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Abstract

Visual Place Recognition (VPR) is a crucial part of mo-
bile robotics and autonomous driving as well as other com-
puter vision tasks. It refers to the process of identifying a
place depicted in a query image using only computer vi-
sion. At large scale, repetitive structures, weather and il-
lumination changes pose a real challenge, as appearances
can drastically change over time. Along with tackling these
challenges, an efficient VPR technique must also be prac-
tical in real-world scenarios where latency matters. To
address this, we introduce MixVPR, a new holistic fea-
ture aggregation technique that takes feature maps from
pre-trained backbones as a set of global features. Then,
it incorporates a global relationship between elements in
each feature map in a cascade of feature mixing, eliminat-
ing the need for local or pyramidal aggregation as done in
NetVLAD or TransVPR. We demonstrate the effectiveness
of our technique through extensive experiments on multi-
ple large-scale benchmarks. Our method outperforms all
existing techniques by a large margin while having less
than half the number of parameters compared to CosPlace
and NetVLAD. We achieve a new all-time high recall@1
score of 94.6% on Pitts250k-test, 88.0% on MapillarySLS,
and more importantly, 58.4% on Nordland. Finally, our
method outperforms two-stage retrieval techniques such as
Patch-NetVLAD, TransVPR and SuperGLUE all while be-
ing orders of magnitude faster.

1. Introduction
Visual place recognition (VPR) is an essential part of

many robotics [11, 9, 10, 15, 18, 22] and computer vi-
sion tasks [2, 23, 27, 16, 17, 45, 6] such as autonomous
driving [12], SLAM [49], image geo-localization [38, 7],
virtual reality [31] and 3D reconstruction [29]. A visual
place recognition system retrieves the location of a given
query image by first gathering its visual information into
a compact descriptor (image representation), then match-

Figure 1. Comparison of performance on the challenging Nord-
land benchmark. All methods have been trained on the exact same
dataset, using the same backbone architecture.

ing it against a database of references with known geolo-
cations. This task can be extremely challenging due to
short term appearance changes (e.g., illumination, occlu-
sion and weather) as well as long term variations (e.g., sea-
sonal changes, construction and vegetation). Therefore, a
robust VPR technique should be capable of producing de-
scriptors that are invariant to these changes.

Traditionally, VPR technique used hand-crafted local
features such as SIFT [30] and SURF [5] which can be
further aggregated into a global descriptor that represents
the entire image such as Fisher Vectors [20, 34], Bag of
Words [35, 44, 14] and Vector of Locally Aggregated De-
scriptor (VLAD) [21, 3]. Following the growth of deep
learning, where convolutional neural networks (CNNs)
have shown outstanding performance in several computer
vision tasks, including image classification [19], object
detection [28] and semantic segmentation [25], many re-
searchers have proposed to use CNNs for VPR. For in-
stance, Sünderhauf et al. [40] showed that features extracted
from intermediate layers of CNNs trained for image classi-
fication can perform better than hand-crafted features. As a
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result, many have proposed to train CNNs directly for the
task of place recognition [2, 39, 23, 27, 16], by designing
end-to-end trainable layers that can be plugged into pre-
trained networks (backbones) to aggregate their rich feature
maps into robust representations. These approaches demon-
strated great success at large scale benchmarks [44, 47]
thanks to the availability of pre-trained networks and the
VPR-specific datasets for fine-tuning.

Despite all the progress in the field of visual place recog-
nition, most existing state-of-the-art techniques either use
NetVLAD [2, 47, 17, 50] or provide a variant that incorpo-
rates attention [52], context [23], semantics [33] or multi-
scale [17]. These techniques emphasize on the aggrega-
tion of local features which have proved to be invariant
to viewpoint changes. However, local features are notori-
ously known to fail under severe illumination and seasonal
changes [31].

Alternative approaches to NetVLAD focus on regions
of interests instead of local features, by spatially pooling
from the feature maps of the backbone. Such techniques in-
clude MAC (i.e., max pooling), R-MAC [42] and General-
ized Mean (GeM) [36]. Despite their performance in image
retrieval [8] these methods have been repeatedly shown to
underperform NetVLAD in the task of VPR. Most recently,
Berton et al. [6] proposed CosPlace, which is a variant that
builds on GeM aggregator, showing strong performance on
multiple VPR benchmarks.

