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Abstract

State-of-the-art generative model-based attacks against im-
age classifiers overwhelmingly focus on single-object (i.e., single
dominant object) images. Different from such settings, we tackle
a more practical problem of generating adversarial perturba-
tions using multi-object (i.e., multiple dominant objects) images
as they are representative of most real-world scenes. Our goal
is to design an attack strategy that can learn from such natural
scenes by leveraging the local patch differences that occur in-
herently in such images (e.g. difference between the local patch
on the object ‘person’ and the object ‘bike’ in a traffic scene).
Our key idea is to misclassify an adversarial multi-object image
by confusing the victim classifier for each local patch in the
image. Based on this, we propose a novel generative attack
(called Local Patch Difference or LPD-Attack) where a novel
contrastive loss function uses the aforesaid local differences in
feature space of multi-object scenes to optimize the perturbation
generator. Through various experiments across diverse victim
convolutional neural networks, we show that our approach out-
performs baseline generative attacks with highly transferable
perturbations when evaluated under different white-box and
black-box settings.

1. Introduction
Understanding and exposing security vulnerabilities of deep

neural networks (DNNs) has been an important recent focus
of the computer vision research community [1–4]. DNNs
have been extremely effective in recognition and classification
systems like pedestrian recognition [5–7] and health-care ap-
plications [8, 9]. Images of real-world scenes usually consist of
multiple objects. Such scenes are often analyzed by classifiers
which predict all the object labels present in such images for
downstream tasks such as object annotation [10–15]. Since
DNNs are known to be vulnerable to adversarial attacks, it is
important to understand the vulnerabilities of such multi-object
classifiers. For example, scenes monitored by drones can be
attacked by adversaries where all object labels detected are

Figure 1: Proposed attack LPD-Attack: We aim to create pertur-
bations using multi-object images. To do this, our proposed attack
LPD-Attack leverages the rich local differences between the patches
of features extracted from multi-object images. e.g., the local feature
patch of ‘person’s head’ will be different from local feature patch of
‘bike’s tire’ or ‘bike’s engine’. LPD-Attack leverages these differences
to misalign (repel) a query patch (η) from perturbed image feature with
the corresponding patch (η−) from clean image feature, while aligning
(attract) with non-corresponding patches of different locations (η+).

changed for misinterpretation at the user end [16]. Investigating
such scenarios where the multi-object classifiers fail is important
in order to design robust and secure real-world systems.

Adversarial attacks can be broadly classified as instance-
driven approaches that are image (i.e. instance) specific
[17–19]) and the distribution-driven or generative model-based
approaches (e.g. GAP [20], CDA [21], and TDA [22]). Gen-
erative model attacks learn to craft perturbations by a generative
model via training on a data distribution against a surrogate
classifier. Victim classification attributes (e.g. kind of model
architecture, data distribution, etc.) are generally unknown
by attackers in practical cases. Hence, attackers aim towards
creating strong transferable perturbations. Generative attacks
provide this distinct advantage over instance-driven attacks
for better transferability of perturbations for attacking unseen
models [21] as well as better time complexity [20, 21, 23–25].
Our work focuses on generative attacks for learning to create
perturbations using multi-object images and disrupt all labels
predicted by victim classifiers. For example in Figure 1, we aim
to change the labels associated with the image (i.e. ‘person’ and
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‘bike’) to labels whose objects do not exist in the input image
with imperceptible perturbations (e.g. ‘car’, ‘dog’). Existing
generative model attacks (see Table 1) typically attempt to
perturb images with a single dominant object in them which are
analyzed by single-label classifiers. Using such single-object at-
tacks on multi-object images would require independent object
binary segmentation masks to focus on every single object in
order to perturb them. This makes these attacks inefficient and
impractical as an attacker cannot assume to have object binary
masks for every possible distribution on the victim end.

The focus of this paper is to learn to create perturbations
on multi-object images that can disrupt the output of various
victim (multi-object or single-object) classifiers for all labels of
the input image, without any need for independent attacks on in-
dividual objects. To this end, we propose a novel attack method
that utilizes the local difference of patches in the multi-object
image. As multi-object images generally contain multiple dom-
inant objects, it is highly likely that the majority of the patches
sampled are from different objects. Based on these “inherent
local differences” in multi-object images, we propose a method
that utilizes this property to train a perturbation generator.

Our core idea is: if the object is to be misclassified, a patch
over the object should also be misclassified (in other words,
make them ambiguous to the victim model). To create this
misclassification, we exploit the rich local patch differences
provided by multi-object images and train a perturbation gen-
erator using a novel contrastive learning loss. More specifically,
given an image with multiple objects ( e.g. ‘bike’, and ‘person’
in Figure 1), we aim to use the local difference of the feature
patch on object ‘bike’s tire’ and the feature patch on object
‘person’s head’. Assuming the size of clean and perturbed
image are the same (e.g. 224 × 224), our proposed contrastive
strategy misaligns a query patch from feature map of perturbed
image (say patch from ‘person’s head’) with the patch from
corresponding or the same location on feature map of a
clean image, by simultaneously aligning it with patches from
non-corresponding or different locations (say patch from ‘bike’s
tire’ and ‘bike’s engine’) on feature map of clean image. Our
intuition is that we want the feature patch on ‘person’s head’ in
the perturbed image to change to some random features in order
to create ambiguity and eventually confuse the victim classifier.

