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Abstract

Drone crowd tracking has various applications such
as crowd management and video surveillance. Unlike in
general multi-object tracking, the size of the objects to
be tracked are small, and the ground truth is given by a
point-level annotation, which has no region information.
This causes the lack of discriminative features for find-
ing the same objects from many similar objects. Thus,
similarity-based tracking techniques, which are widely used
for multi-object tracking with bounding-box, are difficult
to use. To deal with this problem, we take into ac-
count the temporal context of the local area. To ag-
gregate temporal context in a local area, we propose
a multi-frame attention with feature-level warping. The
feature-level warping can align the features of the same
object in multiple frames, and then multi-frame atten-
tion can effectively aggregate the temporal context from
the warped features. The experimental results show the
effectiveness of our method. Our method outperformed
the state-of-the-art method in DroneCrowd dataset. The
code is publicly available in https://github.com/
asanomitakanori/mfa-feature-warping.

1. Introduction
Automatic multiple-person tracking from videos taken

by cameras mounted on drones (uncrewed aerial vehicles),
called drone crowd tracking, has a wide range of applica-
tions, such as video surveillance and crowd management.
In the video, people move their position while the back-
ground fluctuates due to the drone’s motion. The task aims
to find an object’s location and associate the same objects
in the video (Figure 1). Different from general multi-object
tracking that uses a bounding box for annotation, point-level
annotation is used in the public dataset [36] since the object
size tends to be small.

The most significant difference between drone crowd
tracking tasks and the other multi-object tracking with
bounding-box (e.g., tracking in a video captured by a
surveillance camera) is that the object size is much small.
Thus the ground truth of an object location is given by

Time

Night, Small, SparseSunny, Large, Sparse Cloudy, Small, Crowded

(a)

(b)

Figure 1. Example images in drone crowd tracking. (a) Example
of the entire image (Left), enlarged sequence images at the red box
(Right-Top), and ground-truth of tracking (Right-Bottom:): dots
indicate target object, and the same object has the same color. (b)
Example images under various conditions.

point-level annotation as shown in Figure 1. This causes
the lack of discriminative features for finding the same ob-
jects from many similar objects. For example in Figure 1
(b) (Cloudy, Small, Crowded), the appearance of a person
appears as a white dot, and different persons have similar
appearances. Thus, similarity-based tracking techniques,
widely used for multi-object tracking with bounding-box,
are difficult to use. The small size of objects also causes
other difficulty; the difference in the appearance of an object
from the background object is not significant. For example,
an appearance of a person is similar to the other objects.
This causes inconsistent detection results with time, i.e., an
object is detected sometimes, but not at the other time.

The second significant difference is that the spatial con-
text far from objects is ineffective. For example, the yellow
box in Figure 1 (a) is not related to how many people are
in the red box region. In detection tasks of large objects
and video analysis, the spatial context is an important clue.
Thus vision transformer has been often used to aggregate
the spatial context by self-attention. However, this may not
be effective in drone crowd tracking tasks.

To track multiple small objects, point-based tracking
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methods have been proposed. For example, STNNet [36]
estimates the location and motion of objects in a multi-
task manner from two continuous frames. STNNet has
achieved the best performance (the state-of-the-art) in the
DroneCrowd dataset [36], which contains point-level anno-
tations as ground truth instead of bounding boxes. Point-
level annotation is often used for cell tracking, which tracks
small cells in microscopy images. Motion and position map
[13] has been proposed to represent localization and motion
given two frames simultaneously and achieved the best per-
formance in a cell tracking dataset [15]. These methods use
only two frames for motion and location estimation.

In drone crowd tracking tasks, the temporal context in
the neighbor position is essential. When it is difficult to
detect objects from a single frame accurately, the detection
results may not be consistent in multiple frames. However,
if we check such objects in several frames, we can identify
persons’ consistency in time.

Self-attention, which has been used in transformer, is a
promising technology to aggregate the temporal context.
The transformer has been widely used for many vision
tasks. Almost methods use self-attention for aggregating
wide-range contexts and spatial dependencies in a single in-
put image, in which small patches in an image are inputted
to the self-attention module and extracts the features using
the correlation of inputted patches. Some methods use the
spatial-temporal context for tracking. Zhou et al. [46] pro-
posed global association with transformer. This method first
detects bounding boxes in multiple frames and then asso-
ciates the detected object in multiple frames using trans-
former, which estimates the apparent similarity of detected
bounding boxes. However, the features of point-level ob-
jects are not enough to identify the same object.

