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Abstract

This paper proposes the first GAN inversion-based
method for multi-class sketch-based image generation (MC-
SBIG). MC-SBIG is a challenging task that requires strong
prior knowledge due to the significant domain gap between
sketches and natural images. Existing learning-based ap-
proaches rely on a large-scale paired dataset to learn the
mapping between these two image modalities. However,
since the public paired sketch-photo data are scarce, it
is struggling for learning-based methods to achieve sat-
isfactory results. In this work, we introduce a new ap-
proach based on GAN inversion, which can utilize a power-
ful pretrained generator to facilitate image generation from
a given sketch. Our GAN inversion-based method has two
advantages: 1. it can freely take advantage of the prior
knowledge of a pretrained image generator; 2. it allows
the proposed model to focus on learning the mapping from
a sketch to a low-dimension latent code, which is a much
easier task than directly mapping to a high-dimension nat-
ural image. We also present a novel shape loss to improve
generation quality further. Extensive experiments are con-
ducted to show that our method can produce sketch-faithful
and photo-realistic images and significantly outperform the
baseline methods.

1. Introduction
Human free-hand sketch is an intuitive and powerful vi-

sual expression. In recent years, sketch has received in-
creasing attention from both computer vision and computer
graphics communities, and many sketch-related tasks have
been investigated, such as recognition [16, 57], sketch pars-
ing [39, 40], sketch-based retrieval for 2D images [32, 47,
49, 56] or 3D shapes [7, 12, 55, 59], and sketch-based 2D
image generation [10, 18, 19, 33, 34, 54] or 3D shape gener-
ation [22, 35, 48]. Among these tasks, Sketch-Based Image
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Generation (SBIG) is popular given its wide applications in
animation, fashion, and education. With the development
of the Generative Adversarial Network (GAN) [20] and its
variants [24, 37, 62, 63], this task has embraced significant
improvements.

Object-level SBIG aims to generate a object-level photo-
realistic image based on a sketch automatically. Specifi-
cally, this task can be categorized into two types: single-
class and multi-class. For the single-class setting, a model
is designed to handle a specific target class. For exam-
ple, DeepFaceDrawing [8] and DeepFacePencil [30] use
sketches as soft constraints to control face image genera-
tion; the work [33] proposes a two-stage approach to gener-
ate fashion images (e.g., shoes) from sketches. In contrast,
multi-class SBIG focuses on producing images of multiple
classes, such as EdgeGAN [18] and SketchyGAN [10].

Generating photos* based on sketches is very chal-
lenging due to the large domain gap between photos and
sketches, resulting from two intrinsic characteristics: (1)
sketches are abstract and deformed, and (2) sketches lack
colors and most texture information. In contrast, photos are
faithful to objects in the real world. Therefore, to synthe-
size an image for a given sketch, a model needs to rectify
shape deformation in a sketch and fill in missing colors and
textures, which requires lots of prior knowledge. Learning
prior knowledge is non-trivial: existing datasets are barely
sufficient for learning single-class SBIG models but cannot
support multi-class. This problem explains why the synthe-
sis quality of multi-class SBIG models [10, 18, 19, 34, 54]
is much worse than single-class models [8, 30, 33]. To al-
leviate the domain gap between photos and sketches, Edge-
GAN [18] learns a joint semantic embedding for these two
domains. The recent work [54] adopts CycleGAN [62]
as the baseline and proposes an open-domain optimization
strategy; thus it can generalize to open-domain classes when
training data is relatively limited. Unfortunately, the quality
of the images generated by these methods is still far from
satisfactory.

*In this paper, photos and natural images are used interchangeably.
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Figure 1. Natural images generated by our proposed method, SketchInverter, based on free-hand sketches. Sketches are randomly sampled
from the SketchyCOCO dataset [18] and Sketchy database [47] test set.

Although the large-scale sketch-photo datasets are
scarce, it is worth noting that large-scale photo datasets are
available (e.g., ImageNet), which can be used to train a
well-performed multi-class image generator. The straight-
forward idea is to leverage the prior knowledge learned by a
powerful image generator. GAN Inversion is a commonly-
used method for image editing, where a pretrained GAN
model is employed to produce images. At the same time,
the input vector is dynamically tuned (for optimize-based)
or learned (for learning-based) so that the generated images
can match the expectation. The GAN Inversion method
guarantees high quality of synthesized images since it uti-
lizes a pretrained GAN model. Intuitively, the prior knowl-
edge of a pretrained GAN model also significantly reduces
the domain gap between sketches and photos.

