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Abstract

Research on unsupervised anomaly detection (AD) has
recently progressed, significantly increasing detection ac-
curacy. This paper focuses on texture images and considers
how few normal samples are needed for accurate AD. We
first highlight the critical nature of the problem that previ-
ous studies have overlooked: accurate detection gets harder
for anisotropic textures when image orientations are not
aligned between inputs and normal samples. We then pro-
pose a zero-shot method, which detects anomalies without
using a normal sample. The method is free from the issue
of unaligned orientation between input and normal images.
It assumes the input texture to be homogeneous, detecting
image regions that break the homogeneity as anomalies.
We present a quantitative criterion to judge whether this
assumption holds for an input texture. Experimental results
show the broad applicability of the proposed zero-shot
method and its good performance comparable to or even
higher than the state-of-the-art methods using hundreds
of normal samples. The code and data are available from
https://drive.google.com/drive/folders/
10OyPzvI3H6llCZBxKxFlKWt1Pw1tkMK1.

1. Introduction
In this paper, we consider the problem of detecting

anomalies of a texture from its image. As it is an important
problem that frequently occurs in industry, there have been
many studies in computer vision [19, 15]. Recent studies
formulate it as a problem of unsupervised learning based on
real-world requirements. Specifically, assuming the avail-
ability of a certain amount of normal images, we wish to
detect anomalies that were unseen before.

After some trials were conducted [19, 14], it was re-
cently found to be effective to use the intermediate fea-
tures of CNNs (or ViT [10]) pre-trained on ImageNet.
Using them with simple distance-based classifier [6, 16,
7, 17] outperforms other approaches by a large margin,
e.g., reconstruction-based methods using autoencoders etc.
[1, 3, 8]. This ‘rediscovery’ of the off-the-shelf visual fea-

Figure 1. Examples of texture images from the MVTec AD
datasets [1] and their anomaly scores computed by the proposed
zero-shot method.

tures has pushed the detection performance on MVTec AD
[1], a standard benchmark dataset for anomaly detection, to
nearly perfect detection accuracy. Therefore, anomaly de-
tection (AD) research will be shifting its target to more chal-
lenging problems. One of the possible research directions is
few-shot AD, i.e., detecting anomalies in the condition that
only a few normal images are available.

In this paper, we consider how few normal samples are
needed for accurate texture AD. We first highlight the crit-
ical nature of the problem that previous studies have over-
looked. Namely, AD gets more challenging when the in-
put texture is anisotropic (i.e., having an oriented pattern)
and when the orientations of input and normal images are
not aligned. Its impact is more significant in fewer-shot
settings. There are multiple solutions, e.g., increasing the
number of normal samples or aligning the image orienta-
tion. The latter strategy is employed in a recent study of
few-shot AD [12]; however, it raises another difficulty of
aligning the orientation of the images.

We next propose a zero-shot method, which detects tex-
ture anomaly without using a normal sample. As it does not
compare the input with any normal sample, it is free from
the above issue with image orientation. The method uses
the same pre-trained CNN features as the existing anomaly
detection methods mentioned above.

Why is zero-shot AD feasible? Considering that AD is
to find images/regions that are different from normal sam-
ples, it seems impossible to do it without knowing what is
normal. The answer is that our method solves it by con-
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verting it into another problem. Namely, it detects an image
region that breaks the homogeneity of the input image. This
principle may be analogous to how humans detect anoma-
lies from only a single image without much effort; see the
images of Fig. 1. An underlying assumption is that the in-
put textures, if anomaly-free, have a certain level of homo-
geneity in their local appearance. We propose a quantitative
criterion to check if this assumption holds for an input tex-
ture. It enables us to judge the effectiveness of the proposed
zero-shot AD method in advance.

We report the results of experiments conducted to ver-
ify our approach. They show that the proposed zero-shot
method achieves an average image-level AUROC of 99.6%
over the five textures in MVTec AD. This performance is
comparable to PatchCore [17], the SOTA method for the
dataset, which achieves 99.0% (AUROC) over the same five
textures when using hundreds of normal images; its per-
formance decreases to 93.0% in a five-shot setting. For
more detailed analysis, we create a dataset named DTD-
Synthetic by borrowing diverse texture images from DTD
(Describable Texture Dataset) [5] and synthesizing diverse
anomalous patterns. The results verify the above argu-
ment on texture orientation. They show that our zero-shot
method achieves a detection accuracy comparable to Patch-
Core in a 100-shot setting, i.e., image-level AUROC 98.9%
vs. 98.0%. We also show the results on the Aitex fabrics
datasets [21] and DAGM2007 [22], which also verify the
effectiveness of our approach.

