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Abstract

The computer-assisted radiologic informative report is
currently emerging in dental practice to facilitate dental
care and reduce time consumption in manual panoramic
radiographic interpretation. However, the amount of den-
tal radiographs for training is very limited, particularly
from the point of view of deep learning. This study aims
to utilize recent self-supervised learning methods like Sim-
MIM and UM-MAE to increase the model efficiency and un-
derstanding of the limited number of dental radiographs.
We use the Swin Transformer for teeth numbering, de-
tection of dental restorations, and instance segmentation
tasks. To the best of our knowledge, this is the first
study that applied self-supervised learning methods to Swin
Transformer on dental panoramic radiographs. Our re-
sults show that the SimMIM method obtained the high-
est performance of 90.4% and 88.9% on detecting teeth
and dental restorations and instance segmentation, respec-
tively, increasing the average precision by 13.4 and 12.8
over the random initialization baseline. Moreover, we aug-
ment and correct the existing dataset of panoramic ra-
diographs. The code and the dataset are available at
https://github.com/AmaniHAlmalki/DentalMIM.

1. Introduction
The need for computer-assisted decisions is rising to fa-

cilitate diagnosis and treatment planning for dental care
providers. Dental imaging is a valuable diagnostic tool for
diagnosis and treatment plans, which is not possible solely
through clinical exams and patient history [33]. A dental
panoramic X-ray is a comprehensive tool that screens the
teeth, surrounding alveolar bone and upper and lower jaws
[28].

Moreover, dental restoration is a biocompatible synthetic
material used to restore missing tooth structures. The miss-
ing tooth structure can be restored with full and partial cov-

erage depending on the extension and intensity of the miss-
ing structure to restore the tooth’s coronal (top) part. Fur-
thermore, root canal filling is a restorative procedure used
to fill the space inside the tooth structure (root portion)
with biocompatible restorative materials. Various dental
restorative materials are available in the dental world; each
has its indication, advantages, disadvantages, and clinician
preferences. Most dental restorative materials appear ra-
diopaque in the x-ray, and they can be identified by dental
care providers [1, 24].

However, manual intervention for teeth numbering and
identification of tooth restorations is time-consuming and
may overlook significant data. Thus, the interest in com-
puter vision and computer science for automated processes
was aroused. Few studies have attempted to apply computer
vision algorithms in dental radiograph analysis. They in-
clude convolutional neural networks (CNNs) for teeth num-
bering and instance segmentation [21], two-stage network
[36], Faster R-CNN [6, 15, 32, 30, 35], PANet [29], Mask
R-CNN [14, 17, 18, 8], and U-Net network [27, 26, 16]. Re-
cently, CNNs have enormous emerging applications in ana-
lyzing medical images with the advent of computation hard-
ware/algorithm and expansion in the amount of data [21].
However, CNNs are limited in overall capability because of
inherent inductive biases [11].

In this study, we propose to use a recently introduced
Swin Transformer [22] to analyze dental panoramic radio-
graphs. However, Swin Transformer requires large data for
training, but there is only a very limited number of available
dental radiographs. To alleviate this problem, we propose to
use self-supervised learning. To the best of our knowledge,
this is the first study that applied self-supervised learning
methods to Swin Transformer on dental panoramic radio-
graphs.

Recently, the self-supervised learning methods, Sim-
MIM [34], UM-MAE [19], BEiT [2], MAE [13], SplitMask
[12], MoCo v3 [9], and DINO [5], are effective in pre-
training Transformers [11, 22] for learning visual represen-