In this work, we for the first time introduce GAN in-
version to multi-class SBIG, aiming to obtain high-quality
photos for given sketches (as shown in Fig. 1). As shown in
Fig. 2(a), we adopt the learning-based GAN inversion ap-
proach. Specifically, with an image generator pretrained on
a large-scale image dataset, we additionally train a sketch
encoder to map a sketch into the latent space of the image
generator (as shown in Fig. 2(b)). Compared with existing
multi-class SBIG models, such design has two advantages:
(1) it realizes the task in two steps, first converting the input
sketch to a latent code and then generating a realistic image
based on the latent code. With a pretrained image genera-
tor, the model can focus on the first step. (2) It leverages the
prior knowledge of the pretrained image generator, ensuring
the quality of the synthesized photos.

Specifically, we choose to invert a well-trained GAN
model, i.e., BigGAN [6] in our experiments due to its im-
pressive performance in image generation. Unlike the con-
ventional GAN inversion-based methods, our task requires
generating photos of multiple classes. Many existing GAN
inversion works focus on the single-class setting, while only
a few works consider additional conditions, such as IC-
GAN [38]. ICGAN uses two encoders: one maps an input
image to the corresponding latent code, and the other maps

it to a class label. However, the generation results can devi-
ate from the target category if the input sketch is ambiguous
or the inverted class label is incorrect. Therefore, we design
a conditional encoder and take the class label as a condition
during the sketch encoding and photo generation. To en-
courage the generated images to match the input sketches,
we introduce a shape loss that minimizes the difference be-
tween the input sketch and the contour of a generated photo.

In addition, we build a synthetic dataset to train our
model, including paired data of latent codes, images, and
sketches. Although our model is trained on synthetic data,
extensive experiments show that our model can generalize
to real data. The visual quality of generated images is sig-
nificantly better than other existing works. The contribu-
tions of this work are summarized as follows:

• We, for the first time, introduce GAN inversion for
object-level multi-class sketch-based image genera-
tion. The prior knowledge learned by a pretrained
GAN model can significantly reduce the domain gap
between sketches and photos.

• We design a conditional encoder to map sketches with
class labels to latent space and generate multi-class im-
ages through a pretrained GAN model; we additionally
propose a shape loss to encourage the generated im-
ages to match the input sketches.

• Extensive experiments have been conducted to show
that our method can outperform other baseline meth-
ods by a noticeable margin.

2. Related Works
Sketch-Based Image Generation. Sketch-based im-

age generation aims to generate a photo-realistic image
from a given sketch. Early works such as Sketch2-
Photo [9] and PhotoSketcher [17] chose to compose a new
photo from photos retrieved for a given sketch. In recent
years, with the development of Generative Adversarial Net-
works(GANs) [20], an increasing number of works adopt
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Figure 2. (a) Typical GAN inversion processes: inverting an image
to the latent space and reconstructing it. (b) Our method of sketch-
based image generation: mapping a sketch to the latent space of
a generator and generating an image. Through the reconstruction
we train our model to learn this mapping on sketch-photo datasets.

GANs to learn pixel-wise translation from sketches to pho-
tos directly. Based on the type of generated images, this
task can be divided into three categories: (i) Face image
generation [8, 30]; (ii) Scene-level image generation [18];
(iii) object-level image generation [10, 18, 19, 33, 34, 54].

There are two types of object-level sketch-to-image gen-
eration: (i) single-class image generation: [33] proposes a
two-stage model for the unsupervised sketch-to-photo gen-
eration with reference images in a single class. They adopt
CycleGAN [62] as a baseline and train in a self-supervision
fashion. (ii) multi-class image generation: [10] uses a gen-
erator with Masked Residual Unit blocks to generate im-
ages from 50 classes. [18] learns images and edge maps
jointly into a shared latent space where vectors can en-
code high-level attribute information from cross-modality
data. [54] adopts CycleGAN [62] as the baseline and pro-
poses an open-domain optimization strategy. [19] uses out-
lines to represent free-hand sketches and generates photos
from partial strokes with two-stage generators. Contextu-
alGAN [34] turns sketch-to-image generation into an im-
age completion problem: the network learns the joint dis-
tribution of sketches and image pairs and acquires the re-
sult by iteratively traversing the manifold. The recent work
[51] uses a sketch instance as the supervision to fine-tune
a well-trained generator (StyleGAN [26]), aiming to gener-
ate sketch-faithful images. Note that our method is different
from theirs, our goal is to train an auto-encoder that can map
a collection of multi-class sketches to the latent space and
generate photos through a well-trained generator [6].
GAN Inversion. GAN inversion is a task that aims to find
the corresponding latent code to recover the input image
for a fixed well-trained GAN model. GAN inversion en-
ables multiple downstream tasks such as image manipula-
tion, image interpolation, image restoration, 3D reconstruc-

tion, and multi-modal learning, which gains increasing at-
tention from the community.