2. Related Work
The problem of detecting anomalies from images has a

long history of research [4, 19, 14]. Due to lack of space,
we consider only recent studies of unsupervised AD here.
The recent studies can be classified in terms of two factors.
One is how to extract features from input images. The other
is how to represent normal samples in the space of the ex-
tracted features to identify anomalies.

There are two approaches to the first factor, feature ex-
traction. One is to learn to extract features fit for AD.
It may further be divided into reconstruction-based meth-
ods [20, 3, 8] and methods based on self-supervised and/or
metric-learning [2, 13]. These methods usually need a cer-
tain amount of normal samples for training. The other ap-
proach employs the features of pre-trained networks [6, 16,
7, 17]. It does not need training on normal samples, so it is
more fit for few-shot AD.

There are also several approaches to the second factor,
i.e., how to represent normal samples. The simplest is the
gallery-based approach, which constructs a gallery of nor-
mal samples in the feature space, and computes the distance
from each input to its nearest neighbor(s) in the gallery to
detect anomalies. Another approach uses a parametric dis-
tribution like a Gaussian distribution to model the distribu-

tion of normal samples in the feature space [7]. Some stud-
ies use more flexible model like normalizing flow to repre-
sent the normal samples’ distribution [18, 23, 11]. These
methods use the distribution to detect anomalies, e.g., by
computing and thresholding the probability that the input is
normal. Others employ a teacher-student framework [2, 9],
in which a teacher network is distilled to student network(s)
with its response to normal samples. They judge whether
an input is normal by checking the consistency in behavior
between the teacher and students.

While all these methods attain good accuracy in the stan-
dard benchmark, such as MVTec AD [1], the gallery-based
methods are the fittest for few-shot settings. The others need
a certain amount of normal samples to represent normal
samples’ distribution accurately. The representative meth-
ods of the gallery-based methods are SPADE [6] and Patch-
Core [17]. They employ pre-trained CNN features (or ViT
[10]) for the feature extraction. Thus, they are training-
free and ready to be applied to few-shot settings. We will
consider PatchCore, which achieves state-of-the-art perfor-
mance on the MVTec AD dataset, for comparison with our
zero-shot method.

As far as the authors know, there are only a few studies
considering unsupervised AD in few-shot settings [12, 17].
RegAD [12] is designed for the few-shot AD; it geometri-
cally transforms input images into a canonical pose to cope
with the difficulties specific to few-shot AD. We may regard
it as a solution to cope with the above issue of unaligned
image orientations. The present study proposes a zero-shot
method as another solution. It is noteworthy that RegAD
does not necessarily perform better than PatchCore in few-
shot settings, as will be seen later.

3. Anomaly Detection with Anisotropic Tex-
ture

As mentioned above, the gallery-based methods are
ready in principle to be applied to few-shot AD. In fact,
they achieve fairly good performance, especially for tex-
tures. However, there are some complexities in their behav-
ior.

Table 1 shows the results of few-shot AD by PatchCore
for the five MVTec AD textures. We can see that the few-
shot detection accuracy varies greatly among these textures.
As compared with the case of using all available samples,
few-shot accuracy deteriorates significantly for grid and
modestly for wood, respectively. On the other hand, it de-
creases only slightly for carpet and tile; there is even no
change (i.e., 100% for 1-shot) for leather. What leads to
such differences?

There are a few factors leading to these differences. The
most vital one is the isotropy of textures, i.e., whether or not
a texture has an orientation. For the MVTec AD textures,
carpet, grid, and wood are anisotropic, whereas leather and
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Table 1. Performance (image-level AUROC) of PatchCore [17] on
five textures (see Fig. 1) of MVTec AD [1] in few-shot settings.

