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Abstract

In a busy city street, a pedestrian surrounded by distrac-
tions can pick out a single sign if it is relevant to their route.
Artificial agents in outdoor Vision-and-Language Naviga-
tion (VLN) are also confronted with detecting supervisory
signal on environment features and location in inputs. To
boost the prominence of relevant features in transformer-
based systems without costly preprocessing and pretrain-
ing, we take inspiration from priority maps - a mecha-
nism described in neuropsychological studies. We imple-
ment a novel priority map module and pretrain on auxiliary
tasks using low-sample datasets with high-level represen-
tations of routes and environment-related references to ur-
ban features. A hierarchical process of trajectory planning -
with subsequent parameterised visual boost filtering on vi-
sual inputs and prediction of corresponding textual spans
- addresses the core challenge of cross-modal alignment
and feature-level localisation. The priority map module is
integrated into a feature-location framework that doubles
the task completion rates of standalone transformers and
attains state-of-the-art performance for transformer-based
systems on the Touchdown benchmark for VLN. We release
code (https://github.com/JasonArmitage-res/PM-VLN) and
data (https://zenodo.org/record/6891965.YtwoS3ZBxDS8).

1. Introduction

Navigation in the world depends on attending to relevant
cues at the right time. A road user in an urban environ-
ment is presented with billboards, moving traffic, and other
people - but at an intersection will pinpoint a single light
to check if it contains the colour red [12, 33]. An artificial
agent navigating a virtual environment of an outdoor loca-
tion is also presented with a stream of linguistic and visual
cues. Action selections that move the agent closer to a final
destination depend on the prioritisation of references that
are relevant to the point in the trajectory. In the first exam-
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ple, human attention is guided to specific objects by visibil-
ity and the present objective of crossing the road. At a neu-
rophysiological level, this process is mediated by a priority
map - a neural mechanism that guides attention by matching
low-level signals on salient objects with high-level signals
on task goals. Prioritisation in humans is enhanced by com-
bining multimodal signals and integration between linguis-
tic and visual information [29, 4]. The ability to prioritise
improves as experience of situations and knowledge of en-
vironments increases [41, 36].

We introduce a priority map module for Vision-and-
Language Navigation (PM-VLN) that is pretrained to guide
a transformer-based architecture to prioritise relevant infor-
mation for action selections in navigation. In contrast to
pretraining on large-scale datasets with generic image-text
pairs [34], the PM-VLN module learns from small sets of
samples representing trajectory plans and urban features.
Our proposal is founded on observation of concentrations
in location deictic terms and references to objects with high
visual salience in inputs for VLN. Prominent features in the
environment pervade human-generated language navigation
instructions. Road network types (“intersection’), architec-
tural features (“awning”), and transportation (“cars”) all ap-
pear with high frequency in linguistic descriptions of the
visual appearance of urban locations. Learning to combine
information in the two modalities relies on synchronising
temporal sequences of varying lengths. We utilise refer-
ences to entities as a signal for a process of cross-modal
prioritisation that addresses this requirement.

Our module learns over both modalities to prioritise
timely information and assist both generic vision-and-
language and custom VLN transformer-based architectures
to complete routes [22, 43]. Transformers have contributed
to recent proposals to conduct VLN, Visual Question An-
swering, and other multimodal tasks - but are associated
with three challenges: 1) Standard architectures lack mech-
anisms that address the challenge of temporal synchroni-
sation over linguistic and visual inputs. Pretrained trans-
formers perform well in tasks on image-text pairs but are
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challenged when learning over sequences without explicit
alignments between modalities [24]. 2) Performance is de-
pendent on pretraining with large sets of image-text pairs
and a consequent requirement for access to enterprise-scale
computational resources [28, 35]. 3) Visual learning relies
on external models and pipelines - notably for object detec-
tion [23, 20]. The efficacy of object detection for VLN is
low in cases where training data only refer to a small subset
of object types observed in navigation environments.

We address these challenges with a hierarchical process
of trajectory planning with feature-level localisation and
low-sample pretraining on in-domain data. We use discrim-
inative training on two auxiliary tasks that adapt parame-
ters of the PM-VLN for the specific challenges presented
by navigating routes in outdoor environments. High-level
planning for routes is enabled by pretraining for trajectory
estimation on simple path traces ahead of a second task
comprising multi-objective cross-modal matching and loca-
tion estimation on urban landmarks. Inputs in the final eval-
uation task represent locations and trajectories in large US
cities and present an option to leverage real-world resources
in pretraining. Our approach builds on this opportunity by
sourcing data from the open web and the Google Directions
API where additional samples may be secured at low cost.

