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Abstract

Multi-class part parsing is a dense prediction task that
seeks to simultaneously detect multiple objects and the se-
mantic parts within these objects in the scene. This problem
is important in providing detailed object understanding, but
is challenging due to the existence of both class-level and
part-level ambiguities. In this paper, we propose to inte-
grate an attention refinement module and a feature fusion
module to tackle the part-level ambiguity. The attention
refinement module aims to enhance the feature representa-
tions by focusing on important features. The feature fusion
module aims to improve the fusion operation for different
scales of features. We also propose an object-to-part train-
ing strategy to tackle the class-level ambiguity, which im-
proves the localization of parts by exploiting prior knowl-
edge of objects. The experimental results demonstrated the
effectiveness of the proposed modules and the training strat-
egy, and showed that our proposed method achieved state-
of-the-art performance on the benchmark datasets.

1. Introduction

Multi-class part parsing can be considered as a special
case of semantic segmentation, decomposing objects into
semantic components. This vision task aims to understand
a scene at multiple levels of abstraction, by simultaneously
detecting multiple semantic classes in the scene and accu-
rately parsing the parts within each class. High-quality pre-
diction of parts would be of great use for many tasks, such
as object detection [1, 5], fine-grained action detection [30],
pose estimation [7, 35], and image classification [25, 14].
Despite the importance of this problem in understanding the
details of objects, it is not sufficiently explored at present.

Existing methods in the field of object part parsing
mainly address single-class settings, such as human bod-
ies [34, 17, 8, 38], vehicles [8, 24, 18] and animals [28, 29,
10]. Multi-class part parsing has only been considered in
recent works [37, 19, 26]. It is more challenging, as it needs
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Figure 1. Challenges of multi-class part parsing. (a) In-
put images with multiple objects. (b) Part-level ambiguity
and inaccurate boundary localization present in the current
state-of-the-art method [26]. (c) Results from our method.

(d) Ground truth masks.

to tackle both class-level and part-level ambiguities. In par-
ticular, one challenge is that sometimes, parts in different
objects can have similar appearance making it difficult to
distinguish between them. For example, as shown in Fig. 1
(b), even the state-of-the-art method [26] mistakenly detects
the back of the car as a bus, and the horse body as a cow
body. Another challenge is that, unlike single object part
parsing, the cluttered appearance of several objects in the
scene often leads to occlusions, which results in inaccurate
boundary detection. An example is the segmentation of the
airplane as shown in Fig. 1.

To tackle these challenges, we propose AFPSNet with
an object-to-part training strategy. AFPSNet is based on
the popular DeepLab v3+ network architecture [4], but im-
proves it in two ways. Firstly, it integrates the attention
refinement module (ARM) and the feature fusion module
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(FFM) from [36] into DeepLab v3+ instead of the simple
concatenation of features. The attention refinement module
refines the feature maps at each scale to focus on features
with importance and improve the representation efficiency,
while the feature fusion module enables the exploitation of
both global and local information for prediction of the con-
text and boundaries of parts. Secondly, we propose to fuse
features in a cascaded way, i.e., instead of fusing features at
different scales all at once, we fuse two features at similar
scales at one time, and gradually progress to fuse all fea-
tures. It aims to tackle the issue pointed out in [4] that a
direct concatenation of all these features at once may cause
confusion and thus disregard some required features. More-
over, inspired by the observation that humans tend to locate
objects first before looking into details, we propose a two-
stage training strategy to train the model on object labels
first before proceeding to part labels. This object-to-part
training strategy aims to improve the localization of parts
by exploiting prior knowledge.

The contributions of this work are as follows:

* We integrate attention refinement and feature fusion
into DeepLab v3+ and propose a cascaded way of fea-
ture fusion to enhance the features for boundary pre-
diction and in turn to improve parts prediction.

* We propose an object-to-part training strategy, which
improves the localization of parts by exploiting prior
knowledge from object-level segmentation.

* The proposed method achieves the state-of-the-art per-
formance on the benchmark part parsing datasets.