Unique to multi-object images, this location information
is readily available in them due to the spatial arrangement of
objects, without the need for any kind of labels or segmentation
maps. Further, local patches (on average) differ from each other
even if they belong to the same object, e.g. the shape of the
engine of a bike will differ from the shape of the tyre.

Our approach is fundamentally different from prior single-
label image based generative attack approaches [20, 21, 26]
which do not use any kind of aforesaid local differences in
feature maps of clean and perturbed images. Specifically, we
use the approach of contrastive learning where the perturbation
generator learns to disassociate corresponding signals of
clean and perturbed image features, in contrast to other

non-corresponding signals. In our case, these corresponding
signals are patches at the same spatial location in clean and
perturbed image features, while non-corresponding signals are
patches at different spatial locations in the clean image features.
The contrastive learning approach has been extensively used in
unsupervised learning [27–30] for various image downstream
tasks. We demonstrate its benefits in optimizing perturbation
generating models for highly potent adversarial attacks. We
refer to our attack approach as Local Patch Difference attack
or LPD-Attack (see Figure 2). LPD-Attack uses our novel
local-patch contrasting approach and learns to create strong
imperceptible perturbations on multi-object images.

To validate our approach, we evaluate LPD-Attack’s gener-
ated perturbations in different challenging scenarios. For exam-
ple, if a perturbation generator is trained on Pascal-VOC [31]
dataset with a Res152 [32] Pascal-VOC pre-trained multi-object
classifier as a surrogate, then from the attacker’s perspective, we
show that LPD-Attack crafts highly transferable perturbations
under following settings (in order of least realistic to most)

• Setting 1. white-box: victim classifier is seen, victim data
dataset is seen, victim task is seen (e.g. Res152 multi-object
classifier, Pascal-VOC dataset, multi-object classification task)

• Setting 2. black-box: victim classifier is unseen, victim data
dataset is seen, victim task is seen (e.g. VGG19 multi-object
classifier, Pascal-VOC dataset, multi-object classification task)

• Setting 3. strict black-box: victim classifier is unseen, victim
data dataset is unseen, victim task is seen (e.g. VGG19
multi-object classifier, MS-COCO [33] dataset, multi-object
classification task)

• Setting 4. extreme black-box: victim classifier is unseen,
victim dataset is unseen, victim task is unseen (e.g. VGG16
single-label classifier, ImageNet [34] dataset, single-label
classification task)

‘Setting 4’ is especially useful to test the strength of crafted
perturbations by different attacks because it presents real-world
use case for attackers where all victim attributes like classifier
architecture, data distribution and task is unseen. To summarize,
we make the following contributions.

1. New practical problem. We tackle a new problem of
learning to craft perturbations for multi-object data distributions,
the situation in most real-life scenes, using generative model-
based attacks to disrupt decisions. To the best of our knowledge,
this is the first work that considers to create generative attacks
using multi-object images.

2. Novel attack framework. To this end, we propose
a novel generative model-based attack approach namely
LPD-Attack, where the perturbation generator is trained using
a contrastive loss that uses rich local patch differences of
multi-object image features.

3. Extensive experiments. Through extensive experiments
on two multi-object benchmarks, we show that LPD-Attack has
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overall better attack transferability and outperforms its baselines
under aforementioned settings (see Table 2 and Table 3).