Currently, all existing state-of-the-art techniques pro-
pose shallow aggregation layers that are plugged into very
deep pre-trained backbones cropped at the last feature-rich
layer. By contrast, Wang et al. [45] proposed TransVPR,
a place recognition architecture that builds on the suc-
cess of vision Transformers [13] and fuse multi-level atten-
tions to generate global and local descriptors. TransVPR
achieved strong results for local feature matching. How-
ever, its global representation performance did not surpass
that of NetVLAD or CosPlace. With recent advances in
isotropic architectures, it has been shown that self-attention
is not critical to Vision Transformers [26]. For instance,
Tolstikhin et al. [43] introduced MLP-Mixer, an architec-
ture based exclusively on multi-level perceptrons, achieving
competitive results on multiple vision tasks.

In this paper, we present MixVPR, a new holistic ag-
gregation technique that uses feature maps extracted from a
pre-entrained backbone, and iteratively incorporates global
relationships into each individual feature map. It does this
through a stack of isotropic blocks that we call Feature-
Mixer, which consists solely of multi-layer perceptrons
(MLPs). The effectiveness of MixVPR is demonstrated by
several qualitative and quantitative results where it achieves
a new state-of-the-art performance on multiple benchmarks,
surpassing existing techniques by a wide margin all while
being extremely lightweight.

2. Related Works
The task of visual place recognition has long been ap-

proached as an image retrieval problem, where the loca-
tion of a query image is determined according to the geo-
tags of the most relevant images retrieved from a refer-
ence database. With the success of deep learning, al-
most all recent VPR techniques make use of learned rep-
resentations. This usually involves using features extracted
from a backbone network pretrained on image classification
datasets [24], followed by a trainable aggregation layer that
transforms these features into robust compact representa-
tions. One notable aggregation technique is NetVLAD [2],
which is a trainable variant of the VLAD descriptor, where
local features are softly assigned to a learned set of clus-
ters. As a result of the success of NetVLAD, many vari-
ants have been proposed in literature. Kim et al. [23] intro-
duced Contextual Reweighting Network (CRN) which es-
timates a weight for each local feature from the backbone
before feeding it into a NetVLAD layer; their approach in-
troduced a slight but consistent performance boost. Fur-
ther on, SPE-VLAD [50] has been proposed, to enhance
NetVLAD with spatial and regional features, by incorpo-
rating pyramid structure. More recently, Zhan et al. [52]
proposed Gated NetVLAD, which uses a gating mechanism
that incorporates attention in the computation of NetVLAD
residuals.

Other techniques focus on regions of interest in the fea-
ture maps. Among the first techniques is MAC [4], a sim-
ple aggregation method that applies max-pooling on each
individual feature map, selecting only the most activated
neurons. Building on that, Tolias et al. [42] introduced
R-MAC (Regional Maximum Activations of Convolutions)
that consists of extracting multiple Region of Interest (RoI)
directly from the CNN feature maps to form representa-
tions. These techniques showed impressive performance
on the task of image retrieval and have since been used in
VPR. Another notable aggregation technique is the Gener-
alized Mean (GeM) [36] which is a learnable generalized
form of global pooling. Building on GeM, Berton et al. [6]
recently proposed CosPlace, a lightweight aggregation tech-
nique that combines GeM with a linear projection layer.
Their method showed impressive performance on the task
of VPR, outperforming GeM and NetVLAD and achieving
state-of-the-art results on multiple benchmarks.

Another trend in recent VPR works [17, 45] is to con-
sider using a two-stage retrieval strategy, which consists
of running a first global retrieval step to retrieve, for each
query, the top k candidates from the reference database.
This step is generally more efficient because it uses k-NN
on the global descriptors. Then, a second computationally
heavy step is performed where the candidates are re-ranked
according to their local features [41, 37, 38]. For instance,
Patch-NetVLAD [17] uses NetVLAD descriptor for global

2999



Figure 2. Overview of our newly proposed architecture for place recognition. MixVPR takes as input flattened feature maps from in-
termediate layers of a pretrained backbone. It incorporates spatial relationship in each individual feature map through a succession of
Feature-Mixer blocks. The resulting output is then projected into a compact representation space and used as global descriptor.

description, then in a later stage, uses the local features
composing NetVLAD in order to refine the retrieved candi-
dates. This approach demonstrated good performance when
re-ranking is used. Recently, TransVPR [45] used a combi-
nation of CNN and Transformer by using multi-head self-
attention (Transformer encoder) on top of a shallow CNN
backbone. Their aim is to incorporate attention in the re-
sulting tokens of the Transformer network. While their lo-
cal feature demonstrated great performance for re-ranking,
the global descriptors generated by the transformer network
were not as powerful as NetVLAD or CosPlace.

