAA (marked as (c)).

See more examples in Supplementary Material.

different are normal frames from abnormal frames (and vice-

versa). For clarity, we drop the subscript of the predicted frame

v̂T+1 and mark it as v̂. The data distribution of normal and

pseudo-abnormal frames are denoted as ρ and κ, respectively.

Normalcy loss LN. Given the predicted future-frame v̂ and

pseudo-abnormal frame ṽ, LN optimizesN (·) to increase the

probability that v̂ is ‘normal’ (label set as 1) and ṽ is ‘abnormal’

(label set as 0), using following loss function.

LN=1/2E
v̂∼ρ

[

(

N (v̂)−1
)2
]

+1/2Eṽ∼κ

[

(

N (ṽ)
)2
]

(2)

Relative normalcy loss LRN.Abnormal events can be viewed

as deviation with respect to normal events. We argue that the

key missing attribute of (2) is that the probability of normal data

being normal (N (v̂)) should increase as the probability of abnor-

mal data being normal (N (ṽ)) decreases and vice-versa. Rather

than just maximizing P[v̂ is normal], we also askN (·) to max-

imize P[v̂ is more normal than ṽ] (P[·] denotes probability op-

erator). We define this novel relative normalcy loss below:

LRN=1/2E
v̂∼ρ

[(
N (v̂)−Eṽ∼κ[N (ṽ)]−1

)2]
+

1/2Eṽ∼κ

[(
N (ṽ)−E

v̂∼ρ[N (v̂)]+1
)2] (3)

Attention affirmation loss LAA. The decision of N (·) on

the normal frame v̂ and abnormal frame ṽ should be based
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on the following information: (1) N (·) should consider the

whole scene in v̂ to classify it as ‘normal,’ and (2)N (·) should

consider the foreign object (introduced by our module O in

ṽ) to classify it as ‘abnormal.’ Our strategy in Sec. 3.1 allows

us to obtain the exact location of foreign objects in ṽ. Hence,

we leverage this knowledge and create ground-truth masks of

ṽ. We first initialize a tensor M̃ with zeroes. Next, we update

this tensor by pasting M after resizing to rx×ry at location rz
(obtained from O in Sec. 3.1). We show examples of M̃ in Fig.

3. We extract feature maps from the last convolutional layer

of N (·) and apply SCDA [76] to obtain attention maps A(v̂)
andA(ṽ) for normal and abnormal frames, respectively. A(·)
denotes the operation to extract attention maps fromN (·). We

enforce this constraint via the attention affirmation loss LAA as

(1 is a tensor of the same size asA(v̂) filled with ones):

LAA=1/2
(
1−A(v̂)

)2
+1/2

(
M̃−A(ṽ)

)2
, (4)

Relative attention affirmation loss LRAA. Similar to the

concept of LRN, we argue that LAA does not consider the

relative difference of attention maps from normal frames with

respect to attention maps from abnormal frames. Hence, we

propose a relative attention affirmation loss LRAA that aims to

learn this difference. We create two attention map pairs: (Pair-1)

A(v̂) andA(g(v̂)), and (Pair-2)A(v̂) andA(ṽ). The function

g(·) denotes a series of transformations (Color Jitter, Random

Affine, and Random Perspective) applied to v̂ using the package

Kornia [79] (related parameters are provided in Supplementary

Material). The relative difference between the attention on

‘augmented normal’ frame should be smaller than that of the

‘pseudo-abnormal’ frame with respect to the ‘normal’ frame.

We enforce this difference with a marginm that simultaneously

enhances the intra-class compactness between normal and

augmented-normal frames and inter-class discrepancy between

normal and pseudo-abnormal frames. We design LRAA using

the ArcFace loss [80] enforcing this margin as follows.