In this paper, we propose multi-frame attention with
feature-level warping to aggregate temporal information in
multiple frames. Given feature maps extracted from mul-
tiple frames, the proposed method aggregates the temporal
context using temporal self-attention. This assumes that the
attention is calculated from the same position of the fea-
ture maps in multiple frames. However, the object positions
change in multiple frames due to their motion. Therefore,
we introduce feature map warping modules before multi-
frame attention to align the features of the same object in
multiple frames. Next, the warped feature maps are inputted
into the multi-frame attention module to aggregate the tem-
poral context. Then, the backward warping module warps
the extracted features again to obtain the original positions
for each frame. It can output consistent detection results
in multiple frames using temporal context. This makes the
tracking accuracy improve. The contributions of this paper
are summarized as follows:

• We proposed multi-frame attention with feature-level
warping. This method can align the object features in

the map and aggregate the image features from multi-
ple frames by multi-frame attention.

• Using DroneCrowd dataset [36], the proposed method
achieved the best performance than comparative meth-
ods (containing the state-of-the-art method, STNNet).

2. Related work
2.1. Crowd tracking

Human counting in crowds has been well studied, and
many datasets for it are publicly available [7, 11]. This task
aims to estimate the number of persons in a single image.
Many counting methods take the density-map estimation
approach, which can count people in an image but cannot
localize and track individuals.

Recently, the DroneCrowd dataset [36] was published to
develop a method that tracks tiny images of humans in video
captured from a bird’s eye view by a drone. The main differ-
ences of the task of DroneCrowd from general multi-object
tracking (MOT) are three-folds; 1) because of the small size
of the objects in the images, DroneCrowd uses point-level
annotation, which has no region information, instead of the
bounding boxes used in MOT. As well, 2) the number den-
sity of the humans in the images is high, and 3) the video
shows various situations.

STNNet [36] was designed to track tiny objects for this
dataset. It estimates the location and motion of objects in a
multi-task manner from two successive frames. It currently
has state-of-the-art performance on the DroneCrowd [36].

2.2. Multi-object tracking (MOT)

Many MOT methods have been proposed, which use ac-
tive contours [18, 35, 40, 47], particle filters [25, 32] or
association [41, 30, 20, 1]. A recent trend is tracking-
by-detection [39, 16, 4, 9, 28]. It relies on the ability of
bounding-box detectors [37, 29, 31, 20], and associates the
same objects between frames based on the similarity in ap-
pearance of the detected bounding boxes. Here, the bound-
ing box detector is unsuitable for point-level object detec-
tion, as each object lacks discriminative features due to its
small size.

Point-level annotation has been used for detecting and
tracking tiny objects, such as in key-point detection for pose
estimation, cell tracking, and drone crowd tracking. Point-
level methods [12, 13, 14, 44, 45, 39] estimates a heatmap,
in which the annotated points become peaks in the heatmap,
instead of bounding boxes. Then, the tracking methods as-
sociate the same object based on their position and motion
estimation [12, 13, 36]. Almost all methods use the context
of two successive frames for object detection and motion
estimation. The temporal context in multiple frames is im-
portant information for tracking.
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Figure 2. Overview of our method. (a) Entire network structure, (b) Multi-frame attention with feature-level warping. The module consists
of three modules: forward warping, multi-frame attention, and backward warping. Forward warping aligns features according to frame T ,
and multi-frame attention aggregate temporal context. Since the extracted feature maps are aligned to T , the feature maps are warped into
features that represent original positions by backward warping.

2.3. Transformer for video analysis

The transformer has been widely used for many tasks,
including video analysis [24, 8, 5, 2, 23, 34]. For exam-
ple, TimeSformer [5] and ViVit [2] have shown that tem-
poral attention and spatial attention are effective in video
classification tasks. The Video Swin transformer [23] in-
troduces the Swin transformer [22] for video classification.
The spatial-temporal attention, which computes the atten-
tion combinations of patches in multiple frames, is compu-
tationally expensive. To reduce the computational cost, the
deformable video transformer [34] leverages motion cues
to determine which patches to compare; it applies a hand-
crafted deformation to the original input images to obtain
motion cues. These methods are designed for video clas-
sification tasks, which require spatial-temporal information
in an entire video to be aggregated.