This research presents four contributions to enhance
transformer-based systems on outdoor VLN tasks:

* Priority map module Our novel PM-VLN module con-
ducts a hierarchical process of high-level alignment of
textual spans with visual perspectives and feature-level
operations on inputs during navigation (see Figure 3).

* Trajectory planning We propose a new method for
aligning temporal sequences in VLN comprising trajec-
tory estimation on path traces and subsequent predictions
for the distribution of linguistic descriptions over routes.

* Two in-domain datasets and training strategy We in-
troduce a set of path traces for routes in two urban lo-
cations (TR-NY-PIT-central) and a dataset consisting of
textual summaries, images, and World Geodetic System
(WGS) coordinates for landmarks in 10 US cities (MC-
10). These resources enable discriminative training of
specific components of the PM-VLN on trajectory esti-
mation and multi-objective loss for a new task that pairs
location estimation with cross-modal sentence prediction.

¢ Feature-location framework We design and build a
framework (see Figure 2) to combine the outputs from the
PM-VLN module and cross-modal embeddings from a
transformer-based encoder. The framework incorporates
components for performing self-attention, combining em-
beddings, and predicting actions with maxout activation.

2. Background

In this section we define the Touchdown task and high-
light a preceding challenge of aligning and localising over

linguistic and visual inputs addressed in our research. A
summary of the notation used below and in subsequent sec-
tions is presented in SupMat:Sec.1.

Touchdown Navigation in the Touchdown benchmark
¢v N is measured as the completion of N predefined tra-
jectories by an agent in an environment representing an area
of central Manhattan. The environment is represented as an
undirected graph composed of nodes O located at WGS lat-
itude / longitude points. At each step ¢, the agent selects an
edge &; to a corresponding node. The agent’s selection is
based on linguistic and visual inputs. A textual instruction
T composed of a varying number of tokens describes the
overall trajectory. We use ¢ to denote a span of tokens from
T that corresponds to the agent’s location in the trajectory.
Depending on the approach, ¢ can be the complete instruc-
tion or a selected sequence. The visual representation of a
node in the environment is a panorama drawn from a se-
quence Route of undetermined length. The agent receives
a specific perspective 1 of a panorama determined by the
heading angle Z between (01,02). Success in completing
a route is defined as predicting a path that ends at the node
designated as the goal - or one directly adjacent to it.

In a supervised learning paradigm (see Figure 1), an
embedding e, is learned from inputs ¢; and ;. The
agent’s next action is a classification over e, where
the action «; is one of a class drawn from the set
A{Forward, Left, Right, Stop}.  Predictions «; =
Forward and oy = {Left, Right} result respectively in
a congruent or a new £ at edge &;41. A route in progress is
terminated by a prediction oy = Stop.

Align and Localise We highlight in Figure 1 a preceding
challenge in learning cross-modal embeddings. As in real-
world navigation, an agent is required to align and match
cues in instructions with its surrounding environment. A
strategy in human navigation is to use entities or landmarks
to perform this alignment [4]. In the Touchdown bench-
mark, a relationship between sequences T and Route is as-
sumed from the task generation process outlined in Chen
et al. [5] - but the precise alignment is not known. We de-

In: Inputs (3%, <) © In: Cross-modal :
Route (Route): @) : out: Cross-modal —> embedding £
NS i embedding E, Out: Action o

Inputs

Localise

Figure 1: Outline of VLN as a supervised classification task a).
Linguistic and visual inputs both refer to entities indicated in red.
We address a challenge to align and localise over unsynchronised
inputs b) by focusing on entities represented in both modalities.
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Figure 2: Prior work on transformer-based systems for VLN follows the above pipeline from inputs to the main model concluding with a)
a classifier to predict actions. We propose a feature-location framework (FLpm) to enhance the performance of a main model as in b). Here
path traces are an additional input to assist the PM-VLN to align linguistic and visual sequences. Submodule gc rr.s combines embeddings
from the main model U,, and the PM-VLN E;, ahead of action prediction with maxout activation.

fine the challenge as one of aligning temporal sequences
T = {¢1,%,...,5,} and Route = {1,va,...,¥,} with
the aim of generating a set of cross-modal embeddings F,,
where referenced entities correspond. At a high level, this
challenge can be addressed by an algorithm that maximises
the probability P of detecting S signal on entity-related ref-
erences in the linguistic and visual inputs. Formally, assum-
ing Ps|E,

9(X¢) = max P[t, Route] = szww (D)

subject to

where the aim of maximising Pg is equivalent to the product
of probabilities in pairings between ¢; and ), that contain
corresponding entities.