LRAA=
−1

N

N−1
∑

i=0

log

(

es(cos(ωyi
+m))

es(cos(ωyi
+m))+

∑1
j=0,j≠yi

escos(ωj)

)

, (5)

where label yi is set as 1 for normal frame v̂ and augmented

frame g(v̂), and 0 for pseudo-abnormal frame ṽ. We transform

A(x) with ψyi = ∥Wyi∥∥vec(A(x))∥cos(ωyi) (with ωyi ∈
[0,π] as the angle between Wyi and vec(A(x))). Here, vec(·)
is a vectorizing operation. ∥Wyi∥ and ∥vec(A(x))∥ are nor-

malized to 1 which leads to ψyi =cos(ωyi). With ArcFace loss,

Wyi behaves as a centre for each class (i.e. normal and abnor-

mal) [80] which creates a distance margin penalty ofm. We set

scaling factor s = 64 and margin m = 28.6 degrees following

[81]. LRAA can be implemented as any triplet metric learning

loss [81]. However, we choose the ArcFace loss as it has been

shown to perform well in recent non-VAD works [82±84].

Final learning objectives. To summarize, zxVAD is trained

end-to-end with G(·) learning loss LG, D(·) learning loss LD,

andN (·) learning loss LN as follows:

LG=LBB+αDE
v̂∼ρ

[
1/2

(
D(v̂)−1

)2]
+

αNE
v̂∼ρ

[
1/2

(
N (v̂)−1

)2]
,

LD=E
v̂∼ρ

[
1/2

(
D(v̂)

)2]
+E

v̂∼ρ

[
1/2

(
D(v)−1

)2]
,

LN =αnLN+αrnLRN+αaaLAA+αraaLRAA

(6)

We set αD=0.05 following [3]. The rest of loss weights αN =
0.5,αn=1,αrn=0.01,αaa=1, and αraa=1 are set empirically.

Discussion on why zxVAD works. zxVAD trains G(·) in

predicting the future-frame v̂ of input normal video by consider-

ing the difference with respect to pseudo-abnormal frames (via

our normalcy classifier module). Not considered in prior works,

this strategy specifically helps G(·) to learn contextual relative

difference between normal and abnormal frames to alleviate

overfitting to source domain normal video features. The over-

fitting issue is further mitigated when the abnormal examples

created from our pseudo-anomaly module contains various

kinds of objects as ªforeign entitiesº in VAD normal frames.

This allows G(·) to learn the relative normalcy difference from

extremely diverse kinds of pseudo-anomalies, making it capable

of detecting different anomaly types (in inference-time) in

multiple target domains without any prior knowledge.

To make the further discussion concise, we show the

statistics and acronyms of the VAD and TI datasets in Tab. 2.

3.3. Introduction to Task-Irrelevant (TI) Datasets

In this section, we discuss the utilities of task-irrelevant or

non-VAD videos for unsupervised VAD. Task-relevant or VAD

datasets provided by VAD research community are known to be

limited in scale as shown in Tab. 2 and [1, 42, 88]. (e.g. Ave [9],

Ped1, Ped2 [10] datasets have<100 training videos). Further,

it is difficult to collect different kinds of scenarios of normal ac-

tivities with such limited scale. Hence, we propose to introduce

the utility of Task-Irrelevant (TI) datasets to the task of VAD.

We define a dataset as ‘Task-Irrelevant’ which is freely

available from different other video downstream or non-VAD

tasks (e.g., video classification, action recognition, etc.).

Examples of such datasets are UCF101 [86] and HMDB

[85] (see Tab. 2). Such datasets were originally introduced

for non-VAD works, specifically curated for large-scale deep

learning-based tasks. For example, Jester was originally

introduced for video classification of 25 hand gesture classes

[87]. To show the performance using diverse types of datasets

in our zxVAD task, we choose Jester, UCF101, and HMDB

to be our TI datasets. Please see Supplementary Material for

dataset examples. Next, we discuss how the task-relevancy

of these datasets is measured with respect to the VAD task,

followed by two simple strategies to use these datasets in the

proposed problem scenario. Note that zxVAD needs nothing

from the TI-VAD relevancy measure to operate. The purpose

is to only validate TI data’s irrelevancy to the VAD task.
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Table 2: Dataset statistics. We highlight the difference in amount of training data between VAD and TI datasets. ⋆: the train/test disjoint camera (dc)

split is provided by [1]. As stated in [1], UCFC dataset does not contain ground truth frame-level labels and hence is not considered for evaluation.