Some methods use transformer for multi-object tracking.
TrackFormer [24] has the cascade structure of DETR [6],
which is a detection method using a transformer. Track-
former extracts features at time t using the spatial context
in the encoder, and these features are used as queries in
the decoder at the next frame. This method is designed
for tracking bounding-box-based objects. The self-attention
in the encoder uses only the spatial context in each frame.
The aim of using features extracted from the previous frame
as queries in the decoder is for association; i.e., the trans-
former decoder associates the objects based on object sim-
ilarities of bounding-box regions. Transformer tracking
[8] uses an attention-based feature fusion network, which
combines template and search features by attention. These
transformer-based tracking methods focus on aggregating
spatial-temporal information to detect bounding boxes and
extract features that represent the similarity of the same ob-
jects. Spatial information far from the object may not be
useful for tracking tiny objects from a bird’s eye view. In-

stead, our method uses temporal information at the same
place by aligning feature maps in multiple frames.

3. Proposed Method

3.1. Overview

Figure 2 is an overview of the proposed method. Given
a set of M images {IT , ..., IT+M}(IT+i ∈ Rw×h), where
w and h indicate the width and height of the image, the
network simultaneously estimates a set of the heatmaps
{HT , ...,HT+M}(HT+i ∈ Rw×h) [12], which represents
the object positions.

The entire network consists of Siamese networks, which
have an encoder and a decoder, such as U-net, and produces
the position heatmaps as shown in Figure 2 (a). We in-
troduce each network to three modules, forward warping,
multi-frame attention, and backward warping modules (Fig-
ure 2 (b)), in order to aggregate the temporal information in
multi-frames. Siamese U-nets can interchange image fea-
tures in multiple frames via these modules. Using estimated
positions, objects can be tracked in a video.

3.2. Forward warping

The encoders of each network extract the image features
for the object positions in each frame. To effectively use im-
age features in different frames, we introduce a multi-frame
attention module that allows the Siamese networks to inter-
change the extracted features in multiple frames of the same
position. This assumes that the features of the same object
are at the same position in each feature map. However, ob-
ject positions usually change in multiple frames due to their
motion, and thus the attention may not work appropriately.
To deal with this problem, we introduce a forward warping
module before the multi-frame attention module to align the
image features in multiple frames.
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Figure 2 (b) shows the forward warping module. It in-
corporates forward warping modules in M + 1 Siamese
networks; each module is inserted after the convolutional
layers of the encoder, as shown in Figure 2. Each network
fflow estimates the feature-level flow in the same manner
as VoxelMorph [3], for feature map alignment.

Let us denote the i-th output feature map for the j-th
layer as xin

T+i = f (j−1)(IT+i), (i = 0, ...,M), these fea-
tures are aligned into to one of them xin

T . Precisely, given
two maps (xin

T ,x
in
T+i), fflow estimates the displacement

vector map τT+i→T which warps the input feature map
xin
T+i into

xin′
T+i = xin

T+i ◦ τT+i→T (i = 1, . . . ,M), (1)

where ◦ indicates a warping operation by τT+i→T , which
specifies the vector offset from xin

T+i to xin
T for each pixel.

The warping operation is similar to the one used in image
registration methods, such as VoxelMorph [3]. The differ-
ence is that our warping is performed on every channel of a
feature map, whereas the standard warping operation is per-
formed on an image. It is expected that warping will align
the features of an object to the same position.

This forward warping performs for all pairs of features
in the multiple frames. The output of the module is a set
of warped features {xin′

T ,xin′
T+1, . . . ,x

in′
T+M}, where xin′

T =
xin
T . The warped feature maps are inputted to the multi-

frame attention module.