There are three existing types of inversion ap-
proaches [53]. (i) Learning-based GAN inversion [3, 38,
61]: this method first generates a collection of images with
randomly sampled latent codes and then uses the images
and codes as inputs and supervisions, respectively, to train
an encoder that maps images to codes. (ii) Optimization-
based GAN inversion [1, 2, 11, 31, 36, 42, 50]: this method
deals with a single instance at one time by directly optimiz-
ing the latent code to minimize the pixel-wise reconstruc-
tion loss of the generated image. (iii) Hybrid GAN Inver-
sion [3, 4, 21, 60, 61]: this method combines the methods
above by using the encoder to generate an initial latent code
for the later optimization. The GAN model to be inverted
can be either (i) conditional [38] or (ii) non-conditional.
Most existing GAN inversion model belong to (ii).
Cross-modal Image Translation. Currently, the computer
vision community pays more and more attention to using
large-scale pre-training models to learn cross-modal image
translation. [43, 44] use pre-training CLIP [41] to achieve
text-based surrealist image generation. NUWA [52] is a
multi-modal pre-training model that can generate new data
or manipulate existing visual data for various visual tasks.
We do not compare to NUWA as it might be unfair due to
the difference in the scale of the datasets. The proposed
model only takes 16,000 sketch-photo pairs for training
while NUWA uses 2.9 million text-image pairs.

3. Method
Our model, SketchInverter, aims to generate photos of

multiple classes based on given sketches. It is built on the
learning-based GAN inversion, which first learns the map-
ping from the sketches to the latent space of a conditional
GAN (cGAN) model and then utilizes the pretrained cGAN
to generate photos that are faithful to the input sketches.

Three designs are specifically presented for this task, in-
cluding (1) A novel conditional GAN inversion encoder is
proposed to map an input sketch into the latent space with a
class label as the condition. (2) A novel shape loss is intro-
duced to ensure the faithfulness of the generated image. (3)
A synthetic dataset is constructed for training to address the
paired data scarcity issue.

3.1. Overall Architecture

The overall architecture of our model is illustrated in
Fig. 3. Our model aims to map a given sketch s to the cor-
responding latent code z, and then generate a natural image
x that matches s in some aspects, e.g., pose and orientation.
Specifically, our model takes a sketch s and its correspond-
ing label y as input and maps them to a latent code z via
the sketch encoder E. Next, a fixed pretrained generator
G generates the corresponding photo given the latent code
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Figure 3. Our framework for multi-class sketch-based image gen-
eration. It contains three networks: a conditional encoder E, a
pretrained generator G, and a image-to-sketch network S. Model
blocks in blue are trainable and green are fixed. Black arrows in-
dicate feed-forward, and blue arrows indicate the supervisions of
encoder E. s, zGT and xGT are ground-truth pairs.

and class label. The ground-truth latent code and image are
zGT and xGT . During training, besides the reconstruction
loss, a shape loss is applied to improve the faithfulness of
generated images, which compares the differences between
a fake sketch srec and the original input sketch s. The fake
sketch is converted from the generated photo by a sketch-
photo translation network S.

In our proposed model, BigGAN is used as the im-
age generator G. It is a conditional generative adversarial
network (cGAN) and is pretrained on the ImageNet [14]
dataset. For the original BigGAN, it takes a random noise
vector and a class label as the input and outputs an image.

3.2. Conditional Sketch Encoding

Given a sketch, the encoder maps it to the latent space
of the pretrained image generator. For multi-class SBIG,
a sketch with different class labels should be mapped into
different places of the latent space. However, for most
learning-based GAN inversion methods, the encoders sim-
ply map an image to a latent code without any condition (as
shown in Fig. 4(a)). The later work cGAN inversion [38]
uses two encoders to predict the latent code and the class
label for a given image (see Fig. 4(b)). Unfortunately, our
experiments (see Sec. 4.4) show that this design performs
poorly for our task as free-hand sketch is abstract and col-
orless, and thus the encoder often fails to predict the class
labels correctly.