Num. of Shots 1 5 10 100 All
carpet 98.6 98.7 98.6 98.8 98.6
grid 52.3 69.5 82.7 96.6 97.3

leather 100 100 100 100 100
tile 98.4 98.5 98.6 98.6 98.9

wood 98.3 98.6 98.6 98.8 99.4

tile are isotropic, or only slightly anisotropic. See Fig. 1 for
examples of the five textures.

This difference in isotropy causes the above differ-
ences in few-shot performance. For example, suppose an
anisotropic texture like grid. If its input image has a dif-
ferent orientation from the normal samples, its local re-
gions will have different features from any stored ones in
the gallery. Then, the gallery-based methods will classify
every local region wrongly as anomalous even when it is
not.

Even in that case, when the normal samples have di-
verse orientations, one of them may happen to have a sim-
ilar orientation to the input. If so, the gallery-based meth-
ods can classify the input correctly. Assuming that the nor-
mal samples’ orientations are random, the chance of finding
a normal sample having a similar orientation will increase
with the growing number of normal samples. This analysis
agrees well with the results for grid; the accuracy increases
with the number of shots (i.e., normal samples). This also
holds for wood, while it is less significant.

However, this explanation does not hold for carpet;
while it is an anisotropic texture, few-shot cases achieve
similar accuracy to the case of all samples. Why? It is
because that carpet’s samples in the dataset are aligned to
have the same orientation. Since test samples have similar
features to normal samples, the accuracy of few-shot (even
one-shot) detection is good.

Note that the above is a fundamental issue with unsuper-
vised AD; it will similarly affect other types of methods,
while we use the gallery-based methods for the explana-
tion. Furthermore, although it is more noticeable in few-
shot settings, it can affect the performance in many-shot set-
tings depending on conditions (e.g., the strength of texture
anisotropy, average difference in image orientation, and the
number of normal samples).

4. Zero-shot Anomaly Detection
We next present a zero-shot method for texture AD. As

it does not use a normal sample, it is free from the above
issue of texture orientation.

4.1. Revisiting State-of-the-art AD Methods

Before explaining our method, we revisit the gallery-
based methods for unsupervised AD, including SPADE [6]

and PatchCore [17]. Assuming a set of normal images,
D = {xn}n=1,...,N , these methods use distances to each
sample in D measured in the feature space to judge whether
an input x includes anomaly or not. For the image feature,
most of them employ local image features extracted from x
using a pre-trained network (e.g., ResNet-50 or ViT [10]).

More details are as follows. Let f l
ij ∈ RCl

be the vec-
tor comprising the l-th layer activation having the shape
W l×H l×Cl at its spatial coordinate (i, j) (i = 1, . . . ,W l,
j = 1 . . . , H l). Existing methods use the concatenation
of different layer features to form a feature vector fij at
(i, j). PatchCore further employ locally aware patch fea-
tures instead of the original layer features. Choosing rela-
tively lower layers for extracting feature fij , it applies local
average pooling with s×s to them to obtain pooled features,
which are used as fij’s.

Then, they create the gallery G of normal image features,
i.e., the set of f l

ij’s of normal images. SPADE creates G
on demand for an input image x by finding several nearest
images to x in D. PatchCore finds the core-set of normal
image features in an offline manner and creates G. To detect
anomaly for a given image x, SPADE and PatchCore extract
{fij} for x and search for the nearest neighbor f to fij at
each (i, j) in G. If their distance ∥f − fij∥2 is higher than
a pre-defined threshold, x is judged to contain an anomaly
at (i, j).

4.2. Proposed Zero-shot Method

Outline of the Method Now we consider detecting an
anomaly in a zero-shot manner from an image of textures.
As explained in Sec. 1, we reformulate the problem as fol-
lows: we regard the image as anomalous if there is any re-
gion that appears differently from others, and normal oth-
erwise. This is also restated as: whether the texture in the
image is homogeneous. Strictly, this formulation is only ef-
fective for image-level anomaly detection, i.e., detecting if
the input image is anomalous as it contains an anomalous
region. However, this will be applicable to pixel-level de-
tection under a mild assumption, as will be discussed later.

