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Abstract

Multiple existing benchmarks involve tracking and seg-
menting objects in video e.g., Video Object Segmenta-
tion (VOS) and Multi-Object Tracking and Segmentation
(MOTS), but there is little interaction between them due to
the use of disparate benchmark datasets and metrics (e.g.
J&F , mAP, sMOTSA). As a result, published works usu-
ally target a particular benchmark, and are not easily com-
parable to each another. We believe that the development of
generalized methods that can tackle multiple tasks requires
greater cohesion among these research sub-communities.
In this paper, we aim to facilitate this by proposing BURST,
a dataset which contains thousands of diverse videos with
high-quality object masks, and an associated benchmark
with six tasks involving object tracking and segmentation
in video. All tasks are evaluated using the same data and
comparable metrics, which enables researchers to consider
them in unison, and hence, more effectively pool knowl-
edge from different methods across different tasks. Addi-
tionally, we demonstrate several baselines for all tasks and
show that approaches for one task can be applied to an-
other with a quantifiable and explainable performance dif-
ference. Dataset annotations are available at: https:
//github.com/Ali2500/BURST-benchmark.

1. Introduction

Segmenting and tracking multiple objects in video is
widely researched because of applications in autonomous
robots and self-driving vehicles. Over time however, this
broadly defined task has splintered into multiple datasets
and benchmarks, each with its own sub-community. Even
though tasks such as Video Object Segmentation (VOS)
and Multi-Object Tracking and Segmentation (MOTS) are
closely related, there is a lack of interaction between their

Figure 1. Assorted object annotations from BURST showing di-
verse outdoor, indoor and driving scenes.

sub-communities.
Our work aims to remedy this; we propose BURST: a

dataset containing a large, diverse set of videos with object
mask annotations, and an associated benchmark with six re-
lated tasks. BURST is based on the existing TAO dataset by
Dave et al. [5] for bounding-box level multi-object tracking,
but has been extensively re-annotated with pixel-precise
masks. The videos in our dataset include indoor and out-
door scenes, ‘in-the-wild’ videos, scripted movie scenes,
and street scenes captured from moving vehicles. Exam-
ples can be seen in Fig. 1. The six tasks in our benchmark
are organized into a hierarchical taxonomy which is illus-
trated in Fig. 2. All tasks fall under the umbrella of requir-
ing pixel-precise segmentation and tracking of potentially
multiple objects in video sequences.

The first level in our task hierarchy splits tasks based on
the set of target objects that have to be segmented/tracked.
For exemplar-guided tasks, an explicit cue is given for each
of the target objects. For class-guided tasks, the set of tar-
get objects are all those which belong to a predefined set
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BURST Suite

Exemplar-guided Class-guided

Mask Bounding Box Point Common Long-tail Open-world

Video Object 
Segmentation [14, 21, 31]

Video Instance 
Segmentation [22, 29, 32]

Multi-object Tracking & 
Segmentation [27, 34]

Unidentified Video 
Objects [17,29 ]

VideoClick [11]

Figure 2. BURST Task Taxonomy/Hierarchy. Boxes in the bottom row give examples of existing benchmarks which tackle that task.

of object classes. The exemplar-guided stream is further
divided into three tasks where, for the first video frame in
which the target object appears, we are given either (i) the
object mask, (ii) its bounding box or (iii) a random point
inside the object. The class guided stream is also further di-
vided into three tasks where the pre-defined class set is ei-
ther (i) a small set of common object classes, (ii) a larger set
of classes with several infrequently occurring classes (i.e.
long-tail), or (iii) an ‘open-world’ task [17] where methods
are trained on a small set of known classes, but during infer-
ence are expected to additionally track and segment objects
belonging to a larger, previously unseen set of classes.

Fig. 2 (bottom row) shows which existing benchmarks
map onto our task taxonomy e.g. Video Object Segmenta-
tion [21, 31] is identical to our mask exemplar-guided task,
whereas Video Instance Segmentation (VIS) [32, 22] and
Multi-Object Tracking and Segmentation (MOTS) [27] are
similar to the common class-guided task.