3. Method

We address the challenge of aligning and localising over
sequences with a computational implementation of cross-
modal prioritisation. Diagnostics on VLN systems have
placed in question the ability of agents to perform cross-
modal alignment [42]. Transformers underperform in prob-
lems with temporal inputs where supervision on image-text
alignments is lacking [6]. This is demonstrated in the case
of Touchdown where transformer-based systems complete
less than a quarter of routes. Our own observations of lower
performance when increasing the depth of transformer ar-
chitectures motivates moving beyond stacking blocks to an
approach that compliments self-attention.

Our PM-VLN module modulates transformer-based en-
coder embeddings in the main task ¢y 1y using a hierarchi-
cal process of operations and leveraging prior learning on
auxiliary tasks (1, @) (see Figure 3). In order to priori-
tise relevant information, a training strategy for PM-VLN
components is designed where training data contain sam-
ples that correspond to the urban grid type and environment
features in the main task. The datasets required for pre-
training contain less samples than other transformer-based
VLN frameworks [43, 28] and target only specific layers of
the PM-VLN module. The pretrained module is integrated
in a novel feature-location framework FLpy; shown in Fig-
ure 2. Subsequent components in the FLpy; combine cross-

modal embeddings from the PM-VLN and a main trans-
former model ahead of predicting an action.

) .
a ™

Feature-level
localisation
Trajectory -
g q tp
estimation -
Trajectory
/ plan

/
T, Ttr

Spans Perspective  Path trace

from t4

Figure 3: A Priority Map module performs a hierarchical pro-
cess of high-level trajectory planning and feature-level localisa-
tion. Submodules inside the white box are learned together and a
helper function generates a trajectory plan to predict spans from
step ¢1.

3.1. Feature-location Framework with a Priority
Map Module

Prior work on VLN agents has demonstrated reliance for
navigation decisions on environment features and location-
related references [43]. In the definition of ¢y 1 above,
we consider this information as the supervisory signal con-
tained in both sets of inputs (x, )¢ As illustrated in Fig-
ure 2, our PM-VLN module is introduced into a framework
FLpy. This framework takes outputs from a transformer-
based main model Encr,qns together with path traces
ahead of cross-modal prioritisation and classification with
maxout activation Clasmqqg »;. Inputs for Encryqns com-
prise cross-modal embeddings proposed by [43] &, and a
concatenation of perspectives up to the current step ¥q;.
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Algorithm 1 Priority Map Module

Input: Datasets Dy, ,Dy,, and Dy, ,, with inputs
(2, x,) for tasks ®. Initial parameters in all layers at
@é- ~ Normal(u;,o;).
Output: (e, e’)
while not converged do
for x4, in ¢ do
(E);]P]\/ITP A 91 (Xi7 @)
end for
end while
while not converged do
for (x;,,2,,) in ¢ do
(—:);]PIVIF 9o (Xi7 @)
end for
end while
while not converged do
Sample z,, from DT7ain,
Tip, < gPMTP(Ttr,)-
Sample (1}, 1);) from DTrain,
ey < gusm (Vt)-
el < gvpr(ey).
e1 < gpri(9goat(y, €;)).
end while
return (e, €)

3.1.1 Priority Map Module

Priority maps are described in the neuropsychological lit-
erature as a mechanism that modulates sensory processing
on cues from the environment. Salience deriving from the
physical aspects of objects in low-level processing is medi-
ated by high-level signals for the relevance of cues to task
goals [8, 18, 41]. Prioritisation of items in map tasks with
language instructions indicate an integration between lin-
guistic and visual information and subsequent increases in
salience attributed to landmarks [4].

Our priority map module (PM-VLN) uses a series of
simple operations to approximate the prioritsation process
observed in human navigation. These operations avoid de-
pendence on initial tasks such as object detection. Align-
ment of linguistic and visual inputs is enabled by trajec-
tory estimation on simple path traces forming high-level
representations of routes and subsequent generation of tra-
jectory plans. Localisation consists of parameterised visual
boost filtering on the current environment perspective 1),
and cross-modal alignment of this view with selected spans
from subsequent alignment (see Algorithm 1). This hierar-
chical process compliments self-attention by accounting for
the lack of a mechanism in transformers to learn over un-
aligned temporal sequences. A theoretical basis for cross-
modal prioritisation is presented in SupMat:Sec.2.