To perform the above judgment for an input image x, we
extract features fij from it using a pre-trained CNN as in
the above methods; the details will be given later. Then,
we consider evaluating how similar the features fij’s at dif-
ferent image points (i, j)’s are. Among several candidate
methods for doing this, we consider judging if the feature
fij at each image point (i, j) has many similar features at
other image points. To do this, we create a feature gallery
G as

G = {fij | i = 1, . . . ,W l, j = 1, . . . ,H l}. (1)

Note that G could contain anomalous vectors here unlike
the above. Now, to conduct the above judgment, we com-
pute the average distance dij from fij to its K nearest
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neighbors in G as

dij =
1

K

∑
f∈Np(fij)

dist(fij , f), (2)

where Np(fij) is the K nearest neighbors. Then, if there
exists (i, j) such that dij is large, the image x is anomalous;
otherwise, it is anomaly-free (i.e., homogeneous).

Pixel-level Anomaly Detection The above method is de-
signed for image-level anomaly detection, which suffices
for most real-world applications. However, under a mild
assumption, the same method can also be used for pixel-
level anomaly detection. The assumption is that normal
regions are the majority and the anomalous ones are the
minority. It holds in most practical cases, as shown in our
experiments. Then, we can use dij defined above directly
as an ‘anomaly score’ of the local region at (i, j), imme-
diately enabling pixel-level anomaly detection. Note that
even when the assumption does not hold, our method can
still perform image-level detection correctly; this is the case
even when anomalous regions dominate an image since our
method judges the texture homogeneity of the input image.

Details of Feature Extraction The details of extracting fij
from x is as follows. Selecting a single layer l, we extract
its activation of size W l ×H l × Cl. Following PatchCore,
we apply the local average pooling to it. We then obtain the
feature vectors {fij} (i = 1, . . . ,W l, j = 1, . . . ,H l). It
should be noted that unlike the above methods, we do not
apply any dimensionality reduction to the feature vectors.
It is not necessary in our case since the size of gallery G is
small and thus the computational cost with searching over
G is small as well.

As with other standard CNNs, the employed CNN per-
form zero-padding at each convolution layer. This makes
the feature vectors fij’s at the image boundary dissimilar
to the rest of the feature vectors even when the textures are
similar. This could results in judging the image periphery to
be anomalous even if it is not. To cope with this, we follow
the existing methods and apply center-crop to the anomaly
score map. We can specify its size based on the size of the
receptive field for the convolution filter at layer l. Note that
the existing methods employ center cropping as well. Due
to the nature of zero-shot detection, our method tends to
need a crop of slightly smaller center region. Note also that
this procedure may not be necessary when we employ ViT.

We then resize dij to match the original resolution of
the input image x using bilinear interpolation. We option-
ally apply Gaussian filtering to the resized map to remove
noises. Let d̄ij (i = 1 . . . ,W, j = 1, . . . ,H) be the re-
sulting map. We judge whether a pixel (i, j) is anomalous
or not by simply comparing d̄ij with a threshold. Chang-
ing this threshold, we obtain a ROC curve, from which we
compute image-level and pixel-level AUROC.

4.3. Predicting Applicability of the Method

As explained above, our method judges the homogene-
ity of an input texture. An underlying assumption is that
the input texture is homogeneous if it is anomaly-free. In
other words, our method is only applicable to textures that
meet the assumption. Therefore, it will be ideal if we can
judge the method’s applicability in advance for individual
textures.

We propose to use the maximum of the anomaly scores
computed for each image, i.e.,

α(I) ≡ max
1≤i≤W,1≤j≤H

d̄ij , (3)

where I is an input image. Concretely, assuming we are
given an anomaly-free image I of the texture of interest, we
compute α(I) and compare it with a pre-defined threshold.
We judge that the method can detect anomalies reliably if
α(I) is lower than the threshold. We will show the effec-
tiveness of this criterion in Sec. 5.5.

The quantity α(I) captures a kind of homogeneity of
the brightness structure of I . Roughly speaking, if α(I)
is small, then I will look similar locally at any image loca-
tion, and vice versa. Then, α(I) will be large for images of
objects, such as those contained in MVTec AD, and it will
be small for many texture images. More precisely, α(I) will
be small for textures with homogeneous random structure or
with a small-scale repetitive structure. For the latter, even
if the texture has a precise repetitive structure, α(I) will be
large when I is a close-up of the texture, in other words,
when the structure repeats for only a few counts in I . These
agree well with how and why the proposed method works,
underwriting the effectiveness of α(I).