The hierarchy shows that these tasks are highly related
to one another. As we will show in Sec. 7, research ad-
vances targeting one task can be utilized for other tasks.
For example, state-of-the-art methods [4, 33, 20, 23] for
exemplar-guided tasks work by ‘propagating’ object masks
from one video frame to another. Here we note that im-
provements in mask-propagation (i.e. temporal association)
can benefit class-guided methods. With BURST, we aim to
bring together methods for these tasks under a single um-
brella benchmark to encourage more knowledge exchange.
To further facilitate unification and interaction, we use the
same set of metrics based on Higher-Order Tracking Accu-
racy (HOTA) [18] for all tasks. This enables direct, quanti-
tative comparison between different methods targeting dif-
ferent tasks. To demonstrate the usefulness of this feature,
we setup several effective baselines for our proposed tasks,
some of which are constructed by bootstrapping standard
approaches for other tasks. The comparability of the result-
ing scores offers interesting insight into how well methods
generalize across tasks.

To summarize, we propose BURST: a large, diverse and
challenging dataset with mask-level object annotations, and
an associated benchmark with 6 tasks related to segment-

ing and tracking multiple objects in video. Methods can
be evaluated for one or more tasks using the same under-
lying data and comparable metrics. This aims to encour-
age greater cohesion and knowledge exchange between re-
searchers working on these tasks, and accelerate develop-
ment of generalized methods that can tackle multiple tasks.

2. The BURST Benchmark
Existing object tracking and segmentation datasets are

typically geared towards certain types of video scenes e.g.
in-the-wild internet videos [21, 32, 31, 22], outdoor street
scenes captured from a driving vehicle [7, 34, 2, 11]. The
videos in BURST, on the other hand, cover multiple types
of scenes and encompasses a large set of 482 object classes.
We use the videos from TAO [5], which is in-turn com-
posed from videos belonging to 7 different datasets: Ar-
goVerse [2] and BDD [34], which contain outdoor driv-
ing scenes captured from moving vehicles, LaSOT [6]
and YFCC100M [26], which contain assorted, in-the-wild
videos from the internet, and AVA [8], Charades [24] and
HACS [35], which contain videos with human-human and
human-object interactions, but with some subtle differ-
ences: Charades contains mostly indoor scenes with slow
object motion, AVA contains snippets from scripted movies,
and HACS contains in-the-wild internet videos. We refer
the reader to Fig. 1 from Dave et al. [5] for an illustrated
overview of our dataset classes.

BURST contains 2,914 videos with a lower frame di-
mensions of at least 480px. The videos are ∼30s in length,
and the training, validation and test set contain 500, 993,
and 1421 videos, respectively. The training set is annotated
at 6fps whereas both validation and test sets are annotated
at 1fps. Table 1 summarizes statistics for BURST.
Federated Annotations. Similar to TAO [5], the annota-
tions in BURST are federated, i.e. not all objects belonging
to the predefined set of object classes are annotated in every
video. This is similar to the philosophy behind the image-
level LVIS [9] and OpenImages [15] datasets. Every video
in BURST contains the following, in addition to the non-
exhaustive annotations: (1) a list of object classes which are
non-exhaustively annotated, and (2) a list of object classes
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Table 1. Statistics for BURST train, validation and test sets.

Train Validation Test Total

Annotation fps 6 1 1 -
Videos 500 993 1421 2,914
Total video length (hrs) 4.94 9.84 14.12 28.9
Object tracks 2,645 5,481 7,963 16,089
Annotated frames 107,144 36,375 52,194 195,713
Object masks 318,2001 114,825 167,132 600,157
1 includes 212,477 automatically generated and consistency-verified masks

which are not present in the video. This information enables
us to derive three sets of videos for every object class: where
it is present, absent and non-exhaustively present. This in-
turn is used to penalize false positives and negatives for each
object class during evaluation. We refer readers to the TAO
dataset paper [5] for more details.

3. Comparison to Related Datasets
There exist several datasets of various sizes which tackle

one or more tasks evaluated by our benchmark. Tables 2
and 3 compare BURST to these existing datasets.

3.1. Comparison by Tasks

Table 3 shows which tasks each dataset/benchmark eval-
uates in terms of our task taxonomy (Fig. 2). We note that
existing benchmarks typically address one or at most two
tasks. The ‘/’ entries mean that the dataset does not evalu-
ate the given task, but that it is possible to do so e.g. a class-
guided benchmark can also be formulated as an exemplar-
guided benchmark by assuming that the first-frame object
masks are known during inference. For exemplar-guided
tasks, the two most common benchmarks are DAVIS [21]
and YouTube-VOS [31]. Both contain diverse, in-the-
wild, videos from the internet which are ∼5-10s in length.
VOT [14] contains longer videos, but is a single-object
tracking dataset.