2. Related Work
2.1. Part Parsing

Single-object part parsing. Recently, existing research
has shown effective performance in accurate segmentation
of parts of one specific category. Strategies for handling
object part parsing could be divided into two categories.
The first category is based on coarse-to-fine, also known as
top-down, strategies. Hariharan et al. [11] proposed three
different architectures to sequentially perform object detec-
tion, object segmentation and part segmentation. Neverthe-
less, their approach suffers from the difficulty of the train-
ing process and the error propagation from object masks
throughout the pipeline. Xia et al. [32] proposed a two-
stage process consisting of three same structural networks
to integrate the global feature with the detected local fea-
tures. Chen et al. [3] introduced a scale attention model to
learn pixel-wise weights for a specific category and fuse the
parsing results from three fixed scales. The second category
focuses on structure-based methods [16, 33, 21, 9] to model
part relations. Liang et al. [16] proposed a self-supervised
structure-sensitive learning approach to simultaneous esti-
mation of human pose and part parsing. Some research

shows that pose estimation tasks can be useful for part pars-
ing tasks [33, 21, 9]. Xia et al. [33] proposed a framework
employing the two tasks to improve the segmentation re-
sults by supervised pose estimation. Nie et al. [21] pre-
sented a mutual learning model to improve the part segmen-
tation results by adapting the pose estimation task. Fang et
al. [9] proposed a pose-guided model, which exploits simi-
larity among humans to transfer the part parsing results be-
tween different persons with similar poses.

Multi-class part parsing. Although effective methods
have been proposed to tackle single-object part parsing,
multi-class part parsing has been explored only recently
[37,19,26]. Zhao et al. [37] proposed a joint parsing frame-
work called BSANet, which is composed of boundary and
semantic awareness modules, to enhance part localization
and promote the expression of class-relevant feature chan-
nels. Predicted part boundaries are also passed into an at-
tention mechanism to promote features near boundaries at
the decoding stage. Michieli et al. [19] proposed a GM-
Net framework consisting of three subnetworks and a graph
matching module to improve parts segmentation and local-
ization. Object-level segmentation maps are passed into a
semantic embedding network to serve as guidance for part
parsing within the object at the decoding stage. Part-level
segmentation maps are then enhanced using a graph match-
ing technique that preserves the relative spatial relationships
between ground truth and predicted parts. Tan et al. [26]
proposed a framework, known as CSR, which employs the
confident semantic ranking loss function to model the rela-
tionships between pixels. BSANet and CSR use predicted
boundaries and object labels during the training to guide the
prediction task and refine the segmentation results. GMNet
and CSR incorporate additional loss functions to exploit the
relationships of pixels. These methods improve the seg-
mentation results. However, they require dealing with the
object-level and part-level labels at the same time, and thus
require loading of a larger number of label masks at one
time. This prevents them from using large batch size and
thus results in a longer training time. We thus introduce the
object-to-part training strategy to both improve the part lo-
calization and relieve the memory demand to allow a larger
batch size and speed up training.

2.2. Attention and Feature Fusion

Attention Mechanism. The attention mechanism gives
a model the ability to concentrate on the most relevant
features as needed rather than attempting to process a
whole scene at once. Attention modules have demonstrated
their usefulness across many visual tasks, including im-
age processing, object tracking and video understanding
[3, 27, 12, 31, 36]. In these works, attention processing
is incorporated to improve the performance of their net-
works. Various attention mechanisms are applied in com-
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Figure 2. An overview of the proposed AFPSNet approach. The architecture is the DeepLab V3+ network with integrated
attention refinement modules (ARM) and feature fusion modules (FFM).

puter vision, including spatial attention and channel atten-
tion. Hu et al. [12] exploited the channel-wise relationships
by introducing the Squeeze-and-Excitation module. Woo
et al. [31] combined the spatial and channel attention in a
compact module called CBAM block. Yu et al. [36] intro-
duced a lightweight module to perform channel-wise atten-
tion, which is adopted in our work.

Due to the great success of attention modules, they have
been used in part parsing. In [3], an attention model is pro-
posed to fuse the feature maps from different image zoom-
ing scales. Zhao et al. [37] employed spatial attention to
enhance the features near boundaries in the boundary de-
tecting module. An additional attention module is used
in the semantic selection module to emphasize the class-
correlated features and suppress the irrelevant ones. Unlike
BSANet, where spatial attention is used, in our work, we
adopt the attention refinement module from [36] to apply
channel-wise attention to select the most important feature
maps and refine the features at different scales.