However, we must use the above criterion with some
consideration. First, since we employ a ReLU network for
feature extraction, when we multiply the image brightness
of I by a scalar a, all the feature vectors and thus their dis-
tances will automatically be multiplied by a, assuming the
network is bias-free. This highlights the importance of the
normalization of input images. We employ the same nor-
malization method as the previous studies, which use the
mean and variance of brightness over the training split of
the dataset. In addition, while our method detects anoma-
lies by thresholding the anomaly score d̄ij , we judge the
method’s applicability by thresholding the maximum α(I).
This means that the criterion implicitly assumes that the
scores of the anomalies should lie in a specific range. We
leave the validation of these to the experiments in Sec. 5.5.

5. Experimental Results
5.1. Experimental Settings

Network and Hyperparameters Following previous
studies [6, 7, 17], we choose WideResnet-50-2 [24] pre-
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trained on ImageNet for feature extraction. Following
PatchCore, we choose a relatively lower layer for extract-
ing features; specifically, we choose the output from the
second block of the four in total. Following the previous
studies, we first resize the input images to a fixed resolu-
tion. Considering the above effects of zero-padding at the
image boundaries, we resize the images into slightly higher
resolution (i.e., 320 × 320) than the previous studies (i.e.,
256 × 256). Then, the resolution for the chosen layer is
40 × 40. As a result, the feature gallery G contains 1,600
vectors of size 512. They are locally average-pooled with
patch size 3× 3 (s = 3).

We then calculate the anomaly score map for the layer
according to Eq. (2). For K, the number of the nearest
neighbors in the gallery, we set K = 400. As long as K
is large, the results are not sensitive to its choice. See the
supplementary material for detailed analysis. We resize the
computed anomaly score map to the input size, i.e., 320 ×
320. After applying a Gaussian filter with σ = 4, we center-
crop the anomaly score map with size 256 × 256, which is
the final output of our method.

It should be noted that the previous studies choose 256×
256 for the input size and 224 × 224 for the center crop,
whereas ours are 320×320 and 256×256, respectively. We
choose the configuration to cope with the boundary effect
that are more severe with the zero-shot setting, as mentioned
above. As with previous studies, we apply the same resize
and center-crop to the ground truth detection masks, which
makes our evaluation slightly different from the previous
studies. To make fair comparisons, we evaluate the perfor-
mance of SPADE and PatchCore in the same settings in our
experiments. We follow the original papers for their hy-
perparameters. We choose 25% for the memory bank sub-
sampling level in PatchCore throughout the experiments.

Metrics of Detection Accuracy We follow the previous
studies to evaluate image-level and pixel-level detection ac-
curacy. They are measured by AUROC of the detection of
anomalous images and pixels, respectively. We consider
the image-level AUROC for the primary metric to evalu-
ate methods since it will be more important from a practical
point of view. Considering the size of input images is rel-
atively small, practitioners will find it more essential to be
able to accurately detect images containing anomalies than
to segment anomalous pixels inside images.

5.2. Datasets

Existing Datasets We use the five texture classes in the
MVTec AD dataset [1] (Sec. 5.3). There are about 240 nor-
mal sample images for each class, whose resolution ranges
from 700×700 to 1, 024×1, 024 pixels. We resize each im-
age into 320×320 pixels and crop its center with 256×256
pixels for anomaly detection and its evaluation, as explained
above. We also test our approach on the Aitex fabrics

dataset [21] and the DAGM2007 dataset [22] (Sec. 5.6).

DTD-Synthetic To verify our arguments in Sec. 3 and test
the proposed zero-shot method on more diverse data, we
create a new dataset. We choose DTD (Describable Texture
Dataset) [5], which were created for the research of texture
classification, because of its diversity of textures. Borrow-
ing the images of DTD, we synthesize texture images with
anomalies. We call the dataset DTD-Synthetic in what fol-
lows.