Looking at the class-guided stream, most datasets can
be assigned to one of two distinct groups. On one hand,
benchmarks such as BDD [34], KITTI [7] and MOTS-
Challenge [27] are inspired from classical Multi-Object
Tracking (MOT). They target autonomous driving prob-
lems, and contain lengthy videos of street scenes captured
from a driving vehicle or a walking pedestrian. We see
that KITTI and MOTS-Challenge evaluate methods using
‘sMOTSA’, which is an extension of the popular MOTA
(Multi-Object Tracking Accuracy) measure [25] for when
segmentation masks are used instead of bounding-boxes.
On the other hand, datasets like YouTube-VIS [32] and
UVO [29] appear more related to Video Object Segmenta-
tion (VOS), and typically contain diverse, but shorter videos
from the internet. OVIS [22] can be seen as an extension of
YouTube-VIS with longer videos and more object occlu-
sion. UVO stands out from the others in that it could be
used for the open-world task since it contains mask anno-
tations for a anything which humans would consider to be

‘objects’ as opposed to being restricted to a small class of
objects. Datasets in this category use mean Average Pre-
cision (mAP) as an evaluation measure. These benchmarks
can thus be seen as video extensions of image-level instance
segmentation benchmarks such as COCO [16], LVIS [9]
and OpenImages [15] where mAP is the metric of choice.

In contrast to all of the above, BURST contains the re-
quired annotations to evaluate all six tasks. In particular, the
long-tail open-world tasks are enabled by the fact that our
object class set is sufficiently large.

3.2. Comparison by Difficulty

Table 2 lists several datasets along with various param-
eters which subjectively determine their ‘difficulty’. In
terms of video length, the average sequence in BURST lasts
36.8s, which is longer than the other datasets. Lengthy
videos are challenging because of more object instances,
longer occlusions, and are also more memory demanding
because of the higher frame count. In terms of number
of annotations, BURST contains a total of ∼600k object
masks across ∼200k video frames, which is larger than
most other datasets except BDD and UVO. With regard to
object classes, BURST contains objects belonging to 482
possible classes, which is significantly higher than the class
set for other benchmarks. To the best of our knowledge, we
are the first to provide pixel-precise object annotations for
such a large set of object classes. Besides increasing ob-
ject diversity, this feature also enables us to evaluate meth-
ods for the long-tail class-guided task. As mentioned in
Sec. 2 however, our annotations are federated, i.e. not ex-
haustive. Finally, we note that that BURST can better evalu-
ate the generalization capability of methods since it contains
more scene diversity compared to existing datasets, many of
which focus on specific settings e.g. driving scenes.

4. Dataset Creation
We build upon the TAO dataset [5] which contains object

bounding-box annotations at 1fps. We professionally re-
annotated this to obtain pixel-precise masks for all 342,052
object bounding-boxes1. We then set out to increase the
temporal density of annotations in the training set from 1fps
to 6fps. Visualizing a sequence of annotations at 1fps shows
large movements and appearance changes between succes-
sive frames. It is challenging to train tracking-related meth-
ods on this data since they are designed to learn video mo-
tion cues from smooth video frame progression. However,
annotating object masks at the full video frame-rate (24-
30fps) would be in-feasibly expensive and highly redundant
since there is usually little scene change between succes-
sive frames. Annotating at 6fps is thus a compromise (also
used by other datasets [21, 31, 32]) since it reduces anno-

1We re-used the small set of 27,500 masks published by [28].
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Table 2. Dataset Comparison By Size and Difficulty. Comparison of datasets according to various measures of ‘difficulty’. Statistics for
validation/test may not be exact if data is not publicly available.