3.3. Multi-frame attention

Fig. 3 is an overview of the multi-frame attention mod-
ule. The warped features {xin′

T ,xin′
T+1, . . . ,x

in′
T+M} are in-

putted into the multi-frame attention module to aggregate
the temporal features among multiple frames. The attention
is calculated from the same position of the feature maps in
multiple frames. The same position of multiple frames is
expected to have the same object features since the feature
maps were warped by forward warping.

Let us consider a case in which an object can sometimes
be clearly observed, but its appearance is unclear in some
of the other frames due to the shadows of other objects. In
such a case, it can be expected that the multi-frame attention
module can extract the object features using other frames.
This module contributes to reducing undetected objects and
consistent tracking.

In contrast to standard vision transformers [10], in which
cropped patches of an entire image are inputted to the trans-
former network (i.e., self-information of a single image is
used), our multi-frame attention aggregates a set of inputted
images among multiple frames. This module allows the
Siamese U-nets to interchange the extracted features with
each other. In addition, to reduce the number of parameters
and effectively extract the local features of each batch, we
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Figure 3. Multi-frame-attention. This module aggregates multiple
frames information by calculating from the same position of the
feature maps in multiple frames.

embed tokens in a key, query, and value by using convolu-
tion [38] instead of a fully connected layer.

In the multi-frame attention module, xin′
T+i(i = 0, ...,M)

is first converted into a query (qT+i), key (kT+i),
and value (vT+i) by convolution, and the matrices are
then flattened into vectors vec(qT+i), vec(kT+i), and
vec(vT+i). Let us denote the matrices consisting of
a set of queries, keys, and values of the input im-
ages as Q = [vec(qT )|...|vec(qT+M )]T ∈ R(M+1)×C ,
K = [vec(kT )|...|vec(kT+M )]T ∈ R(M+1)×C , and
V = [vec(vT )|...|vec(vT+M )]T ∈ R(M+1)×C , respec-
tively, where vec(·) is the flattening operator that flattens
a matrix into a vector, C = winhinchin is the dimension of
the flattened vector. win, hin, and chin are the width, height,
and channel of xin′

T+i. The multi-input attention output is
defined as:

xout′
T+i = xin′

T+i + reshape(Attention(Q,K, V )T+i), (2)

Attention(Q,K, V ) = softmax(QK⊤)V, (3)

where softmax(·) performs the softmax operator on each
row vector individually, and reshape(·) reshapes the in-
put vector back into a matrix whose shape is the same
as xin′

T+i. Attention(Q,K, V )T+i is the (T + i)-th vector
of Attention(Q,K, V ). Here, in the multi-frame attention
module, the information of all the input images extracted by
the Siamese networks is interchanged and aggregated. To
train this network, we use the sum of the loss functions for
the backbone network (refer to the section of the backbone
network). The extracted features {xout′

T ,xout′
T+1, . . . ,x

out′
T+M}

are then inputted to the next layer of each Siamese U-net.
Standard vision transformers, such as ViT [10], have

quadratic computation complexity relative to the input im-
age size N = w × h, i.e., O(N2 ×M), where M indicates
the number of time frames. In contrast, multi-frame atten-
tion has linear computational complexity to the input image
size and only quadratic computation to the frame number,
O(N ×M2), which is much smaller than the standard one
because M << N .
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3.4. Backward warping

The decoder in a Siamese U-net decodes the extracted
features to the heatmap, which has the same size as the
original image. However, the forward warping module de-
forms the features (i.e., the object positions in the warped
feature map xout′

T+i is misaligned to those of the original fea-
ture map xin

T+i). We thus introduce the backward warping
module that warps the features back to their original posi-
tion. The network structure and warping process are similar
to the forward warping module. Precisely, given two maps
(xin

T+i,x
out′
T+i), fbflow estimates the τT→T+i which warps

the input feature map xout′
T+i into

xout
T+i = xout′

T+i ◦ τT→T+i (i = 1, . . . ,M), (4)

where τT→T+i specifies the vector offset from xout′
T+i

to xout′
T for each pixel. The warped feature maps

{xout
T ,xout

T+1, . . . ,x
out
T+M}, where xout

T = xout′
T , are up-

sampled by the decoder and the outputs are heatmaps, in
which the local peaks indicates object positions. It is ex-
pected that this feature map will be warped to its original
position.