DTD consists of 47 texture classes, each of which in-
cludes 120 different texture images, and thus 5,640 dif-
ferent texture images in total. We choose twelve images
from them that are fit for the purpose here. Their resolution
ranges from 300× 300 to 640× 640 pixels. To confirm our
argument on texture orientation, we generate multiple im-
ages by cropping a square region of 60% width and height
from the original image with a random orientation and po-
sition; see Fig. 2. This also simulates the image acquisition
at factories etc. well. Thus, the resulting images for each
texture have the size ranging from 180× 180 to 384× 384
depending on their original image.

We then synthesize anomalous patterns in these images,
as shown in Fig. 2. We consider five types of anomalous
patterns, i.e., line, color, size, bend, and shape, to simulate
industrial inspection scenarios following MVTec AD. For
each image, choosing one of the five class randomly, we
draw a single instance of synthesized anomalies into a ran-
dom position of a normal image generated as above 1.

We classify the chosen twelve textures into the follow-
ing three categories. Each category contains four different
textures.

Category-1: Anisotropic textures having a repetitive
structure with perfect regularity. They are similar to grid
in MVTec AD and are often found on the surfaces of man-
made objects made of hard materials.

Category-2: Anisotropic textures having a repetitive
structure with some irregularity. They are similar to car-
pet and wood in MVTec AD and are usually found on tex-
tiles and surfaces of natural objects.

Category-3: Isotropic textures without obvious repeti-
tive patterns. They are similar to tile and leather of
MVTec AD; they do not have a clear repetitive structure.
Their local structure is identical at any position and orienta-
tion.

There are 12 textures in total. For each of them, we gen-
erate 100 train (i.e., anomaly-free) images and over 100 test
images. The latter contains about 80 anomaly images and
20 or more normal sample images. Details are shown in the

1The dataset is downloadable from:
https://drive.google.com/drive/folders/
10OyPzvI3H6llCZBxKxFlKWt1Pw1tkMK1.
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Figure 2. Method for creating normal and anomalous texture images of DTD-Synthetic. For a selected image from DTD, a square region
with its 60% size is cropped with random positions and orientations. Then, five classes of synthesized anomalous patterns (i.e., line, color,
size, bend, and shape) are drawn into a random position of the cropped images.

supplementary materials. Note that the proposed zero-shot
method does not need the train images.

5.3. Results on MVTec AD

We first show the performance of our zero-shot method
on the five textures of MVTec AD. Table 2 shows its image-
level AUROC along with those of SPADE, PatchCore, and
RegAD. It can be seen that our method achieves good per-
formance for any texture, which is comparable to the SOTA
methods, without a single normal sample image. It is note-
worthy that RegAD, a method dedicated for few-shot set-
tings, does not necessarily perform better than PatchCore
in similar settings. (It should be noted that the results for
ours, SPADE, and Patchcore are obtained in the same ex-
perimental settings and those for RegAD in slightly differ-
ent settings.)

As mentioned in Sec. 3, PatchCore (and SPADE) shows
lower performance for grid and wood in few-shot settings.
Using more shots leads to better performance. It is interest-
ing that RegAD shows a similar behavior for grid. As we
stated earlier, the behavior is attributable to the misalign-
ment in orientation between the input and the normal im-
ages. Our method is free of this misalignment issue, leading
to better performance.

5.4. Results on DTD-Synthetic

For further verification, we test our method and others
on DTD-Synthetic. (We choose PatchCore for comparison.)
Table 3 shows the detection accuracy in the image-level and
pixel-level AUROC. Figure 3 shows example pairs of an
input image and its anomaly score map for the twelve tex-
tures. The method achieves over 97.2% image-level AU-
ROC for all 12 textures and 100% for 5 textures.

We then compare our zero-shot method with SPADE and
PatchCore. To test their performanace in few-shot settings,
we change the number of normal sample images from one
to 100. Figure 4 show PatchCore’s image-level AUROC vs.
the number of available normal images for the three texture
categories. Note that ours is a zero-shot method and thus its
accuracy is constant with the horizontal axis.

Overall, our method performs better than PatchCore
even with 100 normal images; specifically, the average

image-level AUROC over the twelve textures is 98.9%
(ours) vs. 98.0% (PatchCore with 100-shots). More de-
tailed observation is as follows.