In this paper, we follow recent advances in isotropic
all-MLP architectures such as MLP-Mixer [43] and
gMLP [26], and propose MixVPR, a novel all-MLP ag-
gregation technique, which in contrast to TransVPR [45]
and Patch-NetVLAD [17], does not incorporate self-
attention or regional feature pooling. Although our method,
MixVPR, generates global descriptors and does not per-
form re-ranking, it outperofms two-stage techniques such as
TransVPR [45], Patch-NetVLAD [17] and SuperGlue [38],
while being at least 500× faster in terms of latency.

3. Methodology

Our aim is to learn global compact representations that
integrate features in a holistic way. Given an image I, we
first extract its feature maps F ∈ Rc×h×w from the interme-
diate layers of a CNN backbone, F = CNN(I). Existing
techniques, such as TransVPR [45], Patch-NetVLAD [17],
NetVLAD [2], consider F as a set of c-dimensional spatial
descriptors, where each descriptor corresponds to a recep-
tive field in the input image. In contrast, we consider the 3D

tensor F as a set of 2D features of size h×w such as:

F = {Xi}, i = {1, . . . , c} (1)

where Xi corresponds to the ith activation map in F and
sweeps across all the image (each feature map carries a
certain amount of information regarding the whole image).
We reshape each 2D feature Xi into a 1D representation
(flattening), resulting in flattened feature maps F ∈ Rc×n,
where n = h×w.

Then, we feed them to what we call Feature-Mixer, a
cascade of L MLP blocks of identical structure, as illus-
trated in Fig. 2. Feature-Mixer takes as input a set of flat-
tened feature maps, and incorporates global relationships
into each Xi ∈ F as follows (omitting Normalization
layer):

Xi ←W2(σ(W1 X
i)) +Xi, i = {1, . . . , c} (2)

where W1 and W2 are the weights of two fully-connected
layers that compose the MLP, and σ is a nonlinearity (ReLU
in our case). The input to the MLP is added back to the
resulting projection in a skip connection. This is proven
to help the flow of gradients and further improve perfor-
mance [19].

The intuition behind Feature-Mixer is that, instead of
focusing on local features, and forcing the network to go
through attention mechanism, we take advantage of the ca-
pacity of fully connected layers to automatically aggregate
features in a holistic way. Feature-Mixer replaces hierarchi-
cal (pyramidal) aggregation thanks to its full receptive field,
where each neuron has a glimpse into the entire input im-
age. We use a cascade of Feature-Mixer blocks as shown
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in Fig. 2 in order to iteratively incorporate relationships be-
tween spatial features in each individual feature map.

For a given input F ∈ Rc×n, Feature Mixer (FM) gen-
erates an output Z ∈ Rc×n of the same shape (due to
its isotropic architecture), which we feed into a second
Feature-Mixer block, and so on until we reach L consec-
utive blocks, as follows:

Z = FML(FML−1(. . . FM1(F))) (3)

Z is usually highly dimensional (as it has the same di-
mensionality as the extracted feature maps F). To fur-
ther reduce its dimensionality, we follow it by two fully
connected layers that reduce its dimension depth-wise
(channel-wise) then row-wise, successively. This can be
seen as a weighted pooling operation that enables control
of the size of the final global descriptor. First, we apply a
depth-wise projection that maps Z from Rc×n to Rd×n as
follows:

Z′ = Wd(Transpose(Z)) (4)

where Wd are the weights of a fully-connected layer. We
then apply a row-wise projection that maps the output Z′

from Rd×n to Rd×r such as:

O = Wr(Transpose(Z
′)) (5)

where Wr are the weights of another fully-connected layer.
The final output O has a dimensionality of d×r, which is
flattened and L2-normalized as usually done in VPR [2, 16,
6].

Connection to existing architectures. Our technique is re-
lated to MLP-Mixer [43] where a token mixing operation
is applied on spatial non-overlapping image patches. We,
on the other hand, use features from CNNs that incorpo-
rate inductive bias and regard the resulting activation maps
as global features. Also, MLP-Mixer performs channel-
mixing that is shared across individual spatial descriptors,
which we do not employ.