2. Related Work
Adversarial attacks on image classifiers. Most existing state-
of-the-art adversarial attack works [17, 18, 20, 21, 23, 24, 26, 35–
41] have been designed to attack single-object classifiers.
Among these attacks, instance (or image)-driven perturbations
[17, 35–37, 42] have been extensively explored, both to show-
case the various shortcomings of single-object classifiers [43].
Instance-driven attacks are characterized by their method of com-
putation of perturbations only on corresponding clean images.
This results in perturbations being computed for each image
individually, without using knowledge from other images [21].
The current literature on instance-driven approaches broadly
consists of methods that use gradient ascent on the images
[17, 19, 42, 44] or the those that generate adversarial examples
using optimization-based methods [18, 40] for attacking single-
object classifiers. Attacks on multi-object classifiers using
instance-driven approaches have been proposed in [45–47]. [46]
proposed a method to create multi-object adversarial examples
by optimizing for a linear programming problem. [45] proposed
a method to exploit label-ranking relationships based framework
to attack multi-object ranking algorithms. More recently, [47]
presented a method to disrupt the top-k labels of multi-object
classifiers. Although effective for perturbing single images,
instance-driven approaches are inefficient when it comes to at-
tacking a large dataset of images, as the perturbations will have
to be generated by iterating over these images individually mul-
tiple times [21, 24]. Different from [45–47], LPD-Attack falls
under the category of generative model-based adversarial attacks
(which we discuss next) that are distribution-driven approaches.
Such approaches train a generative network over a large number
of images to create perturbations. Once the model is trained, it
can be used to perturb multiple images simultaneously.
Generative model-based adversarial attacks. To address
the shortcomings of instance-driven approaches, generative
model-based or distribution-driven attack approaches [20–
25, 48] have been explored recently for learning perturbations
on single-object images. For example, GAP [20] presents a
distribution-driven attack that trains a generative model for
creating adversarial examples by utilizing the cross-entropy
loss. Recently, CDA [21] proposed a generative network that
is trained using a relativistic cross-entropy loss function. Both
GAP [20] and CDA [21] rely on the final classification layer of
the surrogate model to train the perturbation generator which has
been shown to have inferior transferability of perturbations to
unknown models. Different from these, [22] presented an attack
methodology to enhance the transferability of perturbations
using feature separation loss functions (e.g. mean square
error loss). However, their attack requires a manual selection
of a specific mid-layer for every model against which the
generator is to be trained. In contrast to these aforementioned

Table 1: Characteristic comparison. Better than prior generative
attacks [20–22], LPD-Attack is a generative attack method designed
for “multi-object” images. Here, CE(·): Cross-Entropy loss, MSE(·):
Mean-Square Error loss, f: surrogate classifier used for training per-
turbation generator Gθ(·) (weights θ). x: clean image, xδ: perturbed
image, and δ: perturbation. ℓ: output from specific pre-defined layer.
t: misclassification label depending on type of attack (targeted or
untargeted). Proposed loss (LG+LLPCL) is detailed in Section 3.

Classifier Attack StrategyDD
Attacks Venue image type? Gθ(·) loss

GAP [20] CVPR2018 single-object CE(f(xδ), t)
CDA [21] NeurIPS2019 single-object CE(f(xδ) - f(x), t)
TDA [22] NeurIPS2021 single-object MSE(fℓ(xδ), fℓ(x))

LPD-Attack Ours multi-object LG+LLPCL

works, LPD-Attack is designed to learn to craft imperceptible
adversarial perturbations using multi-object images. Rather
than focusing on the feature map globally, we take a more
fine-grained approach of (feature map) patch contrasting via a
novel contrastive loss. More specifically, LPD-Attack uses the
local feature differences at multiple mid-level layers and uses an
InfoNCE loss [49] based framework to create highly effectual
perturbations. We summarize the differences of LPD-Attack
with the aforementioned generative attack methods in Table 1.

3. Proposed Attack Methodology
Here, we explain our proposed generative adversarial attack

LPD-Attack that learns from multi-object images. It includes
training the perturbation generator with a novel local patch
contrasting learning loss that uses local regions of features
extracted from clean and perturbed images. We start with the
notations and defining the problem statement.

3.1. Problem Formulation
Notations. Let C be the total number of classes and N be
the number of training samples in a dataset T . We define
T = {(x(1),y(1)),··· ,(x(N),y(N))} where x(i) ∈ RH×W×C

and y(i)=[y
(i)
1 ,···,y(i)C ]∈Y ⊆{0,1}C are the ith image (with

height H, width W , and channels Z) and ground-truth label
vector, respectively. For an example data point x(i) and class c,
y
(i)
c =1 (or =0) indicates the presence (or absence) of an object

from class c inx(i). We define a surrogate multi-object classifier
trained on T as f(·), which is utilized to train a perturbation gen-
erator Gθ(·) (parameterized by weight θ). In further discussions
and Figure 2, we drop the superscript i for ease of exposition.

Problem Statement. Given a clean multi-object image x from
data-distribution T containing multiple dominant objects and
the victim classifier g(·), we aim to flip all labels of x with
an allowable perturbation budget ϵ defined by an ℓ∞ norm.
Specifically, the problem objective is to craft a perturbation δ
such that the prediction of g(·) for all labels y associated with
x is changed. Mathematically, this can be represented as y≠ŷ
where, y=g

(
x
)

and ŷ=g
(
x+δ

)
with ∥δ∥∞≤ϵ.
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Figure 2: Framework overview. Our proposed LPD-Attack framework (top) aims to learn from multi-object images using a contrastive
learning mechanism (LLPCL) to maximize the difference of corresponding patches of same locations while minimizing the difference between
non-corresponding patches of distinct locations, from features extracted from clean and perturbed images. This results in highly effective and
transferable perturbations for input clean images during inference (bottom-left).