Difficulty Train Size Validation / Test Size

Dataset Setting Length (hrs) Masks / Frame # Classes Ann Masks Ann Tracks Ann Frames Ann Vids Ann Masks Ann Tracks Ann Frames Ann Vids

VOT [14] Single Object 10.7 1 - 0 0 0 0 19,903 62 19,903 62
DAVIS‘17 [21] Internet Videos 2.9 2.6 78 10,238 144 4,219 60 16,841 242 6,240 90
YT-VOS [31] Internet Videos 4.5 1.63 94 12,918 6,459 94,440 3,471 4,310 2,155 28,825 1,048

BDD [34] Driving 40 11.4 7 347,442 17,838 30,745 154 77,389 4,873 6,475 32
KITTI-MOTS [27] Driving 39.0 5.2 2 38,197 748 8,008 21 61,906 961 11,095 28
MOTS-Chal. [27] Surveillance 34.4 10.0 1 26,894 228 2,862 4 32,269 328 3044 4

YT-VIS [32] Internet Videos 4.5 1.69 40 103,424 3,774 61,845 2,238 29,431 1,092 17,415 645
UVO [29] Human Actions 3 12.3 - 416,001 76,627 39,174 5,641 177,153 28,271 18,966 5,587

BURST General / Diverse 28.9 3.1 482 318,200 2,645 107,144 500 281,957 13,444 88,569 2,414

Table 3. Dataset Comparison by Task. ‘/’ means that the dataset
contains annotations to setup the given task, but this is not done
officially as part of that benchmark.

Exemplar-guided Class-guided
Mask Box Point Common Long-Tail Open-World

VOT [14] ✓ ✓ / ✗ ✗ ✗
DAVIS [21] ✓ / / ✗ ✗ ✗
YouTube-VOS [31] ✓ / / ✗ ✗ ✗
BDD [34] / / / ✓ ✗ ✗
KITTI-MOTS [27] / / / ✓ ✗ ✗
MOTS-Chal. [27] / / / ✓ ✗ ✗
YouTube-VIS [32] / / / ✓ ✗ ✗
OVIS [22] / / / ✓ ✗ ✗
UVO [29] / / / ✓ ✗ ✓

BURST ✓ ✓ ✓ ✓ ✓ ✓

tation cost while still ensuring smooth scene progression.
For BURST however, even 6fps annotations would require
255,654 additional mask annotations for the training set. To
reduce cost and human effort, we instead developed a semi-
automatic procedure to do this, as explained below:

1. Automatic Mask Propagation Interestingly, the task
of temporally densifying annotations is practically identi-
cal to the mask exemplar guided task referred to in Fig. 2:
given an object mask in a certain frame, we need masks
for the same object in other video frames. In this case, the
video length over which this mask propagation step has to
be performed is quite short – at most 1s since we already
have human-labeled 1fps annotations. We found that two
recent, state-of-the-art methods for ‘Video Object Segmen-
tation’, namely STCN [4] and AOT-L [33], perform this task
quite well with off-the-shelf trained weights. To further im-
prove mask quality, we obtain two different sets of results
from each of these methods by running them in two differ-
ent ways. As shown in Fig. 3 (left), given a pair of annotated
frames with a number of non-annotated frames in between,
we can either run the method with the first frame as the
reference and propagate forward sequentially, or, starting
from the last frame as reference, propagate backward se-
quentially. Doing so for both methods results in a total of
4 different sets of propagated masks. Additionally, we use
STCN to obtain a fifth, tie-breaking two-sided result by us-
ing both annotated frames as the reference frames (Fig. 3,
right), and propagating the masks directly to each of the

other non-annotated frames (i.e. the frame history update
mechanism in STCN is disabled). Thus, we have a total of
5 masks for each object. We subsequently perform a per-
pixel majority vote to obtain a final consensus mask.

2. Mask Quality Assessment Although most annotations
produced by step 1 are high quality, there are several fail-
ure cases e.g. poor lighting, occluded scenes, erratic camera
motion. To identify them, one could manually inspect each
object mask and decide if it is of ground-truth quality. Even
though doing this is still significantly less costly than fully
annotating the object masks, we nonetheless developed a
more efficient yet effective procedure for evaluating mask
quality: we compute the IoU of each of the five masks gen-
erated in step 1 with the consensus mask. The five result-
ing IoUs are then averaged to obtain a final metric in [0, 1]
which is treated as a quality score Q for the consensus mask.