Overall, MixVPR computations are mostly matrix multi-
plications (of fully-connected layers) which are efficient in
terms of computation compared to self-attention where the
complexity scales quadratically [43]. Also, in MixVPR we
extract feature maps from the intermediate layers (instead
of the last layer) of the backbone, which reduces the num-
ber of parameters by more than half, as most parameters of
a pre-trained backbone are present in the last layers.

4. Experiments
In this section, we run extensive experiments to show the

effectiveness of the proposed MixVPR compared to existing
state-of-the-art techniques by evaluating on multiple chal-
lenging benchmarks. In what follows, we present imple-
mentation details, datasets, evaluation metrics, performance
comparisons and ablation studies.

4.1. Implementation details

Architecture. We implement MixVPR in PyTorch frame-
work [32] and use existing implementations of GeM [36],
NetVLAD [2] and CosPlace [6]. However, for tech-
niques without existing implementation, such as SPE-
NetVLAD [50] and Gated NetVLAD [52], we do our best
to faithfully reimplement them following their respective
papers. For all techniques, the CNN backbone is cropped
at the last convolutional layer as recommended by their au-
thors. MixVPR uses a backbone cropped in the middle (i.e.,
at the second last ResNet residual block) so that the Fea-
ture Mixer receives feature maps with a spatial dimension
of 20 × 20. For maximum fairness, we use the exact same
CNN backbone for all compared techniques (i.e., ResNet-
50 [19]). The projection operation in Feature-Mixer is the
Linear layer of PyTorch which we follow by a relu nonlin-
earity. As for the normalization layer we use LayerNorm.
Finally, the output of the Feature-Mixer is projected into a
smaller representation space using two consecutive fully-
connected layer as described in 3, which makes MixVPR
an all-MLP architecture. Unless otherwise stated, we fix
L = 4 the number of stacked Feature-Mixer blocks.
Training. Using a ResNet [19] backbone pre-trained on
ImageNet [24], we train all techniques on the same dataset,
following the standard framework of GSV-Cities [1], which
proposes a highly accurate dataset of 67k places depicted by
560k images. For the loss function, we use Multi-Similarity
loss [46] as it has been shown to perform best for visual
place recognition [1].We use batches containing P = 120
places, each depicted by 4 images resulting in mini-batches
of 480 images. We use Stochastic Gradient Descent (SGD)
for optimization, with momentum 0.9 and weight decay of
0.001. The initial learning rate of 0.05 is divided by 3 af-
ter each 5 epochs. Finally, we train for a maximum of 30
epochs using images resized to 320×320.
Evaluation. For evaluation we use the following 5 bench-
marks. Pitts250k-test [44], which contains 8k queries and
83k reference images, collected from Google Street View
and Pitts30k-test [44] which is a subset of Pitts250k and
comprises 8k queries and 8k references. Both Pittsburgh
datasets show significant viewpoint changes. SPED [51]
benchmark contains 607 queries and 607 references from
surveillance cameras presenting significant seasonal and il-
lumination variations. MSLS [47] benchmark has been col-
lected using car dashcams and presents a wide range of
viewpoint and illumination changes. Finally, Nordland [51]
is an extremely challenging benchmark which has been col-
lected in 4 seasons using a camera mounted in front of a
train, it comprises scenes ranging from snowy winter to
sunny summer with extreme appearance changes. We fol-
low the same evaluation metric of [2, 23, 47, 51, 45, 6],
where the recall@k is measured. The query image is deter-
mined to be successfully retrieved if at least one of the top-k
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retrieved reference images is located within d = 25 meters
from the query one.

4.2. Comparison to the state of the art

In this section, we compare the performance of MixVPR
against existing methods in visual place recognition on 4
challenging benchmarks. We compare against AVG [2],
GeM [36], NetVLAD [2] and two of its recent variants SPE-
VLAD [50] and Gated NetVLAD [52], and CosPlace which
recently demonstrated state-of-the-art performance. Results
are shown in Table 1. The lines with the sign † are perfor-
mance of AVG, GeM and NetVLAD trained on Pitts30k-
train dataset. For fair comparison, we re-train them using
the same backbone and dataset as our technique. Results are
shown in the rest of the table. As can be seen, our method
convincingly outperforms all other techniques on all bench-
marks with a large margin. For instance, MixVPR achieves
a new all-time high recall@1 of 94.6% on Pitts250k-test
which is 3.1 percentage points increase over the recent Cos-
Place technique and over 4.1 points increase compared to
NetVLAD.