Task-Relevant/VAD Datasets Task-Irrelevant/non-VAD Datasets

Property \ Dataset Shanghai-Tech [16] Shanghai-Tech⋆ [1] UCF-Crime [37] Ped1 [10] Ped2 [10] CUHK-Avenue [9] HMDB51 [85] UCF101 [86] 20BN-JESTER [87]

Acronym SHT SHTdc UCFC Ped1 Ped2 Ave HMDB UCF101 Jester

# of training / testing videos 330 / 107 147 / 33 950 / - 34 / 36 16 / 12 16 / 21 6,766 / - 13,320 / - 50,420 / -

# of abnormal instances 47 33 ± 40 12 21 N/A N/A N/A

HMDB UCF101 Jester
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SHT
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S(“bag”,“dime”)=0.209︸ ︷︷ ︸
example w.r.t. max score

(0: ‘lower’, 1: ‘higher’ semantic similarity)

Figure 4: Relevancy measure between VAD and TI labels. Using

the relevancy score matrix between the TI and VAD labels, we find

that TI datasets have low semantic similarity with the VAD datasets.

The maximum score occurs between HMDB and Ave.

Measuring relevancy of non-VAD datasets. Following

[89, 90], we use word2vec [91] (pre-trained on Google News

dataset [91]) to measure the task-relevancy of our introduced

TI datasets: Jester, UCF101, and HMDB. We first compute an

embedding vector of the input labels (in case the label contains

more than one word, we average the embedding). Next, we

compute the mean absolute cosine similarity S ∈ [0,1] of the

embedding for all possible pairs of labels between the TI

datasets and abnormal classes of VAD datasets. This is denoted

as S=1/ℓP ℓQ

∑ℓP
p=1

∑ℓQ
q=1

∣∣cos-sim
(
πp,πq

)∣∣,where ℓP and ℓQ
are the total number of labels in the TI and VAD dataset, πp and

πq are the word2vec representation of the p-th and q-th label

of the TI and VAD dataset, respectively. cos-sim(·) denotes the

cosine similarity operation on input vectors. A value of S closer

to 0 indicates a higher degree of irrelevancy (or lower degree

of relevance). In Fig. 4, we show the mean cosine similarity

S for all the TI (i.e., HMDB, UCF101, Jester) and VAD (i.e.,

SHT, Ped1/Ped2, UCFC, Ave) datasets used in this paper.

Following reference values: S(“object”,“scene”) = 0.829,

S(“bag”,“dime”) = 0.209, and S(“fox”,“paper”) = 0.109,

we find that the maximum semantic similarity S=0.207 occurs

between Ave and HMDB indicating that all the TI datasets are

quite irrelevant to the task of VAD problem.

Methods to use TI datasets. We provide two methods to

use TI datasets. Firstly, unsupervised VAD methods learn

features from normal events during training. These events

are particularly marked by continuous activities without any

sudden disruption from alien objects. Such kinds of videos are

readily available in other video downstream tasks like action

recognition, where a sample video only contains frames from a

continuous activity. In cases where there is no VAD training data

available in the source domain (worst-case scenario), we show

later in Sec. 4 that training zxVAD solely with TI datasets

reaches the SOTA results across 3 different target domain

datasets. We hypothesize that TI datasets represent the recording

of normal activities as in VAD training data with normal

videos. Hence, learning from such TI data helps in modeling

features similar to normal videos. Secondly, we recommend

using TI frames to create anomalies containing diverse types

of objects (see Fig. 3). Using our proposed method to create

pseudo-anomaly frames using TI data (details in Sec. 3.1), our

generator learns features from normal frames relative to abnor-

mal frames. Such pseudo-anomalies contain diverse foreign

entities extracted from TI video frames allowing our generator

to learn relative normalcy difference in a broad manner.

4. Experiments and Results

Implementation details. We implement our framework in

PyTorch [92]. The generator G(·) is an U-Net [93] adapted

from [3] with a memory module at its bottleneck similar to

[20]. The discriminatorD(·) and normalcy classifierN (·) are

Patch-GAN discriminators [94]. We provide more details of

our implementation in Supplementary Material.