3. Manual Re-annotation of Low Quality Masks. To
decide which masks are of sub-standard quality, we con-
sider two key measures: the score Q from step 2, and the
pixel mask area of the consensus mask. We asked two pro-
fessional annotators to manually assess the quality of a set
of 250 object masks. These were sampled such that they
are uniformly distributed with respect to their Q scores and
pixel areas. The annotators were asked to assign one of
three ratings to each object mask: (1) ‘good’: mask quality
is as good as human annotated ground-truth, (2) ‘satisfac-
tory’: there are visible errors e.g. object contours are imper-
fect, minor instances of mask fragmentation, but overall still
acceptable and (3) ‘bad’: there are unacceptable errors e.g.
object ID switches, gross under/over-segmentation. Fig. 4
illustrates the results of this survey: each object mask is
shown as a point whose color reflects the human-assigned
rating. The points are plotted w.r.t their Q score and mask
pixel areas. We observe a strong correlation between both
of these measures and the human-perceived mask quality,
since most ‘bad’ masks are in the lower-left corner of the
plot, and vice versa. Based on this plot, we decided to man-
ually re-annotate all object masks whose Q scores were be-
low 0.8, or whose mask areas were smaller than 750 pixels.
This region is highlighted in red in Fig. 4.

By using this workflow to densify the training set an-
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Figure 3. Illustration of mask propagation techniques for densifying the training set. STCN [4] and AOT-L [33] are both executed in the
forward and backward settings. The two-sided setting is only executed for STCN.
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Figure 4. Human assessment of mask quality plotted against our
automated quality score Q and pixel area of the consensus masks.
All masks falling in the red region were manually re-annotated.

notations from 1fps to 6fps, we only require 43,177 out
of 255,654 object masks (16.9%) to be manually annotated
since the remaining automatically generated masks passed
the quality threshold to be considered ground-truth.

5. BURST Task Taxonomy
As explained in Sec. 1, several existing benchmarks in-

volve closely related tasks pertaining to segmenting and
tracking multiple objects in video, but there is limited
cross-interaction between their respective research sub-
communities. With BURST, we aim to unify these dis-
parate benchmarks under a single umbrella with shared data
and consistent evaluation metrics. The six tasks constituting
BURST are illustrated in Fig. 2 and explained below.

5.1. Exemplar-guided

This set of tasks requires tracking and segmenting mul-
tiple target objects in a video given some ground-truth cue
for each of these objects in the first video frame in which
they appear. Note that this may not necessarily be the first
frame of the video. The three tasks in this stream are based
on the type of the given cue:

1) Mask. The method is given the segmentation mask for
each of the target objects in the first frame.

2) Box. The bounding box coordinates of the target objects
in the first frame are given. Note that the predicted output
should still be pixel-precise segmentation masks.

3) Point. This is the most challenging of the three where
the method is only given one pixel coordinate which lies
inside the target object mask. Again, the predicted output
should still contain segmentation masks.

5.2. Class-guided

For this set of tasks, methods are required to track, seg-
ment and assign a class label to all objects in a video which
belong a pre-defined set of object classes. The three tasks
in this stream are:

4) Common. Here, the target class set includes 78 classes
from the popular COCO dataset [16] spanning diverse ob-
ject categories e.g. animals, persons, vehicles, furniture,
food items.

5) Long-tailed. This task involves a large set of 482 object
classes from the LVIS dataset [9]. It is challenging because
several classes contain very few training samples.

6) Open-world. The idea behind open-world instance seg-
mentation [17] is that methods are trained on a certain,
‘known’ set of object classes, but during inference, they
are expected to additionally segment objects belonging to
an ‘unknown’ class set. Methods need not assign class la-
bels to the predicted instances, and the evaluation does not
penalize false positives. For our open-world task, the 78
‘common’ classes are the ‘known’ set, and the ‘unknown’
set includes everything that is in the 482 class ‘long-tail’ set,
but not in the ‘common’ set.

6. Unified Evaluation Metrics
We evaluate all tasks using Higher Order Tracking Ac-

curacy (HOTA) [18] because it strikes a good balance be-
tween measuring frame-level detection and temporal associ-
ation accuracy. For the open-world task, a slightly modified,
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recall-based variant of HOTA called Open World Tracking
Accuracy (OWTA) is used.
HOTA. To calculate HOTA [18], the predicted detections
(per-frame) are first matched to the ground truth detections
based on the IoU between their masks. Using this mapping,
the Detection Accuracy (DetA) and the Association Accu-
racy (AssA) can be calculated and combined by taking their
geometric mean to obtain the HOTA score, i.e.