3.2. Proposed Approach: LPD-Attack

Our proposed framework is presented in Figure 2. It contains
a perturbation generator Gθ(·) that is trained to craft impercep-
tible perturbations δ on x. Gθ(·) is trained against a surrogate
pre-trained multi-object classifier f(·). More precisely, f(·)
acts as a discriminator against which generator Gθ(·) is trained
(f(·) remains fixed or frozen). During training, Gθ(·) takes x as
input and generates an unbounded perturbed image G(x)=x̂δ.
This unbounded perturbed image x̂δ is clipped to be within
an pre-defined perturbation budget ϵ on x under the ℓ∞ norm
using the projection operator P(·). The perturbed image is
then estimated as xδ=P(x̂δ). To compute the generator loss,
xδ is sent to the discriminator, f(·), to be misclassified. At
multiple L mid-layers from f(·), we compute the features
of clean image

[
fk(x)

]L
k=1

and features of perturbed image[
fk(xδ)

]L
k=1

, where fk(x), fk(xδ) ∈ Rhk×wk×ck . Here,
hk×wk denote the spatial size of ith layer feature map with
ck channels. The effectiveness of using mid-level features
to craft powerful perturbations have been extensively studied
in [24, 26, 50–53]. Therefore, we leverage these mid-level
features of f(·) and define our generative model loss via two
functions. The first loss function is a global loss LG that
compares extracted features directly as follows:

LG=
1

L

L∑
k=1

dist
(
fk(x),fk(xδ)

)
(1)

Here, dist(·) can be any distance measuring function, e.g. mean
square error function, etc. The second loss function is a novel
objective, namely, Local-Patch Contrasting Loss (LPCL) which
compares the extracted features

[
fk(x)

]L
k=1

and
[
fk(xδ)

]L
k=1

at a local or patch level. Better than prior generative attacks

Algorithm 1: LPD-Attack Training Algorithm
Input : clean images x from distribution T ,

perturbation ℓ∞ bound ϵ, surrogate classifier f(·)
Input : learning rate α
Output : perturbation generator Gθ(·)’s weights θ

/* Large-Scale training of Gθ(·) */
1 Randomly initialize θ
2 Load and freeze multi-object classifier f(·) trained on T
3 while not done do

/* Obtain clean image features */

4 Input x to f(·) and get L mid-layer features
[
fk(x)

]L
k=1

/* Obtain perturbed image features */
5 Create unbounded perturbed image G(x)
6 Project it within bound ϵ using P(·) to obtain xδ

7 Input xδ to f(·), get L mid-layer features
[
fk(xδ)

]L
k=1

/* Compute loss */
8 Compute L=LG+LLPCL

/* Update Gθ(·)’s weights */
9 Update θ with respect to L using Adam

10 θ←θ−α∇θL(θ)

which only compare perturbed and clean images globally, our
proposed LPCL loss leverages the local difference of patches
from multiple objects in the input image to disrupt the victim
classifier’s decisions. We expand on the details of LPCL next.

3.3. Contrasting Patches of Multi-Object Images

Motivation. We make the observation that due to existence of
multiple objects in a multi-object image x, we can utilize the lo-
cal feature patches from fk(x) (and fk(xδ)). The local patches
of input clean image belong to individual dominant objects and
thus, prompt the multi-object classifier to output their respective
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associated labels. Therefore, for each object in a perturbed
image to be misclassified, each patch within its feature map
should look different to the classifier than the same location cor-
responding patch in the feature map of a clean image. To create
this difference, we use the feature maps from different location
non-corresponding patches to create ambiguity for the victim
classifier to prompt incorrect decisions on the overall perturbed
image. This patch location-wise contrasting of the clean and
perturbed image features at the local level allows for stronger
supervision for training the perturbation generator Gθ(·).
Proposed contrasting loss (LLPCL). To misclassify the per-
turbed image xδ, we need to maximize the difference between
its features and that of the clean image x. We propose to
achieve this by misaligning corresponding clean-perturbed im-
age feature patches at a specific location to maximize the dif-
ference at a local level. This misalignment is enabled by uti-
lizing the other patches from the clean image features at non-
corresponding locations. We start with computing the features
of clean and perturbed image from surrogate model f(·) as[
fk(x)∈Rhk×wk×ck

]L
k=1

and
[
fk(xδ)∈Rhk×wk×ck

]L
k=1

, re-
spectively. We convert these feature maps to tensorsDk and D̂k,
respectively, of size vk×ck (where, vk=hkwk). Next, we chose
a query vector ηq

k∈Rck from a qth spatial location of D̂k and
choose the corresponding spatial location vector η−

k from Dk,
which we call η̂k’s negative. Then, from R other (or different)
locations of Dk, we choose a collection of positives denoted by
η+
k ∈RR×ck . The LLPCL loss is now defined as an (R+1)-way

classification objective, with logits representing the similarity
between query ηq

k and set [η−
k ,η

+
k1,η

+
k2,···,η

+
kR], as follows.