3.5. Backbone models

We incorporated the proposed method into two back-
bone models: Heatmap [12], widely used in point-level ob-
ject detection for keypoint detection in pose estimation and
cell detection, and MPM [13], which is one of the state-
of-art methods for cell tracking. To make this paper self-
contained, we briefly describe these two methods below.
Heatmap [12]: This method estimates the heatmap of ob-
ject positions by a U-net; each peak in the heatmap indicates
the position of an object. From a set of annotated pixel-
level object positions for an image, the ground truth of the
heatmap is generated so that an object position becomes a
peak with a Gaussian distribution in the map, as shown in
Fig. 2 (a). The detection network (U-net) is trained using
the mean square loss (MSE) Ldet = MSE(Hi, Ĥi) be-
tween the estimation results Ĥi and the ground truth of the
heatmap Hi.
MPM [13]: This method estimates the position and motion
map (MPM), which represents the position and moving di-
rection between successive frames. The motion vector of
each object is encoded on the pixels of the object’s center
position, and the distribution of the magnitudes of the vec-
tor represents the heat-map of the center positions, where
the local maximum of the heatmap indicates the center po-
sition. Let us denote the ground truth and the estimation
of a MPM as H and Ĥ , respectively. The loss function is
defined as:

LMPM =
1

n

n∑
i=1

(||Hi−Ĥi||22+(||Hi||2−||Ĥi||2)2), (5)

where n is the number of training data, the first term is the
squared error, and the second term is the squared error be-
tween the magnitudes of H and Ĥ .

In the traditional method, the network estimates the
heatmaps or MPM individually in each frame. In contrast,
our method consists of Siamese U-nets for multiple frames
and the proposed warping and multi-frame attention mod-
ules that share features. Our method can be applied to a
network that has an encoder and decoder, such as U-net,
and estimates a position heatmap for each local frame. In
our network, backbone networks are arranged in parallel
and interchange their extracted features using multi-frame
attention with feature-level warping.

3.6. Tracking by association

For a fair comparison, we applied the same algorithm
with STNNet [36], which is a state of the art method. After
detecting all objects in each frame, we applied the min-cost
flow method[27], which optimizes the association.

4. Experiments

4.1. Dataset and experimental setup

We used the DroneCrowd dataset[36] in our experi-
ments. The dataset contains time-lapse video sequences
taken by drones. As shown in Figure 1, the images show
streets crowded with people, and there are no significant
differences in the appearances of people. Since a cam-
era is attached to a flying drone, the background fluctu-
ates as the persons below move from place to place. The
ground truth of the object position is a point-level annota-
tion (ObjectID, frame, x, y).

In each image sequence, images were captured at 25
frames per second (FPS) with a resolution of 1920 × 1080
pixels. In this dataset, a video has three types of attributes,
as follows: (1) illumination: three categories of illumination
conditions are Sunny, Cloudy and Night; (2) Object scale:
two categories of scales are Large (the diameter of objects
> 15 pixels) and Small (the diameter of objects ≤ 15 pix-
els); (3) Density: based on the average number of objects in
each frame, there are two density levels, e.g., Crowded (the
average number of objects in each frame is larger than 150),
and Sparse (the average number of objects in each frame is
less than 150). Figure 1 (b) shows the examples images un-
der different conditions. The average number of objects is
144.8, and more than 20 thousand head trajectories of peo-
ple are annotated with more than 4.8 million head points
in individual frames. The training, validation, and test se-
quences number 82, 30 and 30. This is the same setup as
that of the state-of-the-art method [36].
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Methods L-mAP L-AP10 L-AP15 L-AP20

MCNN [43] 9.05 9.81 11.81 12.83
CAN [21] 11.12 8.94 15.22 18.27

CSRNet [19] 14.40 15.13 19.77 21.16
DM-Count [42] 18.17 17.90 25.32 27.59

STNNet [36] 40.45 42.75 50.98 55.77
Heatmap [12] 29.26±2.23 30.85 35.17 38.3

Heatmap + Ours 32.19±1.01 34.49 38.6 41.4
MPM [13] 41.07±0.4 44.7 48.92 51.22

MPM + Ours 43.43±1.98 47.14 51.58 54.02

Table 1. Localization performances in comparison using
DroneCrowd; the average L-mAP, and L-AP at each threshold
(L-AP10, L-AP15 and L-AP20).