On MSLS, performance is even more interesting, where
we achieve 88.0% recall@1, which, to the best of our
knowledge, is the best score ever achieved. This is 3.5
and 5.4 percentage points increase over CosPlace and
NetVLAD which achieved 84.5% and 82.6% recall@1 re-
spectively. This showcases the effectiveness of our tech-
nique on datasets presenting a lot of viewpoint variations.

On SPED benchmark, where places exhibit drastic ap-
pearance change due to seasonal changes and day-night
illumination, our technique surpasses all other techniques
achieving 85.2% recall@1, which is 7.5 points more than
NetVLAD, the second best performing technique on SPED.

Finally and most importantly, on the extremely challeng-
ing Nordland benchmark, MixVPR achieves 69% and and
79% relative improvement over CosPlace and NetVLAD
(58.4% vs 34.4% and 32.6% resp.), and more than double
compared to the rest of the other techniques.

4.3. Comparing against two-stage techniques

Some techniques use a two-stage retrieval framework,
where a first pass is performed to retrieve the best M can-
didates using global representations, then a second pass (re-
ranking) is executed to perform geometric verification on
the local features between the query and each one of the M
candidates [45]. This is known to increase recall@N per-
formance at the expense of heavy computation and mem-
ory overhead. We compare against Patch-NetVLAD [17],
DELG [7], SuperGlue [38] and TransVPR [17] which are
state-of-the-art techniques that perform two-stage visual
place recognition. Table 2 shows performance on the Map-
illary Challenge. Although our technique does not perform
any re-ranking, it achieves better performance than exist-

ing two-stage techniques while being orders of magnitudes
more efficient in terms of memory and computation (over
500× faster retrieval time). We believe that MixVPR can re-
place two-stage techniques in applications where time and
resources are of great importance. For instance, MixVPR
takes only 6 milliseconds to generate an image representa-
tion, while the second fastest method, TransVPR, takes 45
milliseconds. Matching latency does not apply to MixVPR
since it is a global technique that does not perform re-
ranking. However, it is clear from Table 2 that the re-
ranking phase takes a lot of time, making such techniques
unusable in real-time applications.

4.4. Ablation studies

We conduct multiple ablation experiments to further val-
idate the design of MixVPR.

4.4.1 Hyperparameters

In order to showcase the effect of Feature-Mixer, we con-
duct multiple experiments by varying L the number of
Feature-Mixer blocks. First, we train a baseline network
without Feature-Mixer (L = 0), and compare its perfor-
mance when trained with multiple stacked Feature-Mixer
blocks (L ∈ {1, 2, 4, 8}). Results are shown in Table 3,
where we see that introducing only one Feature-Mixer layer
improves recall@1 performance by 1.8 recall@1 points
from 89.5% to 91.3% on Pitts30k-test and 4 on MSLS from
82.9% to 86.9%. Overall, the best results are obtained with
4 Feature-Mixer layers, although all configurations achieve
similar performance. Feature-Mixer adds 340k parameters
to the network, therefore we can refer to Table 3 to choose
the best compromise.

4.4.2 Descriptor dimensionality

The architecture of MixVPR allows to configure the dimen-
sionality of the output descriptor, by fixing the size of the
last two projection operations. In 3 we show recall@1
performance for different dimensionality configurations on
Pitts30k-test. For NetVLAD, GeM and AVG, we used PCA
dimensionality reduction learned on a subset of 10k im-
ages from the training set. CosPlace, like MixVPR, allows
to configure the output dimensionality. Hence, we trained
once for each configuration. From the chart in Fig. 3, we
can clearly see that MixVPR outperforms all other tech-
niques.

4.4.3 Backbone architecture

In Table 4 we conduct multiple experiments using differ-
ent backbone architectures. Since we crop the backbone at
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Method dim Pitts250k-test MSLS-val SPED Nordland
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

AVG [2] † 2048 62.6 82.7 88.4 59.3 71.9 75.5 54.7 72.5 77.1 4.4 8.4 10.4
GeM [36] † 2048 72.3 87.2 91.4 65.1 76.8 81.4 55.0 70.2 76.1 7.4 13.5 16.6
NetVLAD [2] † 32768 86.0 93.2 95.1 59.5 70.4 74.7 71.0 87.1 90.4 4.1 6.6 8.2