LLPCL=− 1

L

∑L
k=1log

(
exp

(
sim(ηq

k,η
−
k )

)
exp

(
sim(ηq

k,η
−
k )

)
+
∑R

r=1exp
(
sim(ηq

k,η
+
kr)

)) (2)

where sim(ηa,ηb)=η⊤
a ηb/τ returns the similarity between two

vectors, ⊤ represents the transpose operation, and τ is a scaling
parameter. We set τ=0.07 following [27]. This loss envisions
our idea that, if a feature patch on the perturbed image is to
be disrupted, it should obtain a low similarity score with the
corresponding (same location) “negative” feature patch of the
clean image, and high similarity score with “positive” patches
from non-corresponding locations. Note that “patch” does
not correspond to “object” and it is possible that (1) group of
patches can belong to one object and (2) one patch can contain
parts of multiple objects. The only requirement for the R
positive patches used in LLPCL to operate properly is: these R
positive patches should contain feature values that are different
from the values in query feature patch ηq

k. This requirement
is easily fulfilled when we sample them from non-overlapping
w.r.t. to each other and from different locations w.r.t. to ηq

k.

3.4. Final Objective
Our final learning objective includes a loss function to

train the generator over xδ both globally with a LG objective
and locally using our proposed contrasting loss LLPCL. This

loss is computed over multiple L mid-level layers of f(·) as
L=LG+LLPCL. Note that we maximize L for an untargeted
attack with LG set as the mean square error loss. For targeted
attack, we minimize L with LG set as binary cross-entropy loss
to classify the perturbed image to the target label. The whole
training procedure is summarized in Algorithm 1. During
testing, we simply input the test image to the trained generator
to create a perturbed image with the aim to fool the victim
classifier for all the associated labels.

4. Experiments and Results
Here, we discuss the strength of LPD-Attack under diverse

attack Settings 1-4 (as described in Section 1) presented in
Table 2 and Table 3. Furthermore, we analyze the strength
of LPD-Attack on most realistic attack setting in Table 4 and
Table 5, as well as other easier variations in Table 6. We also
perform an ablation analysis of LPD-Attack in Figure 3 and
show some examples of perturbed images and attention shift
in Figure 4 to validate our method. Unless otherwise stated,
perturbation budget is set to ℓ∞ ≤ 10. We provide details of
implementation, baselines (GAP [20], CDA [21], TDA [22]),
and additional experiments in the Supplementary Material.

Training Datasets. We employ widely-used and publicly
available PASCAL-VOC [31] and MS-COCO [33] datasets.
For Pascal-VOC, we use trainval from ‘VOC2007’ and
‘VOC2012’ as our training dataset and the evaluations are
carried out on ‘VOC2007 test’ dataset. For MS-COCO, we use
train2017 as our training dataset and val2017 for evaluations.

Inference Metrics. We evaluate the attacks on multi-object
classifiers using accuracy on test set defined for multi-object
classification in [54, 55]. For attacks on single-object classifier
in Table 4 and Table 5, we use top-1 accuracy on test set. For
all untargeted attacks, a lower score indicates better attack. In
case of targeted attack, a higher score indicates better attack
result. Best results are in red, second best are in blue. Accuracy
on clean images are provided in gray for reference.

Victim Models and Attack Settings. To attack the victim
models, we first train all the perturbation model Gθ(·) for
baselines and LPD-Attack on Pascal-VOC and MS-COCO
on their respective train set against surrogate multi-classifier
model f(·). We chose f(·) to be (Pascal-VOC or MS-COCO)
pre-trained multi-object classifiers Res152 [32], Dense169 [56],
and VGG19 [57]. As discussed in Section 1, we then evalu-
ate the trained Gθ(·) under four following settings. Firstly for
Setting 1 (white-box), we attack the surrogate multi-classifier
model f(·) on test set of same multi-object distribution used dur-
ing training. Secondly for Setting 2 (black-box), we attack other
multi-object classifiers different from the surrogate model also
on test set of same multi-object distribution used during training.
Thirdly for Setting 3 (strict black-box), we attack multi-object
classifiers on test set of different multi-object distribution other
than used during training. Finally, following [24] for Setting 4

1312



Table 2: Average Results when Gθ(·) trained with Pascal-VOC. We
summarize the attack capability of prior generative attack works under
various victim scenarios with training data as Pascal-VOC. Results
are averaged over three surrogate classifiers for all methods.

Attack Victim Details Method Mean result
GAP [20] 55.22
CDA [21] 54.79
TDA [22] 53.73

Se
tti

ng
1

(e
as

y) Pascal-VOC
(victim model = surrogate model)

LPD-Attack 52.69
GAP [20] 56.24
CDA [21] 55.86
TDA [22] 55.32

Se
tti

ng
2

Pascal-VOC
(victim model ≠ surrogate model)

LPD-Attack 54.37
GAP [20] 40.86
CDA [21] 40.51
TDA [22] 39.79

Se
tti

ng
3

MS-COCO

LPD-Attack 38.69
GAP [20] 83.96
CDA [21] 82.72
TDA [22] 83.13

CIFAR(10,100), STL-10, SVHN
(Coarse-Grained tasks)