5594



tation. However, only UM-MAE and SimMIM pre-training
methods are enabled for Pyramid-based ViTs with locality
(Swin Transformer). Generally, the Masked Image Model-
ing (MIM) methods mask some image patches before they
are fed into the transformer to predict the original patches
in the masked area. This feature of aggregating information
from the context helps many vision tasks. Although both
UM-MAE and SimMIM provide a simple and efficient pre-
training strategy for the Swin transformer encoder [22], the
process of the input to the encoder is dissimilar. MAE dis-
cards the masked tokens and inputs only visible patches to
the lightweight decoder. However, MAE also breaks the
two-dimensional structure of the input image. Therefore, it
is not applicable to the Swin transformer without the Uni-
form Masking (UM) introduced in [19] to bridge the gap
between the MAE and Swin transformer. SimMIM includes
the masked tokens in the encoder and uses them as a direct
prediction mechanism. Using the randomly masked patches
for SimMIM is a reasonable reconstruction target, and a
lightweight prediction head is sufficient for pre-training. In
addition, the location of the patches is essential in dental
radiographs for a predictable outcome. SimMIM maintains
the location of the patches known to both encoder and de-
coder, while MAE drops the location information, which
may induce inaccuracy, as we demonstrate in this paper.

As there is no standard dental image dataset for pre-
training (unlike ImageNet for natural images), SimMIM
and UM-MAE are trained on the same dataset as the down-
stream tasks (excluding the test dataset). We conduct ex-
periments on dental image tasks, including teeth number-
ing, detection of dental restorations, and instance segmenta-
tion on the dental panoramic X-rays dataset [29]. For these
tasks, we use the base Swin Transformer (Swin-B) [22] as
the backbone of Cascade Mask R-CNN [4]. We compare
four Swin Transformer initializations, including SimMIM
and UM-MAE, supervised initialization, and random ini-
tialization baseline. Our results show that SimMIM self
pre-training can significantly improve object detection and
instance segmentation performance on dental images.

Although previous studies have investigated teeth seg-
mentation, we still address many gaps in this work. First,
there is no comprehensive instance segmentation data set
for teeth numbering. Previous work on the matter [29] used
modified versions of binary semantic segmentation masks,
which leads to a lack of instance overlapping and low-
resolution outputs, resulting in inaccurate predictions, es-
pecially on the boundaries of the teeth. Second, there is a
considerable amount of systematic errors because of the ab-
sence of dental expert supervision. Third, no prior work has
simultaneously considered dental restoration segmentation
besides tooth segmentation. The inclusion of teeth restora-
tions increases the complexity of the computer vision prob-
lem because of class quantity and class imbalance.

To solve the data set issues, we augment and correct the
existing dataset introduced in [29]. In addition to correcting
the manual segmentation errors under expert supervision,
we further expand the dataset by developing annotations
for dental restorations, including direct restorations, indi-
rect restorations, and root canal therapy. The labeling pro-
cedure resulted in a unique high quality, augmented dataset.
Our data is available, upon request, under the name TNDRS
(Teeth Numbering, Detection of Restorations, and Segmen-
tation) annotations.

Our main contributions are twofold:

• We utilize self-supervised learning with SimMIM and
UM-MAE to alleviate the problem of small data for
panoramic radiographs.

• The corrected dataset leads to a significant increase in
performance, while added labeling of dental restora-
tions extends the horizon of possible dental applica-
tions.

2. Teeth numbering

In dentistry, various dental numbering systems are avail-
able for teeth numbering for adults and children. These
numbering systems are universally accepted for better com-
munication between dental care providers. The Universal
Numbering System, Palmer Notation Numbering System,
and Federation Dentiaure International numbering system
(FDI) are the most commonly used system across the globe
among dental professionals. The FDI system is the most
widely used international system. In this system, every sin-
gle tooth is assigned two-digit numbers; the first digit num-
ber represents each quadrant. The maxillary right and left
quadrants are identified by the numbers 1 and 2, while the
mandibular left and right quadrants are the numbers 3 and
4, respectively. The second digit numbers represent each
tooth based on its location in the jaw from the middle. The
central incisor is assigned to number 1, whereas the third
molar is set to number 8 [32, 31].

3. Methods

The methods include two stages: the MIM pre-training
and the downstream tasks, as illustrated in Fig. 1.