Feature Fusion. Feature fusion as a merging module for
features of different levels plays an important role in seg-
mentation performance. Recently, various designs of fea-
ture fusion modules have been proposed to selectively ex-
tract beneficial information from different levels of feature
maps. Li et al. [15] proposed a Gated Fully Fusion mod-
ule to selectively fuse features from multiple levels using a
gating mechanism in a fully connected way. Nie et al. [20]
introduced an add-multiply-add fusion block with learned
weights, which first adds and multiplies the different lev-
els of features separately and then adds these two output
features together. Poudel et al. [23] performed simple ad-

dition of features by using bilinear upsampling and convo-
lutions. Although employing this simple operation is not
good enough to output a high-accuracy segmentation map,
it reduces the computational cost. Yu et al. [36] introduced a
feature fusion module that performs a weighted fusion to re-
fine and fuse features from different levels. In our work, we
adopted the feature fusion module in [36], where an embed-
ded channel-wise attention operation is performed to refine
the summation of the features.

3. Method
3.1. Overview

In this section, we describe our method for multi-class
part parsing. We use DeepLab v3+ [4] as the backbone.
Then, we use the attention refinement module and the fea-
ture fusion module from [36] and propose to integrate them
into DeepLab v3+. The network architecture is shown in
Fig. 2. The attention module is integrated into the different
layers in the Atrous Spatial Pyramid Pooling (ASPP) unit in
order to refine the required features at each scale. The fea-
ture fusion module is integrated in two ways. One is to fuse
features with different scales from the ASPP. The other is
to fuse the high-level features with the low-level ones from
early blocks. With both, the feature fusion enables the uti-
lization of both global and local information for prediction.

3.2. Attention Refinement Module

The attention refinement module (ARM) is from [36],
and we integrate it into each of the three layers in the ASPP
unit. The ASPP unit employs multiple parallel filters with
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Figure 3. The attention refinement module (ARM) [36]. A
refined feature map is obtained by channel-wise multiplica-
tion of the input feature map with the attention vector.
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different atrous rates to adjust the fields of view of filters
and thus obtain multi-scale features [4]. Integration of the
ARM aims to selectively focus on the important features
along the channel dimension for the following prediction
tasks. Herein, we give a brief introduction about the ARM.

As Fig. 3 shows, the ARM first applies the global av-
erage pooling to capture the global context in each channel
of the feature map, and then calculates an attention vector
which indicates the importance of different channels. The
input features are then refined by channel-wise multiplica-
tion with the attention vector.

Specifically, a feature map is passed to the
ARM, where H, W, and C represent the height, width, and
channel number of the feature map, respectively. The global
average pooling is first applied to each channel, which re-
duces the input feature map to a C' x 1 x 1 feature vector.
This can be expressed as:

FH><W><C
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where f¢(i,7) denotes the channel elements of the input
feature map F' at position (4,5). The feature vector then
goes through a convolution with a sigmoid activation to
compute the channel-wise attention vector. After ARM, a
refined feature map is obtained by channel-wise multiplica-
tion of the input feature map with the attention vector.

3.3. Feature Fusion Module

Features from different scales capture details at differ-
ent levels. The combination of different scaled features will
be beneficial, as different aspects in part parsing (e.g., ob-
ject/part localization, boundary extraction, etc.) require at-
tention to different detail levels. We therefore use the fea-
ture fusion module (FFM) from [36] and propose to inte-
grate it into DeepLab v3+. Herein, we give a brief introduc-
tion about the FFM.

As shown in Fig. 4, two feature maps X; €
and Xy € RHXWXC are first concatenated and passed
through batch normalization [13] in order to avoid the gra-
dient vanish or explosion problems. Simple concatenation
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Figure 4. The feature fusion module (FFM) [36]. An output
feature is refined by performing channel-wise attention and
then employing element-wise addition to fuse the refined
feature with the concatenated feature.

does not give emphasis on which scale of features to be
used. Thus, a channel-wise attention as used in ARM was
introduced. A global average pooling is applied to obtain
the feature vector, which then goes through a convolution
with a ReLU activation and a further convolution with a sig-
moid activation to calculate the channel-wise attention V.
Then, the concatenated feature is refined as:

XFFJW - (Xconcat (24 Vatt) ¥ Xconcata (2)

where ® denotes channel-wise multiplication, and &
element-wise addition.