First, the Category-1 textures are the most difficult in
the three categories for the both methods. Our method at-
tains AUROC between 97.2 and 98.9%. This is much better
than PatchCore in few(≤ 5)-shot settings, whose accuracy is
lower than 80% except for perforated 037. PatchCore with
100 normal images is still worse than our zero-shot method
for three out of four textures.

We can see that PatchCore’s accuracy deteriorates with
the number of shots, similar to grid in MVTec AD. As with
grid, the textures in this category are all anisotropic and
their images have random orientation. These results agree
well with our argument of texture orientation in Sec. 3.

The proposed method achieves high accuracy (> 98.6%)
also for the Category-2 textures. PatchCore is worse than
ours in the few-shot settings; its accuracy is low (< 90%)
especially for woven 068 and woven 104. As in Category-
1, PatchCore with 100 normal images is also worse than
our zero-shot method except for woven 125 in which both
method produce AUROC of 100%. As with Category-1, the
textures in this category are anisotropic and have random
orientations.

On the other hand, the proposed method and PatchCore
both attain high accuracy for the Category-3 textures. (Note
the range of the vertical axis of the plot.) It is noteworthy
that PatchCore attains 100% accuracy in the 1-shot setting
for blotcy 099, which is the same as our method. These
results further verify our argument. The textures in this cat-
egory are isotropic (or do not show clear anisotropy). Thus,
texture orientation does not matter since there is no orienta-
tion. These results further support our argument.

An additional remark is that our method shows worse
performance for fiborous 183 than other three textures,
while it is still better than PatchCore in few-shot settings.
This will be because of the relatively higher irregularity
of the texture. As seen from the example in Fig. 3, fi-
borous 183 is less homogeneous from others. We will dis-
cuss the applicability of our method.
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Table 2. Performance (image-level AUROC) on five textures of MVTec AD of our proposed zero-shot method, SPADE [6], PatchCore[17],
and RegAD[12] with different numbers of normal images. † indicates the accuracy reported in the papers.

Method Ours SPADE PatchCore RegAD
Num. of Shots 0 1 5 10 100 All All† 1 5 10 100 All All† 2† 4† 8†

average 99.6 79.0 79.8 81.0 83.2 85.4 - 89.5 93.0 95.7 98.5 98.8 99.0 94.7 96.6 97.4
carpet 99.9 82.6 85.7 85.5 86.7 87.3 - 98.6 98.7 98.6 98.8 98.6 98.7 96.5 97.9 98.5
grid 100 40.9 43.5 45.2 48.8 56.9 - 52.3 69.5 82.7 96.6 97.3 98.2 84.0 91.2 91.5

leather 100 86.3 83.1 86.3 88.6 90.3 - 100 100 100 100 100 100 99.4 100 100
tile 99.1 91.0 93.4 92.4 94.9 95.5 - 98.4 98.5 98.6 98.6 98.9 98.7 94.3 95.5 97.4

wood 98.9 94.1 93.2 95.4 97.2 97.0 - 98.3 98.6 98.6 98.8 99.4 99.2 99.2 98.6 99.4

Figure 3. Example results of the proposed zero-shot method on the DTD-Synthetic dataset. Each pair shows the input image and the
anomaly score map.

Table 3. Detection accuracy (AUROC) of the proposed zero-shot
method on the DTD-Synthetic dataset.

Cat. Class Image AUROC Pixel AUROC
All class 98.9 98.0

Cat. average 98.0 96.8
Mesh 114 98.0 97.3

1 Perforated 037 98.9 97.4
Woven 001 97.9 99.5
Woven 127 97.2 93.0

Cat. average 99.3 98.4
Stratified 154 100 99.2

2 Woven 068 98.6 98.3
Woven 104 98.6 97.1
Woven 125 100 98.9

Cat. average 99.5 98.9
Blotchy 099 100 99.2

3 Fibrous 183 97.8 98.3
Matted 069 100.0 99.3

Marbled 078 100.0 98.9

5.5. Predicting the Method’s Applicability

As explained in Sec. 4.3, we propose to use α(I) of Eq.
(3) for predicting the applicability of the proposed zero-shot
method for an anomaly-free image I of the target texture.
To test its effectiveness, we apply the method to the images
of MVTec AD and DTD. For MVTec AD, we choose the
first image from the training splits of each of all the cate-
gories, including five textures and ten objects. For DTD,
we use the twelve textures comprising DTD-Synthetic and

additional textures from the rest of DTD textures.
Figure 5 shows the quantity α(I) vs. the image-level