In the first stage, Swin Transformer is pre-trained with
MIM self-supervised learning methods as the encoder. Sim-
MIM divides the image into patches, replacing some ran-
dom patches with mask tokens. Then, these patches, along
with mask tokens, are input to the Swin encoder. Hence
the positional encoding of both visible and masked patches
is preserved, while UM-MAE drops those mask positions
entirely. UM-MAE samples three random patches from
each two-by-two grid, dropping 25% of the entire image.
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Figure 1. Pipeline for teeth detection, detection of dental restorations, and instance segmentation with MIM Self Pre-training. (a) A Swin
Transformer is first pre-trained by MIM methods on the target dataset. (b) The pre-trained Swin Transformer is used as the backbone in
Cascade Mask R-CNN with FPN for the detection and segmentation tasks.

Then it randomly masks 25% of the already sampled ar-
eas as shared learnable tokens. Finally, the sampled patches
and the masked tokens are reorganized as a compact two-
dimensional input under a quarter of the original image res-
olution to feed via the Swin encoder.

Then a decoder is appended to reconstruct the original
patches at the masked area for both methods. In the sec-
ond stage, the pre-trained Swin weights are transferred to
initialize the detection and segmentation encoder. The fea-
tures of the Swin Transformer backbone are fed to the neck
(FPN [20]) and detection head (Cascade Mask R-CNN) for
bounding box regression and classification as illustrated in
Fig. 2. We select the Cascade Mask R-CNN [4] framework
due to its ubiquitous presence in object detection and in-
stance segmentation research. Then, the whole network is
fine-tuned to perform the detection and segmentation tasks.

We use the base Swin Transformer backbone (Swin-B)
and compare the effectiveness of four configurations as fol-
lows:

Random. The network is trained from scratch with ran-
domly initialized weights, and no self-supervised methods
are used. The Swin backbone configuration follows the
code of [22], and the Cascade Mask R-CNN configuration
uses the defaults in MMDetection [7].

Supervised. The Swin backbone is pre-trained for su-
pervised object detection and instance segmentation using
ImageNet-1K [10] images with their labels. We use the
weights from [22] for Swin-B. Swin-B was pre-trained for

300 epochs.
SimMIM. We use the Swin-B weights pre-trained on

self-supervised ImageNet-1K from [34]. This model was
pre-trained for 100 epochs.

UM-MAE. Since ImageNet-1K pre-trained weights are
not available; we use the official UM-MAE code release
[19] to train Swin-B ourselves for 800 epochs (the default
training length used in [19]) on unsupervised ImageNet-1K.

4. Experiments

4.1. Dataset augmentation and correction

TNDRS dental panoramic radiographs dataset. De-
tection, Numbering, and Segmentation (DNS) [29] is a den-
tal panoramic X-rays dataset consisting of 543 annotated
images with ground truth segmentation labels, including
numbering information based on the FDI teeth numbering
system. The image size is 1991x1127 pixels. The dataset
annotations have some limitations as follows: 1) lack of in-
stance overlapping; 2) some systematic errors because of
the absence of dental expert supervision; 3) no segmenta-
tion of dental restorations. To overcome these issues, we
modify and correct teeth instance segmentation and over-
lapping in all images. In addition, we contribute to fur-
ther expanding the dataset by developing segmentation for
dental restorations, including direct restorations, indirect
restorations, and root canal therapy. This process was under
a supervision of a dentist using the COCO-Annotator tool
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Figure 2. Illustration of the architecture for object detection.

[3]. We attended weekly meetings where related issues,
such as numbering, dental restorations, and segmentation
questions, were discussed. In the end, the annotations were
reviewed to assure quality and avoid systematic and ran-
dom errors. Fig. 3 shows a sample comparing the old and
new versions of the dataset annotations, highlighting both
the instance overlapping (blue arrow) and the correction of
systematic errors (green arrow). Fig. 4 presents samples of
segmentation of dental restorations.

We believe this is the most inclusive dataset for segment-
ing teeth and dental restorations in dental panoramic radio-
graphs. We are providing our data, upon request, under
the name TNDRS (Teeth Numbering, Detection of Restora-
tions, and Segmentation) annotations.

4.2. Evaluation metric

For all our experiments, we split the data into five folds,
each containing approximately 20% of the images. One of
these folds is fixed as the test dataset (consisting of 111
images), and the other four folds (consisting of 108 im-
ages each) compose the training and validation datasets in a
cross-validation manner. This process is repeated five times.
The evaluation metric we adopt is the Average Precision for
object detection and instance segmentation models.