HOTA =
√
DetA ·AssA. (1)

Multiple IoU thresholds are used to compute the predic-
tion←→ ground-truth matching; the final HOTA (and DetA,
AssA) is calculated by averaging over the thresholds.
Detection Accuracy (DetA). Using the mapping between
predicted and ground truth detections, these detections can
be partitioned into a set of True Positive (TP), False Posi-
tive (FP), and False Negative (FN) detections. The DetA,
which solely measures the quality of the detections while
disregarding track associations, can then be obtained by

DetA =
|TP|

|TP|+ |FN|+ |FP|
. (2)

Association Accuracy (AssA). To calculate the AssA, an
association score A(c) is calculated for each true positive
detection c. The final AssA score is obtained by averaging
over the set of true positive detections TP:

AssA =
1

|TP|
∑

c∈{TP}

A(c). (3)

The association score A(c) for true positive detection c is
calculated as

A(c) = |TPA(c)|
|TPA(c)|+ |FNA(c)|+ |FPA(c)|

, (4)

where True Positive Associations (TPAs), False Posi-
tive Assocations (FPAs), and False Negative Associations
(FNAs) [18] are computed by comparing the whole pre-
dicted track which goes through detection c with the whole
ground truth track which goes through detection c. We refer
the reader to Luiten et al. [18] for detailed explanations.
Object Classes. To handle multiple object classes, HOTA
can be calculated separately for each class, followed by an
averaging step to yield a final metric. To facilitate eas-
ier performance analysis over different object classes, we
average the per-class HOTA scores over three different
sets of object classes: (1) ‘common’ set, which contains
78 object classes from COCO [16], (2) ‘uncommon’ set,
which contains 404 infrequently occurring object classes
from LVIS [9], and (3) ‘all’ set, which is the union of both
(78 + 404 = 482 classes). We denote these three metrics
with HOTAcom, HOTAunc and HOTAall, respectively.

HOTA for Exemplar-guided Tasks. The evaluation for
the exemplar-guided task is identical to the class guided
task, and the scores can be directly compared. How-
ever, it should be noted that the exemplar-guided meth-
ods inherently receive extra ground-truth information: a
mask/box/point, and the class label for each target object.

6.1. Open-world Evaluation

For the open-world task, methods are expected to seg-
ment and track objects of previously unseen classes. Since
it is infeasible to label every single object (even the def-
inition of ‘object’ is ambiguous), we have to assume that
the prediction may contain valid objects which are not cov-
ered by the ground truth. This entails that false positive
detections should not be penalized, and hence, for the open-
world task, we replace HOTA with Open-World Tracking
Accuracy (OWTA) [17], which is calculated as:

OWTA =
√
DetRe ·AssA, (5)

where the Detection Recall (DetRe) is given by

DetRe =
|TP|

|TP|+ |FN|
, (6)

Note that DetRe is similar to DetA, but it disregards false
positives (FP). To prevent methods from obtaining a high
score by simply predicting an extremely large number of
detections, we mandate that object mask predictions for the
open-world task cannot overlap with each other.

7. Baselines
For each of our six tasks (Sec. 5), we implement base-

lines utilizing existing works with off-the-shelf trained
models. These serve a point of comparison for future works,
and also show how one approach can be utilized for multi-
ple tasks, and how performances across tasks can be directly
compared and analyzed. In general, we utilize image-level
object detectors in the context of ‘tracking-by-detection’,
where the tracking task is conceptually divided into two
steps: a ‘detection’ step in which objects are segmented in
individual frames, followed by a ‘tracking’ step in which
the per-frame detections are associated over time. Although
recent state-of-the-art methods [1, 19, 30, 3] diverge from
this paradigm by jointly segmenting and tracking objects
in video clips, we find that it remains a versatile approach
for tackling the tasks in BURST. We construct functional
baselines for each task using some variation of tracking-
by-detection. The following sub-sections detail each of the
baselines and the results are presented in Table 4.

7.1. Exemplar-guided

We show two baselines for each task in this stream: (1)
applying STCN [4], which is a recent ‘Video Object Seg-
mentation’ method for propagating object masks through
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Table 4. Baseline results for all tasks using various methods. Evaluation metrics are reported separately for ‘common’, ‘uncommon’ and
‘all’ classes. Object detector training data: *: COCO, †: LVIS.