LPD-Attack 70.72
GAP [20] 90.50
CDA [21] 90.21
TDA [22] 88.61

CUB-200, Stanford Cars,
FGVC Aircraft

(Fine-Grained tasks) LPD-Attack 73.72
GAP [20] 73.05
CDA [21] 72.33
TDA [22] 69.91

Se
tti

ng
4

(d
iff

ic
ul

t)

ImageNet

LPD-Attack 45.12

(extreme black-box), we attack various single-object classifiers
for CIFAR10 [58], CIFAR100 [58], STL-10 [59], and SVHN
[60] (coarse-grained tasks), CUB-200-2011 [61], Stanford Cars
[62], and FGVC Aircrafts [63] (fine-grained tasks), and Ima-
geNet [64] models on their respective test sets. The pre-trained
victim models of coarse-grained tasks are available in [65], for
fine-grained tasks (Res50 [32] and SENet154 [66]) in [67] and
ImageNet task in [68]. Briefly, the coarse-grained single-object
classification task is to distinguish labels like ‘cats vs dogs’,
whereas the fine-grained single-object classification task is to
distinguish difficult labels like species of cats (e.g. ‘tiger vs pan-
ther’). Analyzing attacks on such diverse tasks after learning
perturbations from multi-object images will show the transfer-
ability of perturbations which is important for real-world attacks.

4.1. Quantitative Results
We evaluated LPD-Attack against baselines under four

different attack scenarios. We summarize them in Table 2 and
Table 3, and discuss them below.

Observation 1. The proposed method LPD-Attack has the
overall best performance. We outperform the prior best SOTA
method TDA [22] in 10 out of 12 cases, demonstrating the
efficacy of our proposed method. For example in Pascal-VOC,
we outperform TDA by a margin of 10% (ours: 55.88%,
TDA: 65.08%), and in MS-COCO, by a margin of 3.5%
(ours: 46.73%, TDA: 51.00%). Furthermore, TDA carries an
expensive computational overhead (discussed by the authors
themselves in Section 4.6 under “Limitations”): the attacker

Table 3: Average Results when Gθ(·) trained with MS-COCO We
summarize the attack capability of prior generative attack works under
various victim scenarios with training data as MS-COCO. Results are
averaged over three surrogate classifiers for all methods.

Attack Victim Details Method Mean result
GAP [20] 41.09
CDA [21] 39.96
TDA [22] 34.31

Se
tti

ng
1

(e
as

y) MS-COCO
(victim model = surrogate model)

LPD-Attack 34.91
GAP [20] 41.05
CDA [21] 41.17
TDA [22] 37.08

Se
tti

ng
2

MS-COCO
(victim model ≠ surrogate model)

LPD-Attack 36.97
GAP [20] 56.03
CDA [21] 55.63
TDA [22] 51.84

Se
tti

ng
3

Pascal-VOC

LPD-Attack 52.06
GAP [20] 84.07
CDA [21] 81.52
TDA [22] 70.40

CIFAR(10,100), STL-10, SVHN
(Coarse-Grained tasks)

LPD-Attack 65.53
GAP [20] 90.64
CDA [21] 89.98
TDA [22] 74.88

CUB-200, Stanford Cars,
FGVC Aircraft

(Fine-Grained tasks) LPD-Attack 63.39
GAP [20] 73.25
CDA [21] 71.94
TDA [22] 42.37

Se
tti

ng
4

(d
iff

ic
ul

t)
ImageNet

LPD-Attack 27.51

needs to incur high time complexity (by training the generator
separately for each possible mid-layer) to search for the most
effective mid-layer of the surrogate model in order to optimize
the generator. Through our results, especially on the ImageNet
dataset, we show that TDA’s manually selected specific layer
is highly sensitive to the training data distribution as the results
on ImageNet degrade drastically if the generator is trained on
datasets different from ImageNet (in this case, Pascal-VOC, MS-
COCO). In contrast, since we select a group of layers, we do
not need this laborious time and resource-consuming analysis.

Observation 2. SOTA tends to comparatively overfit more
to the attacker’s training data distribution than the proposed
method. The aforementioned four attack scenarios (after the gen-
erator is trained on Pascal-VOC and MS-COCO) show that: as
the victim data distribution starts varying (e.g. ImageNet, STL-
10, FGVC Aircraft classification), there is a huge performance
drop in the prior attacks due to weaker transferability of pertur-
bations. For example, TDA shows a comparable performance
when the victim distribution is similar to the attacker’s training
distribution (see Table 6) but shows surprisingly low attack
results (20% difference) when the victim distribution changes
to single-object classifications tasks like ImageNet, STL-10,
FGVC Aircraft (see Table 4). This clearly demonstrates that
prior works tend to overfit to the attacker’s training distribution
and perform poorly when there is no overlap in the victim’s
data distribution and type of classification task. On the other
hand, our proposed method LPD-Attack alleviates this issue
and shows better transferability of perturbations. We attribute
the better performance of our method, in better alleviating the

1313



Table 4: Setting 4 attack comparison when Gθ(·) is trained with Pascal-
VOC: Perturbations created on test set of each task. f(·): Res152.