In this work, for the first time, we propose a conditional
encoder E for learning-based GAN inversion method to pre-
dict a class-conditioned latent code zy = E(s,y). As
shown in Fig. 4(c), the conditional encoder includes 6 resid-
ual blocks and the category information of free-hand sketch
is injected into the encoder via class-conditional Batch-
Norm [13, 15]. The detailed architecture is provided in Sup-

plementary. Next, the latent code zy will be the input of the
pretrained image generator G.

To train this conditional sketch encoder, we apply the
L1 loss between the ground-truth latent code zGT and the
predicted latent code zy:

min
ΘE

Lz = ∥zGT − E (s,y)∥1 (1)

3.3. Image Generation

Our proposed model uses the BigGAN network as the
image generator G. So given the latent code zy and class
label y, image generator will produce the coresponding im-
age, xs,y = G(zy,y) = G(E(s,y),y). Since it is pre-
trained on the ImageNet dataset, our proposed model can
leverage its prior knowledge and generate high-quality im-
ages. During training, the parameters of the BigGAN are
fixed. Besides, image reconstruction loss and shape loss are
used during training to ensure the quality and faithfulness
of the generated images.

3.3.1 Image Reconstruction Loss

We adopt an image reconstruction loss to guarantee that the
generated image is similar to the target image (Eq. 2). Like
previous GAN inversion works, we calculate pixel-wise dis-
tance and perceptual-wise distance between xs,y and xGT .
We additionally introduce LPIPS [58] loss based on the fea-
ture extracted by AlexNet [28] since LPIPS loss has been
proven to preserve better image quality [21, 45] than per-
ceptual loss [25].

min
ΘE

Limage = ∥xGT −G (E (s,y) ,y)∥1

+ λLPIPS ∥F (xGT )− F (G (E (s,y) ,y))∥1
(2)

where F denotes a pretrained AlexNet [28].

3.3.2 Shape Loss

Only the reconstruction loss cannot guarantee that the gen-
erated image and the input sketch are similar in pose and
orientation. We suppose that this may due to the loss in the
image domain that can not fully promise the shape and de-
tails of generating images. To make the content of the gen-
erated image more aligned with the input sketch, the overall
learned mapping should be cycle-consistent and we intro-
duce a shape loss as supervision. The shape loss is applied
between the input sketch and the fake sketch generated by
a trainable photo-to-sketch translation network, S. S and E
are jointly optimized by the shape loss:
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min
ΘS

min
ΘE

Lshape = ∥s− S (xGT )∥1

+ ∥F (s)− F (S(xGT ))∥1
+ ∥s− S (G (E (s,y) ,y))∥1
+ ∥F (s)− F (S (G (E (s,y) ,y)))∥1

(3)
L1 norm distance is used as it achieves the best performance
in our preliminary experiments.

3.3.3 Full Objective

The overall objective of our model is:

V(E, S) = λzLz + λimageLimage + λshapeLshape (4)

where λz, λimage and λshape control the weights of differ-
ent loss terms. In the ablation study section, we compare
different variants of full objective and show that each term
contributes to the model’s performance.

3.4. Synthetic Dataset

To map sketches into the latent space of pretrained Big-
GAN properly, we need large amounts of paired sketches
and images. The images of existing multi-class sketch-
photo datasets [18, 47] are limited and lack enough diver-
sity so that they cannot cover the generation space of a pre-
trained BigGAN.

To address the data issue, we build a synthetic dataset
composed of pairs of images, latent codes, and sketches.
Specifically, we first select 16 categories from ImageNet
1,000 classes, e.g., birds, dogs, planes, sailboats. Then we
sample a collection of latent codes zGT from prior distribu-
tion p. Next, we obtain the images xGT through pretrained
generator G. Finally, the corresponding sketches s of these
images are obtained using a pretrained photo-to-sketch net-
work [29]. This synthetic dataset consists of 12,000 paired
latent codes zGT , images xGT , and sketches s.