AVG [2] 2048 78.3 89.8 92.6 73.5 83.9 85.8 58.8 77.3 82.7 15.3 27.4 33.9
GeM [36] 2048 82.9 92.1 94.3 76.5 85.7 88.2 64.6 79.4 83.5 20.8 33.3 40.0
NetVLAD [2] 32768 90.5 96.2 97.4 82.6 89.6 92.0 78.7 88.3 91.4 32.6 47.1 53.3
SPE-NetVLAD [50] 163840 89.2 95.3 97.0 78.2 86.8 88.8 73.1 85.5 88.7 25.5 40.1 46.1
Gated NetVLAD [52] 32768 89.7 95.9 97.1 82.0 88.9 91.4 75.6 87.1 90.8 34.4 50.4 57.7
CosPlace [6] 2048 91.5 96.9 97.9 84.5 90.1 91.8 75.3 85.9 88.6 34.4 49.9 56.5
MixVPR (Ours) 2048 94.1 98.2 98.8 87.0 92.7 94.2 84.7 92.1 94.4 57.9 73.8 79.0
MixVPR (Ours) 4096 94.6 98.3 99.0 88.0 92.7 94.6 85.2 92.1 94.6 58.4 74.6 80.0

Table 1. Comparison of different techniques on popular benchmarks. † are results reported by the authors and confirmed using their
trained networks. We however, train all six techniques on the same dataset using the same backbone network (ResNet-50). NetVLAD
and its variants obtain third best performance just after the recent CosPlace method. Our technique, MixVPR, obtains by far the best
performance on all benchmarks, and with big margins.

Method Extraction
latency (ms)

Matching
latency (s)

Mapillary Challenge
R@1 R@5 R@10

Super-Glue [38] 160 7.5 50.6 56.9 58.3
DELG [7] 190 35.2 52.2 61.9 65.4
Patch-NetVLAD [17] 1300 7.4 48.1 59.4 62.3
TransVPR [45] 45 3.2 63.9 74.0 77.5
NetVLAD [2] 17 − 35.1 47.4 51.7
MixVPR (Ours) 6 − 64.0 75.9 80.6

Table 2. Comparison with two-stage retrieval techniques. The
first four techniques use a second refinement pass (matching) to re-
rank the top candidates in order to improve retrieval performance.
MixVPR (ours) does not use re-ranking, which makes it at least
500× faster all while outperforming existing state-of-the-art. (a
NVIDIA Titan Xp has been used to calculate latency).

×L # params
(M)

Latency
(ms)

Pitts30k-test MSLS-val
R@1 R@5 R@10 R@1 R@5 R@10

0 9.6 6.3 89.5 95.0 96.2 82.9 90.7 91.9
1 9.9 6.5 91.3 95.6 96.5 86.9 92.8 94.3
2 10.2 6.6 91.3 95.8 96.6 87.6 93.1 94.6
4 10.9 6.6 91.9 95.9 96.7 87.6 93.5 95.0
8 12.2 7.2 92.3 95.9 96.6 87.2 92.6 93.9

Table 3. Ablation on the number of Feature-Mixer blocks. The
baseline (L = 0) does not use Feature-Mixer. We compare it
to different configurations by varying L the number of stacked
Feature-Mixer blocks. Overall, L = 4 stacks of Feature-Mixer
performs the best on all benchmarks.

the 4th residual layer (instead of the last) we end up crop-
ping out half the total number of parameters, thus acceler-
ating computation and reducing memory use. As can be
seen in Table 4. Using ResNet-18 [19] we end up with
only 3.5M parameters, which is 15% the number of param-
eters in CosPlace or NetVLAD, all while getting competi-
tive results. We believe ResNet-18 can be used in applica-
tions where real-time is top priority. Importantly, MixVPR
obtains state-of-the-art performance using only ResNet-34
which comprises 70% less parameters compared to Cos-
Place while outperforming it by 2.3 recall@1 points on
MSLS. The best overall results are obtained with ResNet-

Figure 3. Recall@1 performance on Pitts30k-test with different
dimensionality configurations.

50 where the number of parameters (10.9M) is less than
half that of NetVLAD or CosPlace. Interestingly, using
ResNeXt50 [48] did not increase performance compared
to ResNet-50. We believe this is because MixVPR draws
much of its performance from the Feature Mixing rather
than the backbone network.