(a) Coarse-Grained task

CIFAR10 CIFAR100 STL-10 SVHN
All Victim Models from [65]Method

93.79% 74.28% 77.60% 96.03%
GAP [20] 92.94% 72.56% 74.33% 96.01%
CDA [21] 91.97% 72.18% 70.99% 95.74%
TDA [22] 92.49% 70.80% 73.31% 95.93%

LPD-Attack 76.61% 47.51% 70.49% 88.27%

(b) Fine-Grained tasks

CUB-200-2011 Stanford Cars FGVC Aircraft
Res50 SENet154 Res50 SENet154 Res50 SENet154Method

87.35% 86.81% 94.35% 93.36% 92.23% 92.05%
GAP [20] 86.24% 86.40% 93.79% 93.09% 91.69% 91.78%
CDA [21] 85.90% 86.11% 93.28% 92.69% 91.36% 91.90%
TDA [22] 83.93% 82.33% 92.92% 91.79% 90.04% 90.64%

LPD-Attack 59.34% 76.58% 77.35% 81.98% 73.78% 73.27%

(c) ImageNet task (on ImageNet validation set (50k samples))

ImageNet Trained Victim Classifiers
VGG16 VGG19 Res50 Res152 Dense121 Dense169Method
70.15% 70.95% 74.60% 77.34% 74.21% 75.74%

GAP [20] 69.19% 70.23% 73.71% 76.62% 73.36% 75.21%
CDA [21] 68.20% 69.41% 72.67% 75.95% 72.93% 74.79%
TDA [22] 65.60% 66.28% 70.47% 74.35% 70.11% 72.62%

LPD-Attack 32.24% 35.05% 48.53% 50.54% 49.99% 54.37%

overfitting issue than SOTA, to the unique strategy of comparing
local feature patches rather than just global differences.

Observation 3. As attack scenarios become more difficult and
realistic, the proposed method’s performance is much better
than the SOTA baselines. White-box attacks (Setting 1) are easy
and least realistic attacks, whereas extreme black-box attacks
(Setting 4) are the most difficult but most realistic (the attacker
has no knowledge of the victim model or task) attack settings.
We observe that as the difficulty level of attack increases, the
performance of TDA crafted perturbations show increasingly
poor performance than the proposed method LPD-Attack. For
example, though LPD-Attack and TDA show comparable
performance in the white-box attacks, it outperforms TDA by a
huge margin of 18% in extreme black-box attacks (see Table 5
and Table 4). This implies existing attacks perform poorly in
real-world use cases, whereas LPD-Attack poses a greater
threat to the victim model than prior SOTA attacks.

Targeted attacks. We performed a white-box targeted attack
on Dense169 with the target label set to ‘person’ (i.e. all
perturbed images should output the label ‘person’). We
observed that GAP [20] and CDA [21] result in an accuracy of
34.58% and 34.86% whereas LPD-Attack resulted in 35.00%
attack performance (perturbation bound ℓ∞≤16).

4.2. Ablation Study
We perform an ablation analysis of LPD-Attack with respect

to loss objectives in Figure 3(a), impact of number of patches R
in Figure 3(b), and impact of number of layers L in Figure 3(c)

Table 5: Setting 4 attack comparison when Gθ(·) is trained with MS-
COCO: Perturbations created on test set of each task. f(·): Dense169.

(a) Coarse-Grained task

CIFAR10 CIFAR100 STL-10 SVHN
All Victim Models from [65]Method

93.79% 74.28% 77.60% 96.03%
GAP [20] 93.12% 72.72% 74.78% 95.65%
CDA [21] 90.77% 69.20% 70.31% 95.79%
TDA [22] 76.37% 40.35% 72.19% 92.67%

LPD-Attack 66.16% 35.12% 70.28% 90.56%

(b) Fine-Grained tasks

CUB-200-2011 Stanford Cars FGVC Aircraft
Res50 SENet154 Res50 SENet154 Res50 SENet154Method

87.35% 86.81% 94.35% 93.36% 92.23% 92.05%
GAP [20] 86.69% 86.33% 94.12% 93.10% 91.84% 91.78%
CDA [21] 85.57% 86.04% 93.10% 92.71% 91.15% 91.30%
TDA [22] 60.30% 70.04% 76.21% 80.48% 81.07% 81.19%

LPD-Attack 22.25% 74.77% 64.98% 81.31% 60.37% 76.66%

(c) ImageNet task (on ImageNet validation set (50k samples))

ImageNet Trained Victim Classifiers
VGG16 VGG19 Res50 Res152 Dense121 Dense169Method
70.15% 70.95% 74.60% 77.34% 74.21% 75.74%

GAP [20] 69.32% 70.39% 73.89% 76.75% 73.75% 75.38%
CDA [21] 67.24% 68.45% 72.17% 75.69% 73.12% 74.96%
TDA [22] 31.59% 33.11% 45.74% 58.15% 46.11% 39.49%