High-level trajectory estimation Alignment over lin-
guistic and visual sequences is formulated as a task of pre-

dicting a set of spans from the instruction that correspond
to the current step. This process starts with a submodule
gpyTp that estimates a count cnt of steps from a high-
level view on the route (see Figure 4). Path traces - denoted
as trp - are visual representations of trajectories generated
from the coordinates of nodes. At ¢y in trp initial spans in
the instruction are assumed to align with the first visual per-
spective. From step ¢, a submodule containing a pretrained
ConvNeXt Tiny model [25] updates an estimate of the step
count in cnty,,.. A trajectory plan ¢p, is a Gaussian distribu-
tion of spans in T within the interval [2;c f¢, Zright]. At each
step, samples from this distribution serve as a prediction for
relevant spans. The final output ¢; is the predicted span #;
combined with 7; ;.

Figure 4: Submodule gparrp estimates a step count (cntsr) on
a path trace. A trajectory plan (¢p) is a Gaussian distribution
(Normal) over the instruction and predicts a span for every step
12¢. This is concatenated with the prediction for the previous step.

Feature-level localisation Predicted spans are passed
with 1), to a submodule gp s that is pretrained on cross-
modal matching in ¢ (see Figure 5). Feature-level oper-
ations commence with visual boost filtering. We opt for
a simple and efficient implementation from [3] where the
level of boosting is reduced to a single learned term (see
SupMat:Sec.2 for additional details).

Cat _e% _—)
U = b
9vBF U p— ¢

9PMF

\_ _/

Figure 5: Submodule gparr commences feature-level operations
by boosting visual features in the perspective. The next opera-
tion (C'at) is a concatenation of the output from gy gr and the
linguistic output 2; from the alignment process above. A precise
prediction for the relevant span e; is returned by gprr..

Selection of a localised span e; proceeds with a learned
cross-modal embedding e; composed of e;, and the linguis-
tic output ¢, from the preceding alignment operation. A bi-
nary prediction over this linguistic pair is performed on the
output hidden state from a single-layer LSTM, which re-
ceives e’n as its input sequence. Function gp, returns a
precise localisation of relevant spans w.r.t. prominent fea-

tures in the perspective:

0, if(w,z)+b<0
1, otherwise

gprier) =gcat (1, €l,) = { (2)
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3.1.2 Cross-modal Attention and Action Prediction on
Combined Outputs

Resuming operations subsequent to the PM-VLN, outputs
ey, from Convy g are passed together with e;, to a Visu-
alBERT embedding layer. Embeddings for both modalities
are then processed by 4 transformer encoder layers with a
hidden size of 256 and self-attention € is applied to learn

alignments between the pairs

k=1

&
e =EP(er =€) =Soft <Z ML (&, 5k)> )

where Soft is the softmax function, k is the number of el-
ements in the inputs, My—1 is a masked element over the
cross-modal inputs, t. is the loss, & is an element in the
input modality, and & is the predicted element. Cross-
modal embeddings resulting from this attention operation
are processed by concatenating over layer outputs g(é:/) =
(@, 22,8, 2b).

Architectural and embedding selections for our frame-
works aim to enable comparison with benchmark systems
on ¢y rn. The Encrpqns in the best performing framework
uses a standard VisualBERT encoder with a hidden size of
256 and 4 layers and attention heads. As noted above, inputs
for Encryqns align with those used in prior work [43]. A
submodule gcrpns combines U, from L% of the Encrrans

and outputs from the cross-modal attention operation g( £ )
ahead of applying dropout. Predictions for navigation ac-
tions are the outputs of a classifier block consisting of linear
layers with maxout activation. Maxout activation in a block
composed of linear operations takes the maxz;; where z;;
are the product of x;; W, for k layers. In contrast to ReLU,
the activation function is learned and prevents unit satura-
tion associated with performing dropout [11]. We compare
a standard classifier to one with max x; in Table 2. Im-
provements with max x; are consistent with a requirement
to offset variance when training with the high number of
layers in the full FLpy; framework.