3.5. Training Strategy

In the previous sections, we introduce the loss, Eq. 4,
under the setting of training on synthetic data only. To ex-
plore whether we can obtain better results by utilizing the
real dataset, such as SketchyCOCO [18] dataset, we design
and compare three training strategies: (i) Training on our
synthetic dataset and directly testing on the real dataset. (ii)
Training on our synthetic dataset and fine-tuning on the real
dataset. (iii) Training from scratch on the mix of our syn-
thetic dataset and the real dataset. In Sec. 4.4, we compare
the results of different training strategies. Note that when
training or fine-tuning on the real dataset where the ground-
truth latent codes are not available, the optimization objec-
tive is:

V(E, S) = λimageLimage + λshapeLshape (5)

4. Experiments
4.1. Experimental Setup

Datasets and Evaluation Protocal. We train our pro-
posed model, SketchInverter, and baselines on our syn-
thetic dataset. We evaluate them on real free-hand sketch-
photo datasets, i.e., Sketchy Database [47] and Sketchy-
COCO [18]. Note that when comparing with baselines, all
models are trained only on the synthetic dataset.

• Our Synthetic Dataset. We collected this dataset fol-
lowing the description in Sec. 3.4.

• Sketchy Database [47]. This dataset includes pairs of
images and sketches We choose 8 classes that overlap
with our synthetic dataset from the original 125 cate-
gories and split them into train and test sets.

• SketchyCOCO [18]. This dataset includes 14 object
classes, We choose 4 classes related to our synthetic
dataset and split them into train and test set.

Baseline Methods. We compare our method with three
baseline methods, including Pix2pix [24], EdgeGAN [18],
and AODA [54].

• Pix2pix [24]. Pix2pix is proposed for the task of
image-to-image translation. Following [18], the model
is trained under two modes. The first mode is denoted
as Pix2pix-Sep, in which 16 models are trained sepa-
rately for each class. The second mode is denoted as
Pix2pix-Mix, where only a single model is trained for
all 16 classes.

• EdgeGAN [18]. EdgeGAN is proposed for sketch-
based image generation. We train this model using
paired sketches and photos of our synthetic dataset.
We name the setting of training with sketches instead
of edge maps as EdgeGAN-S.

• AODA [54]. AODA proposes a framework that jointly
learns sketch-to-photo and photo-to-sketch mappings,
This model is also trained on our synthetic dataset.

Implementation Details and Evaluation Metrics. We
train SketchInverter for 200 epochs on our synthetic dataset.
The learning rate is set to be 0.001. The latent code z is 128-
dim and the size of sketches and photos is 128×128. We use
Adam[27] optimizer and the batch size is set to be 128. Fur-
ther implementation details are provided in Supplementary.

We use the following five metrics to evaluate the qual-
ity, diversity, and faithfulness of the images generated by
different methods, including Fréchet Inception Distance
(FID) [23], Kernel Inception Distance (KID) [5], Inception
Score (IS) [46], Learned Perceptual Image Patch Similarity
(LPIPS) [58], and Classification Accuracy (Acc).
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Figure 4. (a) Using one non-conditional encoder to map sketches to latent codes, and generating images based on class labels. (b)Using
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and Ey output latent codes and class labels, repectively. (c) Our method SketchInverter: using a conditional encoder to map sketches with
class labels to latent codes, and generates images through a generator.

Table 1. Comparison of baselines and our method. Our method outperforms other baselines in all metrics.
Sketchy Database SketchyCOCO

Model FID↓ KID↓ IS↑ LPIPS↓ Acc↑ FID↓ KID↓ IS↑ Acc↑
Pix2Pix-Sep [24] 107.59 0.043 9.04 0.67 0.94 170.06 0.081 6.94 0.125
Pix2Pix-Mix [24] 207.65 0.17 4.97 0.7 0.174 219.39 0.17 4.89 0.123
EdgeGAN-S [18] 182.2 0.017 6.37 0.66 0.81 218.67 0.12 5.54 0.903

AODA [54] 305.8 0.21 4.6 0.68 0.021 315.46 0.2 3.1 0.11
SketchInverter (Ours) 56.71 0.012 9.63 0.55 0.988 121.04 0.024 7.15 0.995

4.2. Qualitative Results

Figure 5 shows representative results of our proposed
method, SketchInverter, and four baseline methods. The
sketches (1st column) and their corresponding photos (2nd
column) are from the Sketchy database. Due to space lim-
itations, we show more visualization results achieved on
the SketchyCOCO dataset in Supplementary. It is clear to
see that our approach (Fig. 5(c)) can produce significantly
higher-quality photos than others.