4.2. Experimental setup

We implemented our method by using PyTorch [26]. To
train our network, we used the ADAM optimizer [17] with
a learning rate of 10−3, epoch = 30, mini-batch size = 24.
The detection points were obtained by the thresholding of
heatmap (threshold = 0.1). We set M (the number of aggre-
gating frames) to 3 due to the limited memory of the GPU
(NVIDIA GeForce 3090 GPU). In all experiments, for a fair
comparison, we trained the networks three times with dif-
ferent seeds and computed the averages and standard devi-
ation in terms of the localization and tracking performance,
following [10].

We compared our method with seven methods:
MCNN[43], which uses the image features from multi-
scale images extracted by each expert to capture the vari-
ations in object size; CAN [21], which exploits multi-
scale contextual information in density maps, and as a re-
sult, achieved the best performance for counting in both
cloudy and crowded cases. DM-Count [42], which sim-
ply estimates a density map generated using 2D Gaussian;
STNNet [36], which is designed for drone crowd tracking
by using the neighboring context loss to guide the associa-
tion, (it has achieved the state-of-the-art performance on the
DroneCrowd dataset); Heamap [12], which, as described
above, is widely used in object detection for point-level an-
notation and is one of our backbone methods; MPM [13],
which simultaneously represents the position and motion
of objects for tracking tiny objects, is our other backbone
method. For a fair comparison, after each of the compara-
tive methods detect objects, we used the same method for
tracking, in which the detected objects were associated us-
ing min cost flow [36].

4.3. Crowd localization performance

Localization, which is to detect all people’s locations in
an image accurately, is a critical task in object tracking.
We evaluated crowd localization performance using the L-
mAP score following the paper that proposed DroneCrowd
dataset [36]. The estimated object’s points are determined

Image STNNet MPM MPM + Ours

Figure 4. Examples of detection results in test images. Left: the
entire image of MPM [13] + Ours detection results; Right: en-
larged images of detection results from MPM [13] and MPM +
Ours. Green: true positive; Red: false negative; Orange: false
positive.

by thresholding the heatmaps. L-mAP is the mean of the
L-APs at various distance thresholds (1,2,. . .,25 pixels). A
bigger L-mAP is the better.

Table 1 shows the L-mAP and L-AP scores with three
specific distance thresholds (10, 15, and 20 pixels). Note
that the performance of the comparative methods except
the two backbone methods (heatmap [12] and MPM [13])
are taken from [36]. Our methods (Heatmap+Ours and
MPM+Ours) improved all metrics compared with the back-
bone methods (heatmap [12] and MPM [13]). More-
over, MPM+Ours outperformed the state-of-the-art method
(STNNet [36]). Note that when the threshold is large, e.g.,
L-AP20, a false positive can be associated with a ground
truth (counted as a true positive). Thus, the better perfor-
mance of L-AP with small distance indicates that the lo-
calization is more accurate. In particular, the improvement
of the L-AP with the small distance threshold (10) from
STNNet was significant (+4.39). This indicates that the
localization of our method is more accurate. Fig.4 shows
examples of detection results. In the results estimated by
STNNet, there are many false positives (orange) and false
negatives (red). MPM reduced the false positives compared
to the STNNet. Furthermore, our method (MPM + Ours)
significantly reduced the false negatives.

4.4. Crowd tracking performance

The goal of drone crowd tracking is to recover the trajec-
tories of people in a video sequence. Following the paper
that proposed the DroneCrowd dataset [36], we evaluated
tracking performance by using the T-mAP score [36]. This
metric is computed on the basis of the estimated trajecto-
ries of head points with confidence scores. Specifically, we
sorted the trajectories (tracklets), formed by the locations
with the same identity, based on the average confidence of
their detection results. A tracklet is considered to be correct
if the matched ratio between the predictions and ground-
truth tracklets is more significant than a threshold. Then,
the average precision with changing the confidence is com-
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Methods T-mAP T-AP0.10 T-AP0.15 T-AP0.20