4.3. Implementation details

Our experiments are implemented based on the PyTorch
[25] framework and trained with NVIDIA Tesla Volta V100
GPUs. In all experiments, the batch size equals the total
number of the training sample, which is 432. The input
images are all resized to 800×600 pixels. We utilize the
AdamW [23] optimizer in all experiments.

Data augmentation. We apply noise addition and hori-
zontal flipping, which changes teeth numbers to their equiv-
alent new values (left teeth numbers turned into the right

numbers and vice-versa).
SimMIM pre-training. The base learning rate is set to

8e-4, weight decay is 0.05, β1 = 0.9, β2 = 0.999, with a
cosine learning rate scheduler with warm-up for 10 epochs.
We use a random MIM with a patch size of 16×16 and a
mask ratio of 20%. We employ a linear prediction head with
a target image size of 800×600 and use L1 loss to compute
the loss for masked pixel prediction.

UM-MAE pre-training. The base learning rate is set to
1.5e-4, weight decay is 0.05, β1 = 0.9, β2 = 0.95, with a
cosine decay learning rate scheduler with warm-up for 10
epochs. We use a random MIM with a patch size of 16×16
and a mask ratio of 25%. We employ a linear prediction
head with a target image size of 800×600 and adopt mean
squared error (MSE) to compute the loss for masked pixel
prediction.

Task fine-tuning. For downstream tasks, we utilize
single-scale training. The initial learning rate is 0.0001, and
the weight decay is 0.05.

5. Results and analysis
SimMIM and UM-MAE reconstruction. The recon-

struction results of SimMIM and UM-MAE are shown in
Fig. 5. The five columns show the original images, the
UM-MAE masked images, the UM-MAE reconstructed im-
ages, the SimMIM masked images, and the SimMIM recon-
structed images. The results show that both MIM methods
can restore lost information from the random context. It is
worth noting that the ultimate goal of the MIM is to bene-
fit the downstream tasks instead of generating high-quality
reconstructions.

5.1. Quantitative results

Comparing initializations. Table 1 shows the results
of teeth detection and instance segmentation only and com-
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Figure 3. Comparison between the old and new dataset annotations. (a) Dataset old annotations. (b) Dataset new annotations. The blue
arrow donates the inclusion of instance overlapping, while the green arrow indicates the correction of systematic errors, for example,
unsegmented molar roots.

Figure 4. Samples of segmentation of dental restorations. Red arrows show an example of a) indirect restoration, b) direct restoration, and
c) root canal therapy.

pares them to the previously published article from Silva et
al. [29]. We present TNDRS fine-tuning results using the
pre-trained models and random configurations described in
Section 3. We make several observations.

(1) All four Swin Transformer initializations surpass the
CNN-based SOTA of PANet with ResNet-50 backbone us-
ing ImageNet pre-training from Silva et al. [29].

(2) Fine-tuning from supervised IN-1K pre-training
yields 3.4 higher AP box than training from scratch (79.1
vs. 75.7) and 3.5 higher APmask (78.3 vs. 74.8).

(3) UM-MAE substantially outperforms supervised ini-
tialization by 5.4 AP box (84.5 vs. 79.1), and 4.9 APmask

(83.2 vs. 78.3).
(4) SimMIM outperforms UM-MAE by 1.6 AP box (86.1

vs. 84.5), and 1.4 APmask (84.6 vs. 83.2).
Table 2 compares the four Swin Transformer initializa-

tions after data augmentation of dental restorations. Our
results prove that the SimMIM method achieved the high-

est performance of 90.4% and 88.9% on detecting teeth and
dental restorations and instance segmentation, respectively.

Parameter setting. In Table 3, we conduct experiments
on teeth detection and instance segmentation tasks with dif-
ferent SimMIM pre-training epochs and mask ratios. First,
the performance of SimMIM does not benefit from longer
training. Second, unlike the high mask ratio [34] adopted in
natural images, the downstream tasks show different pref-
erences for the mask ratio. Both tasks are consistently im-
proved with a decrease in mask ratio from 60% to 10%. The
reason why this decrease facilitates the training may be at-
tributed to the fact that the relevant features are small on
panoramic X-rays.