There are two granularity of feature fusion in AFPSNet.
One is the fusion of features obtained from different ASPP
pooling layers. The other is the fusion of features from dif-
ferent ResNet blocks. To fuse features from different ASPP
pooling layers, a sequence of FFMs is integrated, as shown
in Fig. 2. Due to the use of different dilation rates in differ-
ent layers in ASPP, the detail levels of these output features
vary significantly. Direct concatenation of all these feature
maps may disregard some required features, as pointed out
in [4]. Therefore, we propose to fuse features in a cascaded
way by combining features of similar detail levels and pro-
gressing from fine to coarse scales gradually. That is, the
first FFM combines the two finest output feature maps from
the ASPP. The remaining FFMs then combine the fused fea-
ture from the previous FFM with the output feature from the
coarser ASPP layers. To fuse features from different blocks,
we also use an FFM instead of direct concatenation. A sin-
gle FFEM is used to fuse the feature map from the first block
and the fused feature map after the ASPP unit.

3.4. Object-to-Part Training Strategy

Given the object labels and part labels, the state-of-the-
art part parsing methods [37, 19, 26] train the two objectives
altogether by employing parallel multi-head predictions. It
requires more memory due to passing the labels for all the
tasks at once, which as a result only allows the model to
be trained on smaller batch sizes and requires longer train-
ing time. Therefore, we propose to train the two tasks se-
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quentially. On one hand, it allows to increase the batch size
and speed up the training. On the other hand, the object-
level prediction will provide useful priors for part-level pre-
diction as well. Hence, our model is firstly trained on the
object-level annotations, and then fine-tuned for part-level
prediction.

4. Experiments
4.1. Implementation Details

Dataset. The PASCAL-Part dataset [5], includ-
ing PASCAL-Part-58, PASCAL-Part-108, and PASCAL-
Person-Part, is the largest dataset for multi-class part pars-
ing. It is used for training and evaluating the proposed
method. Both the PASCAL-Part-58 and PASCAL-Part-108
contains 10103 images of different sizes, along with 58
(PASCAL-Part-58) or 108 (PASCAL-Part-108) part-level
annotations of 20 semantic object classes, excludes the
background class. We follow the original split as in [5],
where 4998 images are used for training and 5105 im-
ages are used for testing. PASCAL-Person-Part contains
3533 images of multi-person on various scales. The per-
sons are annotated with 7 body parts. We follow the split
as in [3, 33, 37], where 1716 images are used for train-
ing and 1817 images are used for testing. Also, we fol-
low the state-of-the-art and other well known part parsing
methods [37, 19, 26] to use the same evaluation metrics: the
mean Intersection over Union (mloU); and the same evalu-
ation strategy. We use PASCAL-Part-58 to demonstrate the
effectiveness of integrating the two modules and the object-
to-part training strategy, while all three are used in compar-
isons with other methods.

Training details. The backbone of the network is
DeepLab v3+ [4] trained on the ImageNet dataset [6]. We
reproduce the DeepLab v3+ model in PyTorch [22] and fol-
low the same training schemes as in [4, 2]. In our exper-
iments, input images are cropped to 513 X 513 in resolu-
tion and randomly left-right flipped and scaled with a fac-
tor ranging from 0.5 to 2.0. During training, the Stochastic
gradient descent (SGD) optimizer with momentum 0.9 and
weight decay regularization 1e—4 is used. The learning rate
is set as 0.01 for object-level training and 0.05 for part-level
training. The atrous rates of the ASPP are set to (6, 12, 18)
as in prior works [4, 37, 19]. Also, the down-sampling stride
is set to 16 in all our models. For PASCAL-Part-58, we
train our model with batch size 16 for 65K iterations, for
PASCAL-Part-108, we train the model with batch size 14
for 64K iterations, and for PASCAL-Person-Part, we train
the model with batch size 16 for 60K iterations.

4.2. Ablation Study

We first carried out ablation studies to evaluate the effec-
tiveness of integrating the ARM and the FFM modules, and

Table 1. Detailed performance comparison of each com-
ponent in our proposed AFPSNet approach. For computa-
tional efficiency, the experiments are conducted by perform-
ing a parts-only training strategy.