MCNN [43] 9.16 11.47 9.65 6.36
CAN [21] 4.39 6.97 4.72 1.48

CSRNet [19] 12.15 17.34 12.85 6.26
DM-Count [42] 17.01 22.38 18.34 10.29

STNNet [36] 32.50 35.45 33.99 28.05
Heatmap [12] 31.44±0.20 34.5 33.02 26.80

Heatmap + Ours 33.25±0.28 36.12 34.81 28.83
MPM [13] 41.91±0.84 44.89 43.45 37.38

MPM + Ours 42.08±1.18 44.99 43.39 37.67

Table 2. Tracking performances on DroneCrowd; average T-mAP,
and T-AP at each threshold (T-AP0.10, T-AP0.15 and T-AP0.20)).

puted as T-AP. Following [36], we used three thresholds
(0.10, 0.15, and 0.20). The T-mAP scores are the means
of T-AP using different thresholds (i.e., T-AP0.10, T-AP0.15,
and T-AP0.20). Note that the performance of the compara-
tive methods, except the two backbone methods, are taken
from [36].

Table 2 shows the crowd-tracking performance of
the comparative methods. Both of our methods
(Heatmap+Ours and MPM+Ours) improved T-mAP from
the baseline methods. Moreover, they outperformed the
state-of-the-art method (STNNet [36]). Here, we discuss
why Heatmap+Ours was better than STNNet while its lo-
calization performance was worse. The detection results by
STNNet tend to contain false positives than false negatives,
where L-AP with the large distance threshold more penal-
izes the false negatives than false positives since a false pos-
itive may be associated to a ground truth. In addition, the
detection results of the same object tended to be inconsis-
tent with time. This makes the tracking performance worse.
In contrast, Heatmap+Ours produces consistent detection
results for the same object, i.e., the same object was con-
tinuously detected or not detected over time. Therefore,
even though the total detection performance of our method
was worse, its tracking performance was better than that of
STNNet.

In particular, MPM+Ours significantly improved the
tracking performance T-mAP from the state-of-the-art
method STNNet (+9.58). The features contain not only
the appearance features but also the motion features of each
object in MPM. Since neighbor objects may have different
motions, this can be considered to have a good effect on the
multi-frame attention’s aggregating the temporal features of
the same object, and thus it improved performance a lot.

Figure 5 shows examples of tracking results by STNNet,
MPM, and MPM + Ours. STNNet includes false negative
detections in every frame. The detection results are not con-
sistent in time. For example in Figure 5 (STNNet, the 3rd
row), the person in the white circles was not detected (false
negatives), and the false negatives occur at different per-
sons. Therefore, an ID switching error occurs at the third
frame (white rectangle). In the results of MPM, also has

Images

Ground-
Truth

STNNet

MPM

MPM 
+ Ours

Figure 5. Example of tracking result. White dotted circles indicate
false negative detection errors, and a white rectangle indicates a
switching error.

Methods Mfa Fw Bw L-mAP T-mAP
Heatmap [12] 29.26±2.23 31.44±0.2
Heatmap + SA 21.59±12.52 17.45±11.86

Heatmap + DSTA 31.57±0.39 32.91±0.86
Heatmap + Ours ✓ 30.01±1.35 31.82±2.25
Heatmap + Ours ✓ ✓ 31.97±0.9 32.81±0.67
Heatmap + Ours ✓ ✓ ✓ 32.19±1.01 33.25±0.28

Table 3. L-mAP and T-mAP in ablation study. We report mean
and standard deviation of all metrics over three runs with different
seeds. ’SA’ is self-attention. ’DSTA’ is divided space-time atten-
tion. ’Mfa’ is multi-frame attention. ’Fw’ is forward warping.
’Bw’ is backward warping.

false negatives; however, the false negatives occur in the
same person. Even if the detection results are not signifi-
cantly different between these two methods, such switching
errors decrease the tracking performance. By introducing
our method to MPM, the multi-frame context can be used
for estimation. Consequently, the performance of MPM +
ours is superior to other comparative methods.