Dataset correction. After we correct teeth segmentation
on DNS discussed in Section 4.1, teeth detection and in-
stance segmentation performance are remarkably improved
by 5.9 AP box and 6.4 APmask as shown in Table 4.
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Figure 5. SimMIM and UM-MAE reconstruction results. The first column is the original image, and the second and fourth columns are the
masked image where the masked region is denoted by gray patches. The third and fifth columns are the reconstruction of MIM from the
unmasked patches.

Initialization Backbone Pre-training Data AP box APmask

PANet[29] ResNet-50 IN-1K w/ Labels 75.4 73.9

Random Swin-B None 75.7 74.8
Supervised Swin-B IN-1K w/ Labels 79.1 78.3
UM-MAE Swin-B IN-1K 84.5 83.2
SimMIM Swin-B IN-1K 86.1 84.6

Table 1. Results of teeth detection and instance segmentation only.

5.2. Qualitative results

In Fig. 6, the displayed results for four different images
demonstrate qualitative samples of improved performance
when Swin Transformer is pre-trained with SimMIM for
teeth detection and segmentation only. These improvements
in detection and segmentation agree with the quantitative
results in Section 5.1.

Fig. 7 displays qualitative results after augmenting den-
tal restorations when Swin Transformer is pre-trained with

SimMIM.

5.3. Pre-training time and memory consumption

Comparing UM-MAE to the SimMIM framework, the
core advantage of UM-MAE is the memory and runtime ef-
ficiency. In Table 5, we show their clear comparisons based
on Swin-B. It is observed that UM-MAE speeds up by about
2× and reduces the memory by at least 2× against SimMIM,
where their performances under the downstream tasks show
the opposite.
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Initialization Backbone Pre-training Data AP box APmask

Random Swin-B None 77.0 76.1
Supervised Swin-B IN-1K w/ Labels 80.3 79.2
UM-MAE Swin-B IN-1K 88.3 85.7
SimMIM Swin-B IN-1K 90.4 88.9

Table 2. Results after augmenting dental restorations.

Figure 6. Qualitative results of teeth detection and instance segmentation only. Note that teeth detection and instance segmentation are miss-
ing (white arrows) when created by the baseline Swin Transformer approach compared to the segmentation produced by Swin Transformer
pre-trained with SimMIM architecture (orange arrows).

Mask ratio Pre-training Epochs AP box APmask

60% 100 84.3 83.2

50% 100 84.7 83.6
50% 800 83.1 83.0

40% 100 85.5 83.9
30% 100 85.9 84.1
20% 100 86.1 84.6
10% 100 85.8 84.3

Table 3. The influence of Mask Ratios on teeth detection and in-
stance segmentation tasks.

DNS Annotations AP box APmask

Before Correction 80.2 78.2
After Correction 86.1 84.6

Table 4. Correction of teeth segmentation.

Method Time Memory

SimMIM 24.6 h 18.7 GB
UM-MAE 12.5 h 6.7 GB

Table 5. The comparison of pre-training time and memory con-
sumption.
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Figure 7. Qualitative results of detecting teeth and dental restorations and instance segmentation using SimMIM.

6. Conclusions

Two self-supervised learning methods were applied to
Swin Transformer on dental panoramic radiographs: Sim-
MIM and UM-MAE. The results of the masking-based
method, SimMIM, obtained superior performance than
UM-MAE, supervised and random initialization for detec-
tion of teeth, dental restorations, and instance segmentation.
Based on this experiment, we can conclude that adjusting
parameters, including mask ratio and pre-training epochs,
is useful when applying SimMIM pre-training to the den-
tal imaging domain for reliable outcomes. In addition, cor-
recting the dataset annotations lead to further improvements
that significantly surpass the available state-of-the-art re-
sults. Our plan for future work is to examine the efficacy

of SimMIM pre-training in prognosis and outcome predic-
tion tasks.
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