3.2. Pretraining Strategy

A data-efficient pretraining strategy for the PM-VLN
module consists of pretraining submodules of the PM-VLN
on auxiliary tasks (¢1, ¢2). We denote the two datasets as
(Dg,,Dy,) and a training partition as DT, In ¢, the
gpayrp submodule is pretrained on TR-NY-PIT-central - a
new set of path traces. Path traces in Dgf‘”" are gener-
ated from 17,000 routes in central Pittsburgh with a class
label for the step count in the route. The distribution of step
counts in Dgl”‘”" is 50 samples for routes with <7 steps and
300 samples for routes with >7 steps (see SupMat:Sec.3
for further details). During training, samples from Dgf‘””
are presented in standard orientation for 20 epochs and ro-
tated 180° ahead of a second round of training. This ro-

tation policy is preferred following empirical evaluation us-
ing standalone versions of the gp a7 p submodule receiving
two alternate preparations of Dgf’“i" with random and 180°
rotations. Training is formulated as multiclass classification
with cross-entropy loss on a set of M=66 classes

M
91 (T4r,©) = Bo + argmax Z Bi(ze, W) (4

7 =1
where a class is the step count, B is the bias, and ¢ is the
sample in the dataset.

Pretraining on ¢4 for the feature-level localisation sub-
module gp s is conducted with the component integrated
in the framework FLpy; and the new MC-10 dataset. Sam-
ples in Dg‘”" consist of 8,100 landmarks in 10 US cities.
To demonstrate the utility of open source tools in designing
systems for outdoor VLN, the generation process leverages
free and accessible resources that enable targeted query-
ing. Entity IDs for landmarks sourced from the Wikidata
Knowledge Graph are the basis for downloading textual
summaries and images from the MediaWiki and WikiMe-
dia APIs. Additional details on MC-10 are available in
SupMat:Sec.3. The aim in generating the MC-10 dataset
is to optimise Oy, such that features relating to Y5, y
are detected in inputs X4, , . We opt for open A multi-
objective loss for ¢ consists of cross-modal matching over
the paired samples (z;,x,) - and a second objective com-
prising a prediction on the geolocation of the entity. In the
first objective, gppsr conducts a binary classification be-
tween the true x; matching x, and a second textual input
selected at random from entities in the mini-batch. A limit
of 540 tokens is set for all textual inputs and the classifi-
cation in gppsF is performed on the first sentence for each
entity. Parameters ©,,,,, . are saved and used subsequently
for feature-level localisation in ¢y N .

4. Experiments

Our starting point in evaluating the PM-VN module and
FLpy is performance in relation to benchmark systems (see
Table 1). Ablations are conducted by removing individual
operations (see Table 2) and the role of training data is as-
sessed (see Table 3). To minimise computational cost, we
implement frameworks with low numbers of layers and at-
tention heads in transformer models.

4.1. Experiment Settings

Metrics We align with [5] in reporting task completion
(TC), shortest-path distance (SPD), and success weighted
edit distance (SED) for ¢y 1. All metrics are derived using
the Touchdown navigation graph. TC is a binary measure of
success 0, 1 in ending a route with a prediction c¢f_; = y{_;
or ¢f_; = y°~; and SPD is calculated as the mean distance
between ¢y _; and y7_;. SED is the Levenshtein distance
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Development Test

TCt SPD, SEDt TCt SPD| SED?t

Inputs (L, V) GA?® 12.1  20.2 11.7 10.7 199 10.4
(non-transformer based) RCONCAT ?# 11.9 20.1 11.5 11.0 204 10.5

ARC+L2STOP* © 195 17.1 19.0 16.7 18.8 16.3
Inputs (L, V) VisualBERT(81) 104 21.3 10.0 9.9 21.7 9.5
(transformer based) VisualBERT(41) 143 177 13.7 11.8 18.3 11.5

VLN Transformer(41) ® 122 189 120 128 204 11.8

VLN Transformer(8l) 132 19.8 12.7 13.1  21.1 12.3

VLN Transformer(81) + M50 + style * b 150 203 14.7 16.2 20.8 15.7

Inputs (L, V) + JD / HT**
(non-transformer based)

ORAR (ResNet pre-final)* ¢

ORAR (ResNet 4th-to-last)* 4

26.0 15.0 - 253 16.2 -
299 11.1 - 291 117 -

Inputs (L, V) + Path Traces VLN Transformer(81) 11.2 234 10.7 11.5 239 10.8
(transformer based) Visual BERT(41) 16.2 18.7 15.7 150 20.1 14.5
FLpM(41) + VLN Transformer(81) 299 234 26.8 282 238 25.6

FLpy(41) + VisualBERT(41)

33.0 23.6 29.5 334 238 29.7

Frameworks from ? [5], ® [43], © [39], and ¢ [31].
* Results reported by the authors.