Validation Test
Baseline Method HOTAall HOTAcom HOTAunc HOTAall HOTAcom HOTAunc

E
xe

m
pl

ar
G

ui
de

d

Mask STCN [4] 49.8 52.2 49.2 52.4 51.1 52.7
Box Tracker* [12] 18.0 35.8 13.6 14.1 28.0 11.4

Box
STCN (PointRend) 45.2 48.9 44.3 46.0 48.9 45.4
STCN (Matched Det*) 24.5 47.6 18.7 25.0 41.9 21.7
Box Tracker* 13.7 34.2 8.6 13.6 27.7 10.8

Point STCN (Matched Det*) 24.4 44.0 19.5 24.9 39.5 22.0
Box Tracker* 12.7 31.7 7.9 10.1 24.4 7.3

C
la

ss
G

ui
de

d

Common STCN Tracker* - 51.2 - - 34.6 -
Box Tracker* - 45.5 - - 34.3 -

Long-tail STCN Tracker† 5.5 17.5 2.5 4.5 17.1 2.0
Box Tracker† 8.2 27.0 3.6 5.7 20.1 2.9

Open-world

OWTAall OWTAcom OWTAunc OWTAall OWTAcom OWTAunc

STCN Tracker 64.6 71.0 25.0 57.5 62.9 23.9
Box Tracker 60.9 66.9 24.0 55.9 61.0 24.6
OWTB [17] 55.8 59.8 38.8 56.0 59.9 38.3

video, and (2) a simple box tracker which builds object
tracks by starting from the given first-frame mask, and then
associating object detections in future frames using Hungar-
ian matching based on their bounding-box overlap.

Mask-guided. Here, STCN consistently out-performs
the box tracker for both class sets since it is a state-of-
the-art method for exemplar-guided tracking whereas the
box tracker is a basic approach. Note how the difference
widens for uncommon classes where STCN achieves 49.2
HOTAunc (validation) whereas box tracker only achieves
13.6. This is because STCN is class-agnostic, and can track
any given first-frame object mask, whereas the box tracker
uses object detections produced by a Mask2Former [3]
model trained on COCO [16] (i.e. ‘common’ classes).
Nonetheless, the applicability of tracking-by-detection for
this task shows that exemplar-guided tasks may benefit from
future improvements to image-level detectors.

Box-guided. For the box and point guided tasks, we for-
mulate baselines by treating them as extensions of the mask-
guided task with an additional ‘box → mask’ or ‘point →
mask’ pre-processing step which regresses the segmenta-
tion mask from the given first-frame bounding-box or point,
respectively. For the box-guided task, we do this in two
ways: (1) We compute the IoU between the given bounding
box with all the bounding boxes of the image detections for
that frame, and assign the mask belonging to the detection
with the highest overlap, and (2) we input the given first-
frame bounding box to a PointRend [13] based mask regres-
sion head from a MaskRCNN [10] model, and use the re-
sulting segmentation mask. Looking at Table 4, we see that
the scores for box-guided are generally lower than those for
mask-guided due to the additional ‘box→mask’ regression
step. Among box-guided scores, PointRend performs much

better than using the best-matched detection. For HOTAunc
in particular, the PointRend baseline achieves 44.3 (valida-
tion) whereas the matched detection baseline only gets 18.7.
Given the fact that both networks (the image detector used
for matching, and the PointRend mask head) are trained on
COCO, it shows that PointRend is a much more robust ‘box
→ mask’ regressor than matching detections.

Point-guided. Finally, for the point-guided task we im-
plement ‘point→ mask’ by taking the mask for the highest
scoring detection which contains the given point. Since this
technique is prone to errors, we see that in terms of all three
metrics, the baselines for the point-guided task are worse
compared to those for box-guided and mask-guided.

7.2. Class-guided

We show two tracking-by-detection baselines per task:
(1) A simple box tracker which links per-frame object de-
tections using box IoU followed by Hungarian matching,
and (2) an ‘STCN tracker’, where, in order to associate ob-
ject detection masks in frame t with those in t + 1, we use
STCN to propagate the masks from frame t+ 1 to frame t,
and then use the IoU between these propagated masks and
the object masks in frame t as an association metric.