Handling different classes by a single model is very chal-
lenging. As shown in the last three columns, the baseline
methods are struggling to generate realistic photos of differ-
ent classes. Pix2pix-Sep (Fig. 5(d)) works relatively better
as it is trained for individual classes. In contrast, SketchIn-
verter is a multi-class model and can handle the task well,
even outperforms Pix2pix-Sep. For either animal classes
like birds and dogs or other classes like jack-o-lanterns,
SketchInverter can generate photos with proper color, tex-
ture, and shape. Such superiority is achieved by adopting
a pretrained image generator, which allows our model to
utilize its prior knowledge. It is worthy to note that our
approach has the potential to generate higher-resolution or
higher-quality natural images by switching to a more ad-
vanced image generator.

In terms of faithfulness, i.e., whether the objects in gen-
erated photos are aligned with the sketched objects or not,
our method also performs the best among all methods. It
should be noted that although some sketch-photo pairs in

real datasets are not totally aligned, like the bird exam-
ple in the second row of Fig. 5, our generated photos are
more faithful to the input sketches while maintaining real-
ism. More results are shown in Supplementary.

4.3. Quantitative Results

As shown in Table 1, our method outperforms other
baseline methods in terms of all metrics. Pix2pix-Sep is
the only baseline that is trained separately for each class.
Its performance is much better than that of Pix2pix-Mix,
which implies that the in-domain gaps among classes are
non-trivial. Our method outperforms Pix2pix-Sep by a large
margin, indicating that our model handles the task of MS-
SBIG better than a collection of models trained on the single
category. Besides, the images generated by SketchInverter
can be better recognized by an image classifier than those of
other baseline methods, which proves the superiority of our
method. These results also demonstrate the benefits of using
the pretrained image generator which learns a outstanding
prior from large-scale image datasets.

4.4. Ablation Study

Effect of Conditional Encoder. To demonstrate the ef-
fectiveness of the proposed conditional encoder, we com-
pare our conditional encoder with two variants: (i) using a
simple convolution encoder which takes the sketch as the
only input and maps it to a latent code; (ii) using two en-
coders, similar to [38], the input is the sketch only; while
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Figure 5. Visualization results tested on sketches from Sketchy database. (a) Sketch; (b) Ground-truth; (c) Our method; (d) Pix2pix-Sep:
one model per class; (e) Pix2pix-Mix: a single model for all classes; (f) EdgeGAN-S; (g) AODA. (c)(d)(e)(f)(g) are all trained on our
synthetic dataset and tested on the Sketchy database. More results are shown in supplementary.

(e) (g)(b) (c) (d) (h)(f)(a)

Figure 6. Visualization results of ablation study. (a) sketch; (b) ground-truth; (c) using one non-conditional encoder; (d) using two non-
conditional encoder; (e) training without shape loss; (f) our full model; (g) our full model fine-tuned on the Sketchy database train set; (h)
our full model trained on the mix of our synthetic dataset and the Sketchy database train set. Columns (c)(d)(e)(f) are the same setting that
is training on our synthetic dataset and testing on the Sketchy database.

one encoder converts the sketch to a latent code and the
other predicts a class label. Encoders used in (i) and (ii)
have the same architecture. It is worthy to note that although

the encoders used in these two variants are non-conditional,
the generators used in these two variants and our proposed
model are conditional, i.e., require class labels. Therefore,
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Table 2. Comparison of different kinds of encoders. The con-
ditional encoder we proposed generates more photo-realistic and
faithfully results.

FID↓ KID↓ IS↑ LPIPS↓ Acc↑
Single Encoder 61.86 0.013 8.74 0.6 0.989
Two Encoder 82.19 0.018 12.21 0.63 0.186

Ours 56.71 0.012 9.63 0.55 0.988

compared with these two variants, our proposed model does
not use more supervision.

Table 2 shows that our proposed conditional encoder out-
performs the two variants. Using a single non-conditional
encoder has a higher classification accuracy. However, as
shown in Fig. 6(c), this method fails to capture details in-
dicated in a sketch (e.g., the orientation of the bird and
the pose of the dog). Furthermore, in our experiments, we
found that using single non-conditional encoder may suffer
from the mode collapse problem that generated images have
similar shapes and fall in several limited patterns. Thus this
method achieves the lowest IS score (see Table 2).

The variant of using two encoders may predict an incor-
rect class label and thus produce wrong images. As shown
in the first example of Fig. 6(d), the model predicts the
bird as jack-o-lanterns so that the generated image is in-
correct. This variant achieves the highest IS score and the
lowest classification accuracy, indicating that the high IS
score does not come from high quality but the unexpected
abnormal diversity.