** Systems receive two types of features - Junction Type and Heading Delta - as inputs.

Table 1: Performance on the Touchdown benchmark ranked by TC on the test partition. Systems are grouped by input types during VLN
and the use of transformer blocks in architectures. Contributions of the FLpy framework and path traces to improved performance are
demonstrated with results for systems with two baseline transformer-based architectures - VisualBERT and VLN Transformer. These
baselines also are assessed in two sizes to test the benefits of adding transformer blocks.

between the predicted path in relation to the defined route
path and is only applied when TC = 1.

Hyperparameter Settings Frameworks are trained for
80 epochs with batch size=30. Scores are reported for the
epoch with the highest SPD on ngzN. Pretraining for the
PM-VLN module is conducted for 10 epochs with batch
sizes ¢1 = 60 and ¢ = 30. Frameworks are optimised
using AdamW with a learning rate of 2.5 x 1073 [26].

4.2. Touchdown

Experiment Design: [5] define two separate tasks in the
Touchdown benchmark: VLN and spatial description res-
olution. This research aligns with other studies [43, 42]
in conducting evaluation on the navigation component as a
standalone task. Dataset and Data Preprocessing: Frame-
works are evaluated on full partitions of Touchdown with
DTrain — 6 525, DPev = 1,391, and DT** = 1,409
routes. Trajectory lengths vary with DT7%n = 342,
DPev = 34.1, and DT*! = 34.4 mean steps per route.
Junction Type and Heading Delta are additional inputs gen-
erated from the environment graph and low-level visual fea-
tures [31]. M-50 + style is a subset of the StreetLearn
dataset with D77 —= 30, 968 routes of 50 nodes or less
and multimodal style transfer applied to instructions [43].
Embeddings: All architectures evaluated in this research
receive the same base cross-modal embeddings x,, proposed

by [43], which are learned by a combination of the outputs
of a pretrained BERT-base encoder with 12 encoder layers
and attention heads. At each step, a fully connected layer is
used for textual embeddings ¢; and a 3 layer CNN returns
the perspective ;. FLpy frameworks also receive an em-
bedding of the path trace tr; at step t. As this constitutes
additional signal on the route, we evaluate a VisualBERT
model (4]) that also receives tr;, which in this case is com-
bined with 1; ahead of inclusion in z,,. Results: In Table 1
the first block of frameworks consists of architectures com-
posed primarily of convolutional and recurrent layers. VLN
Transformer is a framework proposed by [43] for the Touch-
down benchmark and consists of a transformer-based cross-
modal encoder with 8 encoder layers and 8 attention heads.
VLN Transformer + M50 + style is a version of this frame-
work pretrained on the dataset described above. To our
knowledge, this was the transformer-based framework with
the highest TC on Touchdown preceding our work. ORAR
(ResNet 4th-to-last) [31] is from work published shortly be-
fore the completion of this research and uses two types of
features to attain highest TC in prior work. Standalone Vi-
sualBERT models are evaluated in two versions with 4 and
8 layers and attention heads. A stronger performance by the
smaller version indicates that adding self-attention layers is
unlikely to improve VLN predictions. This is further sup-
ported by the closely matched results for the VLN Trans-
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former(41) and VLN Transformer(81). FLpy; frameworks
incorporate the PM-VLN module pretrained on auxiliary
tasks (¢1, ¢2) - and one of VisualBERT (41) or VLN Trans-
former(81) as the main model. Performance on TC for both
of these transformer models doubles when integrated into
the framework. A comparison of results for standalone Vi-
sualBERT and VLN Transformer systems with path traces
supports the use of specific architectural components that
can exploit this additional input type. Lower SPD for sys-
tems run with the FLpy; framework reflect a higher number
of routes where a stop action was predicted prior to route
completion. Although not a focus for the current research,
this shortcoming in VLN benchmarks has been addressed
in other work [39, 2].

4.3. Assessment of Specific Operations

Ablations are conducted on the framework with the high-
est TC i.e. FLpy + VisualBERT(41). The tests do not pro-
vide a direct measure of operations as subsequent compu-
tations in forward and backward passes by retained com-
ponents are not accounted for. Results indicate that initial
alignment is critical to cross-modal prioritisation and sup-
port the use of in-domain data during pretraining.