AUROC for each texture. It is observed that there exists
fairly strong correlation between the two axes. The accu-
racy is very high for all the five textures of MVTec AD, as
is reported above, whereas it is very low for all the ten ob-
ject textures. For DTD textures, α(I) distributes in a wide
range, which well match the spread of their detection ac-
curacy. We show some of the DTD textures for which the
accuracy is low and α(I) is high in the supplementary ma-
terial. Although they are called textures, they have consid-
erably different brightness structures from those considered
in anomaly detection scenario. We can also observe from
Fig. 5 that the detection accuracy is close to 100% for the
textures with α(I) lower than 1.5. Thus, it will be reason-
able to use the value for the threshold to judge the method’s
applicability.

5.6. Results on Other Datasets

We show more results on other datasets to demonstrate
how the above strategy works. We choose Aitex fabrics im-
ages [21] and DAGM2007 [22] here. The former consist
of 245 images of seven types of fabric. Following previous
studies, we split each image with a long horizontal into mul-
tiple images and then resize them into 320×320. We use all
the textures since they satisfy the criterion α(I) ≤ 1.5. The
latter (i.e., DAGM2007) contains ten classes of texture im-
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Figure 4. Detection accuracy (image-level AUROC) on DTD-Synthetic by the proposed method (solid lines) and PatchCore (dotted lines)
with different numbers N of normal images. As our method does not use a normal image, accuracy does not change with N . Some results
from the proposed method (solid lines) are overlapping with each other as the AUROC achieved is close to 100%.

Figure 5. Image-level AUROC vs. maximum value of the anomaly
score α(I) on MVTec AD and DTD-Synthetic datasets.

ages with artificially synthesized anomalies. We resize the
original image with 512 × 512 into 320 × 320. We choose
seven textures that satisfy the criterion; it is noted that α(I)
is around 1.5 for six of them. Table 4 shows the results for
Aitex and 5 shows those for DAGM2007. Our zero-shot
method works reasonably well; it outperforms PatchCore in
few-shot settings for Aitex and in 100-shot for DAGM2007.

Table 4. Results (Image level AUROC (%))) on Aitex.
Methods 00 01 02 03 04 05 06

Ours 93.9 100 96.3 96.1 100 100 100
PC-1shot 90.2 100 85.4 91.7 93.3 100 97.7
PC-5shot 91.7 100 91.3 92.6 97.8 100 99.4

Table 5. Results (Image level AUROC (%))) on DAGM2007.
Methods C2 C3 C5 C6 C7 C8 C9

Ours 99.9 96.2 95.7 98.2 98.9 79.4 97.1
PC-100shot 97.1 88.7 89.4 96.9 95.3 78.4 84.5

6. Summary and Conclusion

We have considered unsupervised anomaly detection for
texture images. We first pointed out a crucial nature of the

problem that has been overlooked in the literature: accu-
rate detection gets harder for anisotropic textures when im-
age orientations are unaligned. We then proposed a zero-
shot method for the problem. As it does not need a nor-
mal sample, it is free from the orientation issue. The pro-
posed method assumes the input textures to be homoge-
neous, detecting image regions that break the homogene-
ity as anomalies. We have proposed a quantitative crite-
rion to judge whether the assumption holds for input tex-
tures, which enables to predict the proposed method ef-
fectiveness for each texture. Experimental results show
the effectiveness of the proposed approach. Specifically,
the zero-shot method attains an average image-level AU-
ROC of 99.6% over five textures of MVTec AD, which is
better than PatchCore (99.0%), the current state-of-the-art
method. Note that PatchCore yields the best result when
using hundreds of normal images; its accuracy deteriorates
in few-shot settings, due to the above orientation issue with
anisotropic textures. For more detailed analyses, we created
a synthetic dataset, named DTD-Synthetic, using the tex-
ture images from DTD (Describable Texture Dataset) and
adding synthetic anomalies simulating natural texture de-
fects. The results using the dataset shows that the proposed
method outperforms PatchCore even in many-shot settings
for anisotropic textures and shows comparable results for
isotropic textures.
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