4.5. Ablation study

We performed an ablation study to examine the effec-
tiveness of each module, i.e., multi-frame attention (Mfa),
forward warping (Fw), and backward warping (Bw). We
used the simple method (Heatmap [12]) as the backbone. In
addition to the ablated methods, we evaluated two methods;
1) Heatmap+SA, which used a standard self-attention mod-
ule [33] that aggregates only spatial context in each frame;
2) Heatmap+DSTA, which introduced the spatial-temporal
self-attention that is used in [5] that separately applies the
spatial-attention and temporal attention.

Table 3 shows the localization (L-mAP) and tracking
(T-mAP) performance metrics of each ablated method.
Heatmap+SA did not improve performance in either met-
ric. We consider that the spatial context far from a tracking
object is not essential for detection and tracking, and thus
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Inserted block L-mAP T-mAP
1st (480×270) 34.92±0.78 35.38±0.14
2nd (240×135) 28.07±2.15 32.33±2.41
3rd (120×67) 31.53±1.69 31.77±1.69
4th (60×33) 32.19±1.01 33.25±0.28

Table 4. Localization and tracking performance when changing the
layers inserted in the proposed modules. We report the resolutions
of the feature maps in each block.

the performance was worse. Heatmap+DSTA improved
the performance. Our method further improved the perfor-
mance compared to these methods. In addition, each ele-
ment of the proposed method improved the localization and
tracking performance.

4.6. Hyper-parameter

We evaluated the localization and tracking performance
by changing the layers inserting the proposed modules (for-
ward warping, multi-frame attention, and backward warp-
ing modules). The encoder of the Siamese U-nets consists
of four blocks, each consisting of three convolution layers
and one pooling layer. We inserted the proposed modules
after each block ( the 1st, 2nd, 3rd, and 4th).

Table 4 shows the localization and tracking performance.
We used the 4th block as the default setup because of low
memory and high running time, which are related to the
resolution of the input feature map for the module. On
the other hand, the performance improvement was the best
when inserting the modules after the first block, i.e., the
highest resolution. In all settings, the proposed method im-
proved the tracking performance compared to the backbone
(Heatmap).

4.7. Tracking performance under different condi-
tions

As described above, DroneCrowd [36] contains videos
showing many situations. We evaluated the tracking per-
formance (T-mAP) under the following conditions: object
size (large or small), density (sparse or crowd), and weather
(sunny, cloudy, or night). Note that each video has several
attributes (e.g., sparse, small, and night).

Figure 6 shows the tracking results under different con-
ditions: (a) objects are large, and illumination is bright; (b)
objects are small, and illumination is dark due to the shadow
of a building. Even though tracking people under condition
(b) is difficult, our method successfully tracked the people.

Figure 7 shows a radar chart of the tracking performance,
in which blue indicates Heatmap [12] and red indicates
Heatmap+Ours. Besides the condition ‘Night’, the pro-
posed multi-frame attention with feature-level warping im-
proved tracking performance. In ‘Night’, it is too difficult
to identify people due to their dark backgrounds. Therefore,

(a)

(b)

Figure 6. Examples of tracking results on each condition. (a)
Cloudy, Large, Crowded. (b) Sunny, Small, Crowded.

Heatmap
Heatmap 

+ Ours

Small

Night

Sunny

CloudySparse

Crowd

Large

Figure 7. Radar chart of the tracking performance in each condi-
tion. Blue: Heatmap [12]; Red: Heatmap + Ours.

our multi-frame attention did not improve performance on
those sequences. The comparative methods could not trace
people under those conditions either. It is required to effec-
tively represent the small differences between objects and
backgrounds to deal with this problem. This is future work.
Note that objects are often sparse in videos whose condition
is ‘Night’; thus, the performance in the ‘Sparse’ condition
was worse than that in ‘Crowd’. In all conditions except
‘Night’, our method improved the performance with almost
the same value. It indicates that our method was effective
in many situations.

5. Conclusion

This paper proposed a point-level multiple object track-
ing method that can track small human heads from a video
captured by a drone. This method can align the object fea-
tures in the map by feature-level warping and aggregate the
image features from multiple frames by multi-frame atten-
tion. This makes the method able to use multi-frame con-
text effectively. Experiments demonstrated that our method
could effectively use multi-frame context and outperformed
the state-of-the-art method on the DroneCrowd dataset.
Acknowledgment: This work was supported by JSPS
KAKENHI Grant Number JP21K19829.
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