Compared with the non-conditional encoders, our pro-
posed conditional encoder can learn a better mapping from
the input sketch to the latent space, so the generated im-
ages are more faithful to the input sketches. Moreover, un-
like previous GAN inversion works, our method allows the
users to assign a specific class during generation, which is
especially helpful when an input sketch is ambiguous.
Effect of Shape Loss. The shape loss is proposed to con-
strain the shape of the objects in generated images to be
aligned with the input sketches. Figure 6(e) and (f) show
the effectiveness of the shape loss. We can observe that the
model trained with the shape loss can generate images being
more faithful to the sketches in the shape and orientation. If
without the shape loss, the model tends to generate objects
with incorrect shapes, e.g., the head of the horse is missing.
Quantitative results in Table 3 suggest that the shape loss
can improve the model’s performance in all aspects, includ-
ing the realism, diversity, and faithfulness.
Comparison of Different Training Strategies. Our pro-
posed model, SketchInverter, is trained on the synthetic
dataset and tested on the real dataset. We wonder if includ-
ing real data during the training process can further improve
the model’s performance. We compare three training strate-
gies which have been introduced in Sec. 3.5. The Sketchy

Table 3. Comparison of training with and without shape loss. The
supervision of shape loss improves realism and diversity of results.

FID↓ KID↓ IS↑ LPIPS↓
w/o shape loss 60.04 0.013 9.37 0.62

Ours 56.71 0.012 9.63 0.55

Table 4. Comparison of different training strategies.
FID↓ KID↓ IS↑ LPIPS↓ Acc↑

Synthetic data only 56.71 0.012 9.63 0.55 0.988
Finetune on real data 58.58 0.014 8.95 0.51 0.982

Mixed 57.03 0.011 9.65 0.53 0.991

database is used as the real data for demonstration.
Table 4 compares the performance of different training

strategies. Compared to training on synthetic data only,
the strategy of finetuning on real data performs the best on
LPIPS, indicating that the real data can enhance the faith-
fulness to the target images in the Sketchy database As
shown in Fig. 6(g), the horse’s color and the bird’s back-
ground are closer to the ground truth (Fig. 6(b). However,
due to the catastrophic forgetting phenomenon, finetuning
on a smaller dataset leads to lower FID, KID, and IS scores.
The strategy of training on mixed synthetic and real data
achieves the best results on Acc, KID, and IS, indicating
that this strategy can improve image quality and diversity.
Figure 6(h) shows some results of this strategy. For exam-
ple, the dog in the second row is more realistic and consis-
tent to the ground-truth photo than others.

SketchInverter exhibits outstanding generalization abil-
ity to real data. Note that the strategy, i.e., training only
on the synthetic dataset, performs comparatively well com-
pared to the other two, which require real paired data dur-
ing training. The experimental results suggest that training
or finetuning on real data does not bring many benefits for
image quality or diversity.

5. Conclusion

This paper has proposed the first GAN inversion-based
framework for multi-class sketch-based image generation,
which can generate images of high fidelity, realism, and di-
versity. This framework can significantly reduce the domain
gap by using the prior knowledge of the pretrained image
generator. A novel conditional encoder has been designed
and developed to map the sketch to a latent space with a
pre-assigned class label. We have also proposed a synthetic
dataset and explored different training strategies to address
the issue that paired sketch-photo data is limited.
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[5] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and
Arthur Gretton. Demystifying mmd gans. arXiv preprint
arXiv:1801.01401, 2018.

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018.

[7] Jiaxin Chen and Yi Fang. Deep cross-modality adaptation via
semantics preserving adversarial learning for sketch-based
3d shape retrieval. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 605–620, 2018.

[8] Shu-Yu Chen, Wanchao Su, Lin Gao, Shihong Xia, and
Hongbo Fu. Deepfacedrawing: Deep generation of face im-
ages from sketches. ACM Transactions on Graphics (TOG),
39(4):72–1, 2020.

[9] Tao Chen, Ming-Ming Cheng, Ping Tan, Ariel Shamir, and
Shi-Min Hu. Sketch2photo: internet image montage. In
ACM Transactions on Graphics (TOG), 2009.

[10] Wengling Chen and James Hays. Sketchygan: Towards di-
verse and realistic sketch to image synthesis. In CVPR, 2018.