Evaluation details. We evaluate zxVAD under three training

scenarios with respect to types of available source data: (1) Both

VAD and TI data are available: G(·) takes VAD videos and O

takes TI frames as input, (2) Only one of the VAD or TI data

are available: Both G(·) and O take VAD or TI videos as input.

We did not observe any performance gain empirically when

G(·) takes both VAD and TI videos as input, so we drop this

case as it adds a computational burden. We compare zxVAD

with [1, 2] using the area under ROC curve (AUC), model

storage, total parameters, GPU energy consumption, inference

time FPS, and GMACs.

Baselines. Since the problem of ‘cross-domain VAD without

target domain training data adaptation’ is identified by us,

we cannot find other methods which are designed for such a

setup. The latest and closest baselines we found are rGAN [1]

and MPN [2], which are designed for the xVAD task without

needing strong priors from VAD frame object extraction. Since

both methods report their performance under the proposed

problem setup, we use them as our baselines. Even though

we outperform strong prior based xVAD methods [46, 47, 54]

without any such computationally expensive operation under

our problem setup, we do not consider them as part of our

baselines for fair comparisons with respect to [1, 2]. In Tab.
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Table 3: Comparison in Efficiency and Same-dataset testing. We

beat our baselines in most of the same-dataset testing, and outperform

them in the listed efficiency metrics. ⋆: GPU energy consumption is

measured by testing on Ped2. †: rGAN [1] does not provide its official

testing code for inference-time metric evaluation.
Efficiency Metrics Same Dataset Testing

Method Parameters (↓)
(millions)

GMACs (↓)
Energy (↓)
(Joules)⋆

Storage (↓)
(MegaByte)

FPS (↑) SHTdc Ped2 SHT

rGAN [1] 19.0 1384.52 ±† 79.85 2.1 70.11 96.90 77.90

MPN [2] 12.7 55.09 10.65 53.14 166.8 67.47 96.20 73.80

zxVAD 8.73 43.10 6.81 34.92 208.5 70.85 96.95 71.60

3, and 4, paper denotes results as reported and code denotes

results computed using official code, if available.

Ablation study. We show the ablation study of our proposed

loss functions in zxVAD in Fig. 5(a) on the SHTdc dataset.

Fig. 5(a) shows that each of our proposed loss functions con-

tributes to the AUC, and jointly training with them all achieves

the best AUC. In Fig. 5(b), we analyze different combinations

of an autoencoder and generative adversarial network with (AE-

M,GAN-M) and without our memory module (AE, GAN) as

our zxVAD backbone. In Fig. 5(c), we analyze the impact of

different mixing strategies (MixUp [96], CutMix [97] within our

module O and compare with recent SOTA strategy called Patch

[63] that proposes a pseudo-anomaly method. In Fig. 5(d), we

analyze impact of changingR(·) with (ResNet50, ResNet152

[75], DenseNet161 [98], AlexNet [99], MnasNet [100]) in

zxVAD. Fig. 5 shows that regardless of the backbone choice,

the pseudo-anomaly strategy, and the architecture of R(·),
zxVAD still outperforms the SOTA baselines in most settings,

which supports that zxVAD is flexible w.r.t. these factors.

Same-dataset experiments. We compare zxVAD with

[1, 2] on the SHTdc, SHT and Ped2 datasets. Tab. 3 shows

that zxVAD outperforms both baselines in AUC in such

experiment. For example, zxVAD shows better generalization

ability across different camera angles than the baselines in

the SHTdc dataset with the least efficiency metrics like model

parameters and GMACs. We also find that using extra TI data

(HMDB and UCF101) can improve the AUC further compared

to baselines (results in Supplementary Material).

Cross-dataset experiments. We compare zxVAD with [1, 2]

under the cross-dataset setting. In the top two sections of

Tab. 4, we train zxVAD with either the SHT or UCFC

dataset with optional TI data and test it on the Ped1, Ped2, and

Ave datasets. Tab. 4 shows that zxVAD outperforms both

baselines in AUC under most settings, regardless of whether the

extra TI data are used, which supports that zxVAD has better

generalization ability across different datasets (with different

types of anomalies under different scenes) than the baselines.