Development
TCt SPD] SED7
FLpM + VisualBERT(41) 33.0 23.6 29.5
PM-VLN
-gPMTP (a) 7.1 26.8 6.8
-gdPMF minus ZVBF (b) 27.9 25.7 24.9
- gpypp Minus 2.1 (€) 29.8 21.8 27.2
FLpym
- gAttn With goge (d) 18.8 30.5 16.4

- 9Clasman . with 9Clas (e) 31.7 21.9 28.2

Table 2: Ablations on core operations in the PM-VLN (variants
(a-(c)) and the FLpy framework (variants (d) and (e)).

Ablation 1: PM-VLN Prioritisation in the PM-VLN
module constitutes a sequential chain of operations. Table 2
reports results for variants of the framework where the PM-
VLN excludes individual operations. Starting with gpyrrp,
trajectory estimation is replaced with a fixed count of 34
steps for each route ¢r; (see variant (a)). This deprives the
PM-VLN of a method to take account of the current route
when synchronising T and sequences of visual inputs. All
subsequent operations are impacted and the variant reports
low scores for all metrics. Two experiments are then con-
ducted on gppsr. In variant (b), visual boost filtering is
disabled and feature-level localisation relies on a base ;.
A variant excluding linguistic components from gppsp is
then implemented by specifying 2; as the default input from

T, (see variant (c)). In practice, span selection in this case
is based on trajectory estimation only.

Ablation 2: FLpy Ablations conclude with variants
of FLpy where core functions are excluded from other sub-
modules in the framework. Results for variant (d) demon-
strate the impact of replacing the operation defined in Equa-
tion 3 with a simple concatenation on outputs from PM-
VLN ¢; and €/. A final experiment compares methods for
generating action predictions: in variant (¢), gciasne, », 18
replaced by the standard implementation for classification
in VisualBERT. Classification with dropout and a single lin-
ear layer underperforms our proposal by 1.3 points on TC.

4.4. Assessment of Training Strategy

A final set of experiments is conducted to measure the
impact of training data for auxiliary tasks (¢1, ¢2).

Development
TCt SPD| SEDf

FLpym + VisualBERT(41) 330 236 295

Pretraining for gpyrrp
-gpmTP + DTIT“”V2 ® 119 20.1 11.5
-gpymTP + Dd)lmmVZ:’. (g) 13.6 20.5 13.1
- gpprp Do pretraining (h) 4.7 27.6 1.9

Pretraining for gpprr
-gpmp + DITUMV23G) 198 232 172
-gpmr +DEIYmV3 (G 239 208 203
- gpyF 1o pretraining (k) 6.3 25.1 4.6

Table 3: Assessment of the pretraining strategy for individual PM-
VLN submodules gparrp (variants (f) to (h)) and gpasr (variants
(1) to (k) using alternative datasets for auxiliary tasks. Variants are
also run with no pretraining of gppsrp and gpavr-

Training Strategy 1: Exploiting Street Pattern in Tra-
jectory Estimation We conduct tests on alternate sam-
ples to examine the impact of route types in Dj"**". The
module for FLpy frameworks in Table 1 is trained on path
traces drawn from an area in central Pittsburgh (see Sup-
Mat:Sec.3) with a rectangular street pattern that aligns with
the urban grid type [27] found in the location of routes in
Touchdown. Table 3 presents results for modules trained on
routes selected at random outside of this area. In variants
(f) and (g), versions V2 and V3 of Dglmm each consist of
17,000 samples drawn at random from the remainder of a
total set of 70,000 routes. Routes that conform to curvilin-
ear grid types are observable in outer areas of Pittsburgh.
Lower TC for these variants prompts consideration of street
patterns when generating path traces. A variant (h) where
the gp s p submodule receives no pretraining underlines -
along with variant (a) in Table 2 - the importance of the ini-
tial alignment step to our proposed method of cross-modal
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prioritisation.