[11] Antonia Creswell and Anil Anthony Bharath. Inverting the
generator of a generative adversarial network. IEEE transac-
tions on neural networks and learning systems, 30(7):1967–
1974, 2018.

[12] Guoxian Dai, Jin Xie, Fan Zhu, and Yi Fang. Deep cor-
related metric learning for sketch-based 3d shape retrieval.
In Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[13] Harm De Vries, Florian Strub, Jérémie Mary, Hugo
Larochelle, Olivier Pietquin, and Aaron C Courville. Mod-
ulating early visual processing by language. Advances in
Neural Information Processing Systems, 30, 2017.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[15] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kud-
lur. A learned representation for artistic style. arXiv preprint
arXiv:1610.07629, 2016.

[16] M. Eitz, K. Hildebrand, T. Boubekeur, and M. Alexa. An
evaluation of descriptors for large-scale image retrieval from
sketched feature lines. Computers & Graphics, 34(5):482–
498, 2010.

[17] Mathias Eitz, Ronald Richter, Kristian Hildebrand, Tamy
Boubekeur, and Marc Alexa. Photosketcher: interactive
sketch-based image synthesis. IEEE Computer Graphics and
Applications, 2011.

[18] Chengying Gao, Qi Liu, Qi Xu, Limin Wang, Jianzhuang
Liu, and Changqing Zou. Sketchycoco: Image gener-
ation from freehand scene sketches. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 5174–5183, 2020.

[19] Arnab Ghosh, Richard Zhang, Puneet K Dokania, Oliver
Wang, Alexei A Efros, Philip HS Torr, and Eli Shechtman.
Interactive sketch & fill: Multiclass sketch-to-image transla-
tion. In CVPR, 2019.

[20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, pages 2672–2680,
2014.

[21] Shanyan Guan, Ying Tai, Bingbing Ni, Feida Zhu, Feiyue
Huang, and Xiaokang Yang. Collaborative learning for faster
stylegan embedding. arXiv preprint arXiv:2007.01758,
2020.

[22] Xiaoguang Han, Chang Gao, and Yizhou Yu. Deeps-
ketch2face: a deep learning based sketching system for 3d
face and caricature modeling. ACM Transactions on graph-
ics (TOG), 36(4):1–12, 2017.

[23] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017.

[24] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1125–
1134, 2017.

[25] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694–711.
Springer, 2016.

[26] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4401–4410, 2019.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25:1097–1105, 2012.

[29] Mengtian Li, Zhe Lin, Radomı́r Mˇ ech, Ersin Yumer, and
Deva Ramanan. Photo-sketching: Inferring contour draw-
ings from images. In WACV, 2019.

4327



[30] Yuhang Li, Xuejin Chen, Binxin Yang, Zihan Chen, Zhi-
hua Cheng, and Zheng-Jun Zha. Deepfacepencil: Creat-
ing face images from freehand sketches. In Proceedings of
the 28th ACM International Conference on Multimedia, MM
’20, New York, NY, USA, 2020. ACM.

[31] Zachary C Lipton and Subarna Tripathi. Precise recovery of
latent vectors from generative adversarial networks. arXiv
preprint arXiv:1702.04782, 2017.

[32] Fang Liu, Changqing Zou, Xiaoming Deng, Ran Zuo, Yu-
Kun Lai, Cuixia Ma, Yong-Jin Liu, and Hongan Wang.
Scenesketcher: Fine-grained image retrieval with scene
sketches. In European Conference on Computer Vision,
pages 718–734. Springer, 2020.

[33] Runtao Liu, Qian Yu, and Stella X Yu. Unsupervised sketch
to photo synthesis. In European Conference on Computer
Vision, pages 36–52. Springer, 2020.

[34] Yongyi Lu, Shangzhe Wu, Yu-Wing Tai, and Chi-Keung
Tang. Image generation from sketch constraint using con-
textual gan. In ECCV, 2018.

[35] Zhaoliang Lun, Matheus Gadelha, Evangelos Kalogerakis,
Subhransu Maji, and Rui Wang. 3d shape reconstruction
from sketches via multi-view convolutional networks. In
2017 International Conference on 3D Vision (3DV), pages
67–77. IEEE, 2017.

[36] Fangchang Ma, Ulas Ayaz, and Sertac Karaman. Invertibility
of convolutional generative networks from partial measure-
ments. Advances in Neural Information Processing Systems,
31, 2018.

[37] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[38] Guim Perarnau, Joost Van De Weijer, Bogdan Raducanu, and
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