Common. This task requires segmenting and tracking ob-
jects belonging to the 78-class ‘common’ set. Here, STCN
tracker performs better than the box tracker (51.2 vs. 45.5
HOTAcom) because STCN-based mask propagation is more
accurate for temporal association compared to bounding-
box IoU. By effectively utilizing STCN, a method designed
to tackle the mask exemplar-guided task, for class-guided
tracking, we exemplify the related nature of these tasks and
the potential for knowledge exchange among them. Note
that we do not evaluate the common task for ‘uncommon’
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classes since this is not required by the task definition.

Long-tail. Here, methods are required to segment and track
objects belonging to the 482-class ‘all’ set. We note that
the scores here are significantly worse than those for the
common task. This is because we used a MaskRCNN [10]
model trained on LVIS [9] to obtain object detections for
this larger set of classes. We observed that the detections
produced by this network are of poor quality. Even for
the ‘common’ classes, the performance of both baselines
reduces drastically when these detections are used (27.0
HOTAcom on validation for box tracker vs. 45.5 for the
common task). Also note that here, the STCN tracker per-
forms worse than the box tracker, even though the opposite
was true for the common task. The reason is that STCN
performs erroneous mask propagation when the input mask
quality is bad. Hence, in this case the more basic bounding-
box IoU tracker performs comparatively better. To the best
of our knowledge, this is the first time that a quantitative
comparison of video object tracking methods is given in
terms of their performance on such a large class set. We
hope that our benchmark will encourage other researchers
to discover ways of mitigating this large performance gap.

Open-world. Finally, for the open-world task, we use the
OWTA metric which is similar to HOTA, but without pe-
nalization for false positives. As per the task definition,
methods can only be trained on the ‘common’ class set,
but during inference, are expected to additionally segment
objects belonging to the ‘uncommon’ set. Here, we again
use the box tracker and STCN tracker with image-level de-
tections from a Mask2Former [3] model trained on COCO.
We additionally report results for the baseline proposed by
Liu et al. [17] (OWTB). Unsuprisingly, all methods suf-
fer performance degradation for the ‘uncommon’ set. The
STCN tracker achieves the highest HOTAall score (64.6
on validation), but OWTB performs significantly better in
terms of HOTAunc (38.8) compared to the next best base-
line (box tracker: 25.0).

7.3. Comparison Across Tasks

Using consistent metrics enables us to directly compare
results for different methods across different tasks. We il-
lustrate this comparison for our baselines in Fig. 5 which
charts the best-performing baseline on the validation set for
each task. Note that we omitted open-world results since the
OWTA metric differs slightly from HOTA. For HOTAcom,
the mask exemplar-guided score of 52.2 is only slightly
higher than that for the common class-guided task (51.2).
This may seem surprising since the exemplar-guided task is
inherently easier because, for each target object, methods
have access to (1) an explicit cue (mask/box/point), and (2)
the class label. However, we noticed that exemplar-guided
methods often lose the target object (e.g. due to occlusion
or erratic motion), and thereafter cannot recover it; for both
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Figure 5. Comparison of baseline performances for different tasks.

STCN and box tracker, if the object is not track-able for
more than a certain number of frames, it is assumed to have
disappeared. On the other hand, class-guided methods pre-
dict an arbitrary number of tracks which may collectively
cover more of the ground-truth object. Because HOTA
calculation involves Detection Accuracy (DetA), the class-
guided methods receive partial credit for correct per-frame
detections even if the object ID is inconsistent/fragmented
over time. This effect is more visible for BURST be-
cause it contains longer videos (∼30s) compared to existing
exemplar-guided benchmarks [21, 31] (∼5-10s).

For HOTAunc however, even the worst exemplar-guided
score (19.5) is much higher than the 3.6 achieved for class-
guided, because exemplar-guided methods are inherently
class-agnostic and can propagate arbitrary object masks, but
our class-guided tracking-by-detection baselines are very
sensitive to per-frame object detection/classification qual-
ity, which is currently quite poor for this larger class set.

8. Conclusion
We present BURST: a benchmark which unifies six tasks

related to object recognition, segmentation and tracking in
video with a clear task taxonomy and consistent evaluation
metrics. Our dataset contains a large and diverse video set
with pixel-precise masks for a large vocabulary of object
classes. We temporally densified the object masks for the
training set using a semi-automated pipeline which yields
accurate results while drastically reducing human annota-
tion effort. Finally, we presented a number of baselines
for the proposed tasks and analyzed their performance. We
hope that our benchmark will serve as a valuable resource
for researchers to evaluate their object tracking methods.
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