Method | ARM FFMls FFM2 | mloU(%)
DeepLab v3+ 57.16
DeepLab v3+ v 56.72
DeepLab v3+ v v 57.89
DeepLab v3+ v v 57.97
AFPSNet v v v 58.33
Table 2. Performance comparison of parts-only train-

ing strategy, multi-task learning strategy and object-to-part
training strategy on our baseline and AFPSNet.

Method Training strategy | mloU(%)
DeepLab v3+ parts-only 57.16
DeepLab v3+ multi-task 58.86
DeepLab v3+ object-to-part 58.80
AFPSNet parts-only 58.33
AFPSNet multi-task 59.34
AFPSNet object-to-part 60.61

the object-to-part training strategy.

Integrating ARM and FFM modules. Table 1 shows
the results of the baseline method (DeepLab v3+), and the
baseline with the addition of the ARM and FFM modules.
To save the training time, in this experiment, we trained
these models using part labels only. For simplicity, here we
use FFM s to refer to the sequence of FFM modules fus-
ing features from ASPP, and FFM2 the FFM module fusing
features from different blocks. When FFM modules are not
added, simple concatenation of features is used instead.

From Table 1, the baseline method achieved an mloU
of 57.16%. However, adding the ARM alone dropped the
value to 56.72%. As pointed out in [4], direct concatenation
of features at very different detail levels may cause some
useful features to be discarded. Adding ARM, while en-
hancing the features, exaggerated the problem in this case,
which explained the performance drop. However, when en-
hancing the features combined with feature fusion using
FFM1s, the mIoU was increased to 57.89%, demonstrated
the necessity of combining ARM with FFM1s and the effec-
tiveness of the combination. The further addition of FFM2
achieved the best performance with 58.33% mloU, further
demonstrated the effectiveness of fusing low-level features.
While the performance of our model without ARM drops
from 58.53% to 57.97%, which demonstrates the effective-
ness of ARM for selective focus on desired features.

Fig. 5 gives qualitative results, showing how the segmen-
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Figure 5. Qualitative comparisons of segmentation results of the baseline, AFPSNet and each component integrated with the

baseline on PASCAL-Part-58 dataset.

tation improves with the addition of ARM and FFM mod-
ules. From the figure, we can see that the baseline method
struggled to detect small parts or to give clear boundaries.
For example, the lid of the bottle was not detected in the
second and the fourth examples in Fig. 5, the head of the
small horse in the third example was missed, and the bus
windows in the first example were merged together miss-
ing gaps in between. Adding the ARM module (the fourth
column in Fig. 5) improves the detection of some small
parts, such as the body of the bottle and the head of the
small horse. However, deterioration of boundary predic-
tion was also observed, e.g., the boundary of the monitor
in the second image, showing the pros and cons of adding
ARM alone. However, when adding the ARM and FFM1s
together (the fifth column in Fig. 5), noticeable improve-
ments were observed. For example, the gaps between win-
dows in the first example and the lid of bottle in the sec-
ond were detected. Moreover, the boundaries were more
accurately predicted, as can be seen in the second example.
Then, the last column in Fig. 5 shows further improvements
on small parts segmentation (e.g., lid of bottle in both ex-
amples, the head of the small horse) and boundary predic-
tion (e.g., gaps between bus windows, the boundary of the
monitor). While removing ARM from our model (the sixth
column in Fig. 5), i.e., the body of the bottle and the head
of the small horse were not detected, which shows the ne-
cessity of ARM in our model.

Table 1 and Fig. 5 demonstrate the effectiveness of inte-
grating the ARM and FFM modules. We then evaluate the
effectiveness of the object-to-part training strategy.

Object-to-part training strategy. We conducted sev-
eral experiments by training AFPSNet and DeepLab v3+
using 1) a part-only training strategy, 2) a multi-task learn-
ing strategy (as used in existing multi-class part parsing
methods), and 3) the proposed object-to-part training strat-
egy. The results are shown in Table 2.