For example, when our model is trained on the SHT dataset [16],

it outperforms existing xVAD methods in the proposed problem

setup in detecting anomalies like ªchasingº and ªbrawlingº in

SHT’s test set as well as anomalies like ªbicyclesº and ª carsº in

Ped1/Ped2’s test set without performing any kind of adaptation

on Ped1/Ped2’s training set. This shows that our method is not

specific to anomalies in the source domain, but generalizes well

to target domain scenes during inference without adaptation.

Tab. 5 shows that even without using any source domain

VAD training data at all, zxVAD still outperforms [1, 2] in

most settings by training with only TI data, which supports

our proposed mechanism of using the TI data under the

proposed problem setup. These encouraging results suggest

that making use of TI data is a promising research direction

for the zxVAD problem. Interestingly, when either G or O or

both use TI data, it’s not surprising to see slightly lower AUC

than if both G and O use VAD relevant data, i.e. more relevant

source data lead to less source-target domain gap, resulting in

better AUC. This is confirmed by average AUC (Tab. 4 and

5) when source is only VAD: 84.26%, VAD w/ TI: 83.46%,

and only TI: 82.30%. We also analyzed the impact of the

amount videos needed when solely training with TI data with

HMDB and UCF101 in zxVAD setup and found that even

as little as ∼1.25% of UCF101 or ∼8% of HMDB is enough

to outperform the SOTA (details in Supplementary Material).

Following [1], we do not perform a cross-domain evaluation

with Ped1/Ped2 as a source as the training dataset is too small to

make reasonable conclusions. In Fig. 6, we show that zxVAD

outperforms existing strong prior based unsupervised xVAD

methods [46, 47, 54] that report cross-domain VAD testing

performance when source domain data is SHT. This implies

that zxVAD provides a computationally efficient and reduced

supervision approach with no need for object extraction from

videos (using YOLOv3 [48] in [47, 54] and CenterNet [101]

in [46]) both in source and target domain, under the proposed

problem setup. Compared to [47] (in Fig. 6) and [63] (in Fig.

5(c)), our untrained CNN based abnormal example generation

strategy results in superior VAD for the proposed problem setup.

Our ªrelative normalcyº learning approach optimizes the VAD

model to learn features that differentiate normal events from

(pseudo)-abnormal events, rather than focusing on learning only

patterns of normal events as in prior xVAD works. Results in

Tab. 5 (when zxVAD uses only TI data) validate this claim

as zxVAD still outperforms SOTA on target VAD by learning

such differentiating features from TI videos. [102] is a few-shot

VAD method that puts together three off-the-shelf pre-trained

models (YOLOv4 [103], AlphaPose [104], Flownet2 [105])

to perform xVAD. Even with such costlier storage, high

training overhead, and strong priors from different distributions,

zxVAD easily beats [102] by 11.76% (Ave), 13.85% (Ped2)

with source as SHT, and 10.12% (Ave), 29.12% (Ped2) with

source as UCFC with extremely less parameters and no initial

priors. Finally, we provide qualitative evaluation under the

cross-domain setting with anomaly curves of two testing

videos of Ped1 and Ped2 when trained with SHT in Fig. 7,

where zxVAD provides better cross-domain detection ability

than MPN [2]. We also visualize difference maps in Fig.

8 (absolute error between ground truth and the predicted

frame) that indicate the presence of anomalies by zxVAD in

three datasets under cross-domain setting after training with
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Loss Functions AUC (%)

LBB LN LRN LAA LRAA on SHTdc

✓ 68.32

✓ ✓ 68.99

✓ ✓ ✓ 69.33

✓ ✓ ✓ ✓ 69.61

✓ ✓ ✓ ✓ ✓ 70.85
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Figure 5: Component Analysis of zxVAD. Fig. 5(a) shows the loss ablation using SHTdc; Fig. 5(b) compares the cross-domain performance

of zxVAD with different future-frame prediction backbones on three datasets (source: SHT); Fig. 5(c) compares the impact of different mixing

strategies in module O with SOTA method [63] that also presents a pseudo-anomaly method on three datasets (source: SHT); Fig. 5(d) compares

the impact of network R(·) in module O on three TI datasets (source: SHT, target: Ave). Dotted lines in Fig. 5(b), 5(c) (three datasets), and 5(d)

(one dataset) show SOTA (MPN [2] with Ped1: 74.45%, Ped2: 90.17%, Ave: 74.06%) in respective cross-domain VAD when source is SHT.