LPD-Attack 20.60% 23.60% 30.42% 37.07% 29.50% 23.88%
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Figure 3: Ablation analysis of LPD-Attack: Figure 3(a): Gθ(·)
trained on Pascal-VOC against Res152, strict black-box attacks on
MS-COCO; Figure 3(b), Figure 3(c): Gθ(·) trained on Pascal-VOC
against Dense169 for all cases; perturbation bound was set ℓ∞≤10.

utilized from the surrogate model f(·) to train Gθ(·). From Fig-
ure 3(a), we observe the impact of components of our loss objec-
tive whenGθ(·)was trained against Res152 on Pascal-VOC both
for white-box (test against Pascal-VOC) and strict black-box
(test against MS-COCO). It can be observed that the perturba-
tions are most effective when both the global loss LG and local
loss LLPCL are utilized. Next from Figure 3(b), we observe that
the best performance is observed with R=256 patches (note
that we use R=128 for a slightly better training time-accuracy
trade-off). Finally, we analyze the impact of using multiple mid-
level features from f(·) and observe that L=4 results in best
attacks as it allows the use of diverse features to learn the pertur-
bations. This also shows that we do not need to manually choose
a specific layer for better attacks as in the case of TDA [22], and
an average choice of a group of layers creates effective attacks.

4.3. Qualitative Results
We visualize some examples of perturbed images and shift in

attention (using CAM [69]) for misclassified images from clean
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Table 6: Generative Attack Comparison when Gθ(·) is trained with Pascal-VOC: Gray colored cells represent the Setting 1 attacks. f(·) in both
Table 6(a) and Table 6(b) are pre-trained on Pascal-VOC.

(a) Setting 1 and Setting 2 attacks

Pascal-VOC Trained Victim Models
Res152 VGG19 Dense169f(·) Method
83.12% 83.18% 83.73%

GAP [20] 58.78% 48.52% 61.31%
CDA [21] 58.62% 48.69% 60.93%
TDA [22] 58.45% 48.19% 61.16%R

es
15

2

LPD-Attack 57.22% 46.07% 59.63%
GAP [20] 58.88% 45.60% 61.32%
CDA [21] 58.18% 45.26% 60.73%
TDA [22] 57.47% 42.61% 59.39%V

G
G

19

LPD-Attack 57.84% 42.62% 59.66%
GAP [20] 58.83% 48.58% 61.29%
CDA [21] 58.39% 48.25% 60.48%
TDA [22] 58.04% 47.66% 60.12%

D
en

se
16

9

LPD-Attack 57.21% 45.82% 58.23%

(b) Setting 3 attacks

MS-COCO Trained Victim Models
Res152 VGG19 Dense169f(·) Method
67.95% 66.49% 67.60%

GAP [20] 44.91% 34.70% 44.15%
CDA [21] 44.99% 34.89% 44.35%
TDA [22] 44.45% 34.46% 43.88%R

es
15

2

LPD-Attack 42.36% 32.16% 42.37%
GAP [20] 45.02% 31.10% 44.14%
CDA [21] 43.41% 30.94% 43.31%
TDA [22] 43.22% 27.74% 42.23%V

G
G

19

LPD-Attack 43.12% 28.31% 42.54%
GAP [20] 44.88% 34.72% 44.12%
CDA [21] 44.50% 34.42% 43.82%
TDA [22] 44.21% 34.30% 43.58%

D
en

se
16

9

LPD-Attack 43.09% 32.40% 41.86%

Figure 4: Illustration of perturbed images and attention shift: Row 1: clean images, Row 2: CAM [69] attention map on clean images, Row 3:
perturbed images (ℓ∞≤10), Row 4: CAM [69] attention map on perturbed images. Gθ(·) was trained against Res152 for both datasets, examples
are visualized on test sets with attention maps extracted from Res152.

images in Pascal-VOC and MS-COCO in Figure 4 for Res152
multi-object classifier. It can be observed that LPD-Attack
changes the focus of the victim classifier to irrelevant regions
leading to highly successful attacks.

5. Conclusion
In this paper, we tackle a novel problem of altering the

decisions of victim classifiers by learning to create perturbations
on multi-object images. To this end, we proposed a novel gen-
erative adversarial attack (LPD-Attack) framework that trains
the perturbation generators by exploiting the local differences

in multi-object image features. LPD-Attack achieves high
attack rates both in white-box and different practical black-box
settings. For example, when we learn to craft perturbations on
Pascal-VOC and create black-box attack on ImageNet, LPD-
Attack outperforms existing attacks by ∼25% points. In our
future work, we will explore the case of black-box multi-object
targeted attacks for multi-object images, as well as video gener-
ative models [70, 71] for adversarial attacks on video classifiers.

Acknowledgement. This material is based upon work sup-
ported by the Defense Advanced Research Projects Agency
(DARPA) under Agreement No. HR00112090096.
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