We observed that training DeepLab v3+ using part labels
only achieved 57.16% in mIoU. While incorporating object-
level segmentation, either parallel as a multi-task learning
or sequentially as object-to-part, improved the mloU by
1.7% and 1.64% respectively. Similar improvements were
observed when training AFPSNet using the three strategies,
where using multi-task learning achieved 1.01% increase
in mIoU and using object-to-part training achieved 2.28%.
The results on both networks demonstrate the effectiveness
of object-to-part training strategy to improve the perfor-
mance over part-only training strategy. However, a differ-
ence is also observed. Training AFPSNet using the object-
to-part training strategy achieved noticeable improvements
than using the other two strategies. While training DeepLab
v3+ using the object-to-part training strategy achieved sim-
ilar, or even slightly worse, performance compared to using
multi-task learning strategy. This indicates that the effec-
tiveness of object-to-part training may depend on the net-
work architecture. With the ARM and various FFM mod-
ules added, AFPSNet is architecturally more complex than
DeepLab v3+. More complex architectures may benefit
more from the more stable sequential training. However,
to verify this, more investigations are needed, which will be
a direction for future work.
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Table 3. Segmentation performance of mloU on PASCAL-Part-58 benchmark.

per-object-class mloU.

mloU: per-part-class mloU. Avg.: average

Method j;b § % E E %; £ 5 & g § % é‘) g %é g z;- g ug é z |mloU Avg.
DeepLab v3+ [4] | 94.5 464 652 53.6 63.7 51.5 67.1 51.6 62.6 385 526 452 58.6 66.5 725 56.5 554 52.1 46.0 80.2 61.0| 57.60 59.1
BSANet [37] 91.6 50.0 65.7 54.8 60.2 49.2 70.1 53.5 63.8 36.5 52.8 437 583 660 71.6 584 550 49.6 43.1 822 614 | 582 589
GMNet [19] 92.7 46.7 664 52.0 70.0 55.7 71.1 522 632 514 548 513 59.6 644 739 562 562 53.6 56.1 85.0 65.6| 59.0 61.8
CSR [26] 919 52.0 649 56.0 61.7 569 72.0 569 64.0 363 592 451 62.3 68.6 729 552 569 53.6 435 79.8 63.5| 60.7 60.6
AFPSNet 94.8 509 68.1 557 64.0 57.7 72.0 557 651 39.8 60.7 44.6 619 704 728 61.4 583 57.0 464 81.6 63.1| 61.3 62.0

Table 4. Segmentation performance of mloU on PASCAL-Part-108 benchmark. mloU: per-part-class mloU. Avg.: average
per-object-class mIoU.

Method g%%%gééﬁ§§§§§§§§§§§§zmw;\vg
Deeplabv3 [2] | 90.0 419 445 353 537 47.0 341 423 492 354 39.8 330 482 488 232 504 436 354 392 207 60.8| 413 437
DeepLab v3+[4]| 94.5 48.8 454 416 595 495 365 453 513 37.3 50.9 44.1 520 545 239 558 540 426 474 233 69.7 | 465 489
BSANet[37] | 916 453 40.9 410 614 489 322 433 507 341 394 459 521 500 23.1 524 506 378 445 207 663 | 429 463
GMNet[19] | 927 480 462 393 692 560 37.0 453 526 49.1 50.6 60.6 520 515 248 526 560 401 539 216 70.7 | 458 50.5
AFPSNet 949 504 520 438 611 521 411 489 540 380 545 430 550 577 254 585 572 445 472 23.1 731 492 512

Table 5. Segmentation performance of mloU on Pascal-
Person-Part benchmark. mloU: per-part-class mloU.

o0 9 o Z Z & )
Method é 3 £ § E @ 2 mloU

= o T L [

S = oy iy 5 —~
DeepLab v3 [2] 94.79 84.06 66.69 5426 52.80 48.08 43.59 || 63.50
DeepLab v3+ [4] 97.12 87.00 7091 59.69 59.54 5296 49.42 | 68.09
BSANet-101 [37] || 95.62 86.49 70.20 5931 5872 5191 49.32 || 67.37
BSANet-152 [37] || 95.79 8698 7135 6136 6026 53.28 4995 || 68.43
AFPSNet 97.28 87.60 72.68 62.07 6148 54.59 51.22 || 69.56