Table 4: Cross-dataset testing. Comparison with xVAD works that need

no background-subtraction. The best and second best AUC are marked

in bold and underline, respectively. ‡: For MPN [2], the publicized

code [95] gives lower AUC than what was reported in their paper.

VAD Testing Data
VAD Training Data

(Input to G(·))
Auxiliary Data

(Input to O)
Method

Ped1 Ped2 Ave

SHT N/A rGAN [1] (paper) 73.10 81.95 71.43

SHT N/A MPN [2] (paper) 74.45 90.17 74.06

SHT N/A MPN [2] (code)‡ 66.05 84.73 74.06

SHT SHT zxVAD (ours) 76.14 95.78 82.28

SHT HMDB zxVAD (ours) 75.62 95.74 83.19

SHT UCF101 zxVAD (ours) 75.41 95.80 82.25

SHT Jester zxVAD (ours) 75.93 95.62 82.49

UCFC N/A rGAN [1] (paper) 66.87 62.53 64.32

UCFC N/A MPN [2] (paper) 75.52 86.04 82.26

UCFC UCFC zxVAD (ours) 78.61 91.65 81.11

UCFC HMDB zxVAD (ours) 78.02 87.66 81.50

UCFC UCF101 zxVAD (ours) 76.27 86.80 81.45

UCFC Jester zxVAD (ours) 78.39 88.71 81.55

Table 5: Cross-dataset testing. Cross-domain performance when zx-

VAD model only trained with TI datasets.

VAD Testing Data
TI Training Data

(Input to G(·))
Auxiliary Data

(Input to O) Ped1 Ped2 Ave

HMDB HMDB 76.66 91.53 81.92

UCF101 UCF101 75.67 85.84 81.78

Jester Jester 78.12 91.23 78.06
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Figure 6: Cross-dataset testing. Comparison with VAD works that

need background-subtraction. The best AUC is marked in red. ‘N/P’

in leftmost plot means ‘Not Provided.’
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Figure 7: Anomaly detection curve. We compare our cross-domain

(source: SHT) anomaly detection on Ped1/Ped2 against MPN [2].

Larger value in curves indicates possible anomalies.

SHT. We show more such qualitative results of zxVAD in

Supplementary Material. In addition to the above, zxVAD

achieves such results with much better inference-time efficiency

than the baselines. Tab. 3 shows that zxVAD outperforms

[1, 2] in model size, total parameters, GPU energy consumption

(computed by pyJoules [106] following [107, 108]), and

GMACs by 34.3%, 31.3%, 36.1%, and 21.76%, respectively.

5. Conclusion

We identify a new unsupervised xVAD problem of detecting

anomalies in the target domain where no target domain training

data are available. To tackle this problem, we propose a novel

framework named ‘Zero-shot Cross-domain Video Anomaly

Detection’ (zxVAD). zxVAD aims to learn features of normal

activities in input videos by learning how such features are

relatively different from features of pseudo-abnormal frames.

Finally, zxVAD outperforms the SOTA baselines in most

settings under common benchmarks not only in AUC but also

Figure 8: Difference maps. We show examples of cross-domain frame

prediction comparison on three datasets (source: SHT). The lighter col-

ors in difference map mean larger prediction error indicating anomalies.

Red boxes indicate ground truth anomalies.

in four efficiency metrics, regardless of whether the source

domain VAD training data are available or not. Our results

demonstrates the potential of task-irrelevant data as a promising

direction for addressing the xVAD problem. As part of our

future work, we will extend our method to enhance it’s ability

in directly localizing the anomaly in the videos.
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