Training Strategy 2: In-domain Data and Feature-
Level Localisation We conclude by examining the use
of in-domain data when pretraining the gpy;r submodule
ahead of feature-level localisation operations in the PM-
VLN. In Table 3, versions of FLpy; are evaluated subsequent
to pretraining with varying sized subsets of the Concep-
tual Captions dataset [32]. This resource of general image-
text pairs is selected as it has been proposed for pretrain-
ing VLN systems (see below). Samples are selected at ran-
dom and grouped into two training partitions equivalent in
number to 100% (variant (i)) and 150% of Dg‘”” (vari-
ant (j)). In place of the multi-objective loss applied to the
MC-10 dataset, 0,,,,, are optimised on a single goal of
cross-modal matching. Variant (k) assesses FLpyy when no
pretraining for the gp s submodule is undertaken. Lower
results for variants (i), (j), and (k) support pretraining on
small sets of in-domain data as an alternative to optimising
VLN systems on large-scale datasets of general samples.

5. Related Work

This research aims to extend cross-disciplinary links be-
tween machine learning and computational cognitive neuro-
science in the study of prioritisation in attention. This sec-
tion starts with computational methods used to explore this
subject in these two disciplines. Our training strategy is po-
sitioned in the context of prior work on pretraining for VLN
tasks and research related to the alignment and feature-level
operations performed by the PM-VLN module is reviewed.

Computational Implementations of Prioritisation in
Attention [7] proposed a model that generates saliency
maps where feature selection is dependent on high-level sig-
nals in the task. The full system was evaluated on computer
vision tasks where the aim is to track targets in video. A
priority map computation was implemented in object de-
tection models by [38] to compare functions in these sys-
tems to those observed in human visual attention. [1] used
a Support Vector Machine classifier to model visual atten-
tion in human participants traversing four terrains. Priority
maps were then generated to study the interaction of priori-
tised features and a high-level goal of maintaining smooth
locomotion. A priority map component was incorporated
into a CNN-based model of primate attention mechanisms
by [40] to prioritise locations containing classes of interest
when performing visual search. Studies on spatial attention
in human participants have explored priority map mecha-
nisms that process inputs consisting of auditory stimuli and
combined linguistic and visual information [10, 4]. To our
knowledge, our work is the first to extend neuropsychologi-
cal work on prioritisation over multiple modalities to a com-
putational implementation of a cross-modal priority map for
machine learning tasks.

Pretraining for VLN Tasks Two forms of data sam-

ples - in-domain and generic - are used in pretraining prior
to conducting VLN tasks. In-domain data samples have
been sourced from image-caption pairs from online rental
listings [13] and other VLN tasks [43]. In-domain sam-
ples have also been generated by augmenting or reusing in-
task data [9, 17, 14, 15, 31]. Generic samples from large-
scale datasets designed for other Vision-Language tasks
have been sourced to improve generalisation in transformer-
based VLN agents. [28] conduct large-scale pretraining
with 3.3M image-text pairs from Conceptual Captions [32]
and [30] initialise a framework with weights trained on four
out-of-domain datasets. In contrast our training strategy
employs datasets with a few thousand samples of in-domain
data derived from resources where additional samples are
available at low cost.

Methods for Aligning and Localising Features in Lin-
guistic and Visual Sequences Alignment in multimodal
tasks is often posited as an implicit subprocess in an
attention-based component of a transformer [37, 43]. [17]
identified explicit cross-modal alignment as an auxiliary
task that improves agent performance in VLN. Alignment
in this case is measured as a similarity score on inputs from
the main task. In contrast, our PM-VLN module conducts
a hierarchical process of trajectory planning and learned lo-
calisation to pair inputs. A similarity measure was the basis
for an alignment step in the Vision-Language Pretraining
framework proposed by [21]. A fundamental point of dif-
ference with our work is that this framework - along with
related methods [19] - is trained on a distinct class of tasks
where the visual input is a single image as opposed to a tem-
poral sequence. Several VLN frameworks containing com-
ponents that perform feature localisation on visual inputs
have been pretrained on object detection [28, 35, 16]. In
contrast, we include visual boost filtering in gp s to priori-
tise visual features. Our method of localising spans using a
concatenation of the enhanced visual input and cross-modal
embeddings is unique to this research.

6. Conclusion

We take inspiration from a mechanism described in neu-
rophysiological research with the introduction of a priority
map module that combines temporal sequence alignment
enabled by high-level trajectory estimation and feature-
level localisation. Two new resources comprised of in-
domain samples and a tailored training strategy are pro-
posed to enable data-efficient pretraining of the PM-VLN
module ahead of the main VLN task. A novel framework
enables action prediction with maxout activation on a com-
bination of the outputs from the PM-VLN module and a
transformer-based encoder. Evaluations demonstrate that
our module, framework, and pretraining strategy double the
performance of standalone transformers in outdoor VLN.
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