4.3. Comparisons with the state-of-the-art

We also compared our method with the baseline and the
state-of-the-art multi-class part parsing methods [37, 19,
26]. We first compared the segmentation performance on
the PASCAL-Part-58 benchmark. Two metrics were used
to compare the performances of these methods quantita-
tively, i.e., mIoU which computes the mean per-part IoU on
the 58 part classes and Avg. which computes the average
per-object mIoU on the 21 object classes (including back-
ground). As shown in Table 3, the baseline, DeepLab v3+,
achieved 57.60% in per-part mIoU. While BSANet, which
is the first work addressing part-based semantic segmenta-
tion, achieved 58.2%. GMNet improved the performance,
achieving 59.0%. The current state-of-the-art method, CSR,
achieved 60.7%. Compared to the above methods, the

proposed AFPSNet achieved the highest per-part mloU of
61.3%, outperforming the current state-of-the-art method.
The same is observed for the average per-object-class mloU
as well. Closer examination of the class-level segmentation
in Table 3 further shows that our model achieves the highest
mloU for 10 out of 21 categories (including background),
more than other methods compared.

Fig. 6 illustrates qualitative comparison of the segmen-
tation results from these methods. Our model shows overall
better segmentation results with less missing parts and more
accurate boundaries. For example, the segmentation of the
cat head in the first row and the human leg in the second
row are challenging for the other methods, while AFPSNet
can successfully detect and segment them. Moreover, AF-
PSNet shows superior performance in detecting small ob-
ject parts even in a very crowded scene. For example, in
the third row, AFPSNet can better predict the boundaries of
the chairs and successfully detect the legs behind the desks.
And similar observations can be seen in the segmentation of
the arm chair in the last row.

We further evaluate the performance of AFPSNet on
PASCAL-Part-108 benchmark. Our method is compared
with the baseline and 2 of the state-of-the-art multi-class
part parsing methods [37, 19] with the reported perfor-
mances, as shown in Table 4. Similar to PASCAL-Part-58
benchmark, our method achieved the highest per-part mloU
of 49.2%, outperforming the state-of-the-art method. As
can be seen, AFPSNet achieves the highest mIoU for 15 out
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Figure 6. Segmentation results on PASCAL-Part-58 dataset. Our model generates notable results with more details of small
object parts and better boundary localization compared to the-state-of-the-art models.

Input DeepLab v3+ Ours

Figure 7. Two typical failure cases. Our model can be sen-
sitive to similar shapes which occupy a small region in the
scene. The incomplete appearance of the object can some-
times confuse our model.

of 21 categories, more than other methods compared.

Moreover, We compared the segmentation performance
of our methods with the baseline and the reported perfor-
mances of BSANet [37] on PASCAL-Person-Part bench-
mark. As shown in Table 5, AFPSNet achieves the highest
mloU results for all the parts, compared to other methods.

Training AFPSNet using the object-to-part training strat-
egy allow us to to increase the batch size to 16, while
BSANet, GMNet and CSR using lower batch size, i.e., 8,
10, 4 ,respectively. Enlarge the batch size contributed to
speeding up the training process of our model by up to 60%
compared to CSR, 33% compared to GMNet and 55% com-
pared to BSANet.

4.4. Failure cases

However, AFPSNet still have limitation. As shown in
the first row of Fig. 7, the balloons are mistakenly recog-
nized as the head of a person, showing our model may be
sensitive to small parts with similar shapes. A possible way
for improvement is by further using the edge information
in our method. In addition, our model may be confused if
the appearance of the object is incomplete, such as the TV
in the second row of Fig. 7. This may be a limitation of
the current object-to-part training strategy, which will need
further investigation.

5. Conclusion

In this paper, we proposed AFPSNet to address the
multi-class part parsing problem, focusing on two main
challenges, i.e., part-level and class-level ambiguities. For
the part-level ambiguity, we propose to use attention-
refinement and feature-fusion to first detect more details of
parts from finer scales and then to effectively fuse different
scales of features. For the class-level ambiguity, we propose
to use the object-to-part training strategy, which helps to ex-
ploit prior knowledge for more accurate part localization.
Experiments demonstrated the effectiveness of our method,
which achieves the state-of-the-art performance on multi-
class part parsing on the benchmark PASCAL-Part datasets.
In the future, we will consider exploiting the edge informa-
tion and boundary measures to further improve the bound-
ary localization and using spatial attention to enhance the
parts segmentation. Moreover, further investigations of the
object-to-part training strategy will also be carried out.
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