Backbone # param.
(M)

Pitts30k-test MSLS-val
R@1 R@5 R@10 R@1 R@5 R@10

ResNet-18 3.5 89.5 95.0 96.2 82.7 89.1 91.8
ResNet-34 8.2 90.5 95.2 96.3 85.3 91.6 93.4
ResNet-50 10.9 91.6 96.0 96.7 88.0 92.8 94.5
ResNeXt-50 10.9 91.7 95.7 96.5 87.0 93.5 94.7

Table 4. Comparing different backbones. Each backbone is
cropped at the fourth residual block (before the last one), which
results in half the number of parameters of the same backbone
used in CosPlace or netVLAD. MixVPR only needs intermediate
features of the backbone.
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Figure 4. Comparison of challenging retrieval scenarios on MSLS and Pitts30k datasets. MixVPR succeeds the retrieval of all these
challenging queries, while all other techniques fail. This qualitative results highlight the robustness of MixVPR to extreme scenarios.

4.5. Qualitative Results

Fig. 4 illustrates qualitative results of the retrieval of
some challenging queries. We discuss 5 scenarios where all
other techniques struggle retrieving the correct match while
MixVPR succeeds. Repetitive structures: this is a seri-

ous problem for VPR techniques, since different places may
contain the same type of building or structure with the same
layout or texture, this can fool the recognition system and
induce a lot of false positives as we can see in the first two
rows of Fig. 4, where only MixVPR succeeded in retrieving
the right reference, while all other techniques retrieved im-
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ages of different places that are overly similar to the query.
Viewpoint change: for this scenario, techniques that focus
on local features, such as NetVLAD, tend to perform better.
However, in rows 3-4 of Fig 4, only MixVPR retrieved the
right references, which highlights its capacity to deal with
extreme viewpoint changes. Skyline: some environments
contain few static structures such as buildings and poles,
making the image lack distinctive textures. In this case,
the skyline constitutes an important signature of the place.
As we can see in row 5 of Fig 4, only MixVPR succeeded
in retrieving the correct reference based most likely on the
skyline all while ignoring the cloud texture. Illumination
change: we believe this to be the most important aspect of
a robust VPR system, because illumination variations occur
on a daily basis, such an example is illustrated in rows 6-
7 of Fig 4 where the query is taken during the night and
its reference is taken during the day. CosPlace, NetVLAD
and Gated NetVLAD all retrieved images of locations taken
at nighttime, in contrast, MixVPR retrieved the correct ref-
erence even though it is visually very tricky even for the
human eye. This highlights the robustness of our method
in extremely challenging situations. Occlusions: this can
be challenging when part of the image is obstructed with an
object that can affect the global semantic of the image. For
instance, row 8 of Fig 4 shows a query with two cyclists in
the middle of the field of view (FoV), which tricked other
techniques to retrieve the wrong references containing cy-
clists in the middle of the FoV. Only MixVPR ignored the
cyclists and successfully retrieved the right reference. Fi-
nally, we show two cases where all techniques fail, due to
extreme environmental changes and the presence of a lot of
occlusions.

4.5.1 Visualizing learned weights

Fig 5 illustrates a subset of learned weights from the first
hidden layer of Feature-Mixer (24 neurons out of 400). The
weights of each unit have been reshaped to 20×20 to match
the spatial size of feature maps coming from the backbone.
As we can see, hidden units in Feature-Mixer learned a wide
range of regional feature selection. We observe that some
neurons focus on one or multiple small spots of the image,
while other focus on the entire input. We believe the combi-
nation of these neurons can replace attention and pyramidal
scheme in deep model for VPR.

5. Conclusion
In this work, we designed a novel all-MLP aggregation

technique that employs feature maps from pretrained net-
works, and learns robust representations in a cascade of fea-
ture mixing. MixVPR is composed of a stack of Feature-
Mixer blocks, where each block incorporates global rela-
tionships between individual feature maps. We demon-

Figure 5. Illustration of learned weights from a subset of 24 neu-
rons from the first Feature-Mixer block. Blue color corresponds to
positive weights and Red corresponds to negative weights.

strated the effectiveness of the feature mixing through ab-
lation studies, and showed that MixVPR outperforms ex-
isting state-of-the-art by a wide margin on every bench-
mark we tested on. Finally, we also compared perfor-
mance of MixVPR against two-stage retrieval techniques
such as Patch-NetVLAD and TransVPR and showed that
our method is superior while being over 500× faster.
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