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Abstract

In this paper, we introduce a contrastive learning frame-
work for keypoint detection (CoKe). Keypoint detection
differs from other visual tasks where contrastive learning
has been applied because the input is a set of images in
which multiple keypoints are annotated. This requires the
contrastive learning to be extended such that the keypoints
are represented and detected independently, which enables
the contrastive loss to make the keypoint features differ-
ent from each other and from the background. Our ap-
proach has two benefits: It enables us to exploit contrastive
learning for keypoint detection, and by detecting each key-
point independently the detection becomes more robust to
occlusion compared to holistic methods, such as stacked
hourglass networks, which attempt to detect all keypoints
jointly. Our CoKe framework introduces several technical
innovations. In particular, we introduce: (i) A clutter
bank to represent non-keypoint features; (ii) a keypoint
bank that stores prototypical representations of keypoints
to approximate the contrastive loss between keypoints; and
(iii) a cumulative moving average update to learn the key-
point prototypes while training the feature extractor. Our
experiments on a range of diverse datasets (PASCAL3D+,
MPII, ObjectNet3D) show that our approach works as well,
or better than, alternative methods for keypoint detection,
even for human keypoints, for which the literature is vast.
Moreover, we observe that CoKe is exceptionally robust to
partial occlusion and previously unseen object poses.

1. Introduction
Semantic keypoints, such as the joints of a human body,

provide concise abstractions of visual objects in terms of
their shape and pose. Accurate keypoint detections are
of central importance for many visual understanding tasks,
including viewpoint estimation [30], human pose estimation
[5], action recognition [26], feature matching [24], image
classification [46], and 3D reconstruction [20]. There are
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Figure 1. Intuition behind our approach. Image patches depict
feature representations of two different keypoints (blue and red
border) and background clutter (grey border). The star shapes
illustrate the average representations µ1 and µ2 of the correspond-
ing keypoint features. Our approach learns a representation space
such that the following three distances are optimized: (1) The
distance between features of the same keypoint is small, i.e. they
cluster tightly around their mean. (2) The distance between the
keypoint clusters is maximized. (3) The distance between the
clutter features and the keypoint centers is maximized.

many diverse approaches for keypoint detection. Com-
mon approaches include the application of a regression
loss [28, 21], a classification loss [14], or combinations of
either of those with a 3D geometric model of the object
[48]. In recent years, work in contrastive learning has led
to major advances in representation learning [7, 13, 27]
demonstrating benefits over classical losses, such as cross-
entropy, e.g. in terms of robustness and data efficiency [22].
However, most works on contrastive learning in computer
vision focus on the task of image classification, and it
remains unclear how contrastive learning can be applied for
keypoint detection.

In this paper, we introduce a contrastive learning frame-
work for keypoint detection (CoKe). Keypoint detection
differs from other visual tasks where contrastive learning
has been applied, such as face recognition [33] or unsuper-
vised learning [13], because the input is a set of images
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in which multiple keypoints are annotated. To enable the
contrastive learning of keypoint detectors, we need to rep-
resented and detected keypoints independently, such that
a contrastive loss can make the keypoint features different
from each other and from the background. This is very dif-
ferent from current popular approaches to keypoint detec-
tion, such as stacked hourglass networks [?], which attempt
to detect all keypoints jointly. Our approach has two bene-
fits: It enables us to exploit contrastive learning for keypoint
detection, and by detecting each keypoint independently the
detection can become more robust to occlusion compared to
holistic methods (as shown in our experiments).

Our CoKe framework introduces several technical inno-
vations. Specifically, we found that the contrastive learning
of keypoint representations requires the optimization of
three types of distances in the feature space (Figure 1):

(1) The distance between features of the same keypoint
should be small. But the computational cost to calculate
the distance between all features of the same keypoint is
quadratic in their number. We instead reduce the computa-
tional cost to be linear by introducing an average prototypi-
cal representation for each keypoint (stars in Figure 1).

(2) The distance between features of different keypoints
should be large. The number of distance comparisons be-
tween features of different keypoints is combinatorial in the
number of keypoints and training images. To manage this
computational burden, we introduce a keypoint bank which
stores the prototypical representations of all keypoints and
allows for an efficient computation of the distance between
the prototypes of different keypoints (Figure 1 bold orange
arrow).

(3) The distance between keypoint features and features
from the background clutter (Figure 1 grey squares) should
be large to reduce false-positive detections. However, most
of the features in an image are clutter features and it is not
feasible to compute the distance to all of them. Therefore,
we introduce a clutter bank that keeps track of clutter fea-
tures that are spatially close to keypoint features and hence
are most difficult to be distinguished from.

The proposed approximations enable an efficient con-
trastive learning of keypoint detectors. We evaluate CoKe
on several datasets including PASCAL 3D+, MPII, and
ObjectNet3D. We observe that CoKe performs on par, and
often even better, compared to SOTA related work (Stacked
Hourglass Networks, MSS-Net [21]) and to approaches that
use additional supervision in terms of detailed 3D object
geometries (StarMap [48]). These results are remarkable as
CoKe works well on all these datasets while, for example,
the best results on MPII are often achieved by architectures
that are specialized for human keypoint detection. We
also observe that when compared to related work, CoKe is
exceptionally robust to partial occlusion and unseen object
poses. Our main contributions are:

1. We introduce a contrastive learning framework for
keypoint detection.

2. CoKe performs very well on various keypoint detec-
tion datasets for rigid and articulated objects.

3. CoKe achieves exceptional robustness to partial occlu-
sion and previously unseen object poses.

2. Related Work

Keypoint Detection. Keypoint detection, is a widely
studied problem in computer vision. Popular applications
are, e.g., the detection of human joints [5, 28, 36, 37] or
distinct locations on rigid objects [42, 38, 30, 48]. Early
approaches relied on local descriptors [11, 32, 45, 8, 10] that
are distinctive and invariant [25]. While approaches using
local descriptors have proven to be robust to occlusion and
background clutter, they were outperformed by deep learn-
ing approaches that were trained end-to-end [28]. Toshev et
al. [37] first trained a deep neural network for 2D human
pose regression and Li et al. [23] extended this approach
to 3D. Starting from the work of Tompson et al. [36],
regression-based approaches to keypoint detection became
very popular. They perform keypoint detection by regress-
ing a heatmap representation. These approaches achieve a
particularly good performance at detecting the joints of both
articulated and rigid objects [28], because they can implic-
itly leverage the structural information between keypoint to
resolve locally ambiguous keypoint detections. Tulsiani et
al. [38], proposed to integrate the structural information
between keypoints explicitly by integrating 2D and 3D
models, which inspired a number of follow-up works, in
particular for rigid objects [48, 38, 30].

Supervised Contrastive Learning. Contrastive learn-
ing, originates from Metric Learning [6, 41, 31] and in-
volves the learning of a representation space by optimizing
the similarities of sample pairs in this space. Intuitively,
supervised contrastive learning aims to reduce the distance
of feature representations of the same class, while increas-
ing the distance between samples from different classes.
Popular examples use pairs of samples for loss computation
[12], triplets [33], or N-Pair tuples [34].

Recently, contrastive learning has attracted attention
from the research community in self-supervised learning [7,
13, 43, 27, 16]. The main difference in the self-supervised
learning setting is that positive examples are usually gener-
ated using data augmentations[9] or co-occurrence [18, 35]
of a query sample, whereas negative examples are chosen
as other images in the same mini-batch.

While most of the supervised contrastive learning [22]
focuses on learning a holistic representation of the complete
image, in this paper, we target a more fine-grained task -
keypoint detection. Keypoints are localized image patterns
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and therefore require the learning of local feature embed-
dings. The main challenge is that local image patterns can
be highly ambiguous (e.g. the front and back tire of a car)
and therefore require a contrastive learning framework that
can learn to disambiguate local representations, while at the
same time being able to learn a distinct representation that
can be localized accurately.

3. CoKe: Contrastive Keypoint Learning

In this section, we present our framework for contrastive
keypoint learning, then discuss the intuition underlying our
approach and the training pipeline and how to perform
keypoint detection during inference.

3.1. Training CoKe

We use Φ to denote the feature extractor. Given an
input image Ii, it computes the feature map Φ(Ii) = Fi ∈
RH×W×D, where i is the image index in the training data
{Ii|i ∈ {1, . . . , N}}. Using the keypoint annotation we
retrieve the corresponding keypoint features f ik ∈ RD for
the keypoints k ∈ K from the feature map Fi. Similarly,
we can (randomly) select a non-keypoint location as clutter
point and retrieve a set of clutter features {f ic ∈ RD|c ∈
{1, . . . , C}}. We define the distance between two features
as d(·, ·). During training we learn a feature extractor that
optimizes the following distances in the feature space:

(1) One objective for the feature extractor during train-
ing is to minimize the distance between features of the
same keypoint (i.e. the intra-keypoint distance) across all
training images, by minimizing the objective:

Dintra(f
i
k) =

N∑
j=1

d(f ik, f
j
k) ≈ d(f ik, µk). (1)

However, as we described in the introduction it is un-
practical to compute the distance of a keypoint’s feature
vector from one image f ik to the corresponding vectors in
all other training images j ∈ {1, . . . , N}. To resolve this
computational problem, we define a prototypical keypoint
feature µk, that represents the average feature of keypoint
k. Instead of computing the full objective, we approximate
it as simply the distance to the corresponding average repre-
sentation d(f ik, µk). We store the prototypical features of all
keypoints {µk} in a keypoint bank and update them during
training.

(2) The second objective for the feature extractor is
to maximize the distance between features of different
keypoints (i.e. the inter-keypoint distance). This requires
computing the distance between the feature representations
of one particular keypoint k and all other keypoints k

′
over

all training images:

Dinter(f
i
k) =

∑
k′∈K\{k}

N∑
j=1

d(f ik, f
j
k′) ≈

∑
k′∈K\{k}

d(f ik, µk′).

(2)
We approximate this objective by instead computing the
distance to the prototypes of the respective keypoint fea-
tures from the keypoint bank.

(3) The third objective for the feature extractor is to
maximize the distance between the keypoint features
and all clutter features. In the best case, this involves
computing the distance between a keypoint feature f ik to
every clutter feature in all training images. To avoid the
computation of this large amount of distances, we instead
approximate this objective by storing a subset of all clutter
features {θc, c ∈ C} in a clutter bank. Which allows us to
approximate the full objective with

Dclutter(f
i
k) ≈

∑
c∈C

d(f ik, θc). (3)

These three approximations make it feasible to optimize
the overall objective with a feasible computational load. As
the parameters of the feature extractor will change during
learning, the clutter features fc in the clutter bank as well as
the prototypes µk need to be updated. To achieve this, we
follow an EM-type optimization process. First, we initialize
the clutter bank by randomly sampling clutter features from
the training data, and initialize the prototypes by computing
the average feature for every keypoint across the training
data µk =

∑N
i=1 f ik
N . Using these initial estimates, we can

compute the overall objective and train the feature extractor.
While training the feature extractor, we update the clutter
and keypoint bank. We perform those updates in an alter-
nating manner.

3.1.1 Keypoint and Clutter Bank Update

Figure 2, illustrates the process of updating the keypoint
prototypes and the clutter bank during training.

Keypoint Bank Update. Computing the prototypical
keypoint features µk while learning the feature extractor is
challenging, because we want to avoid to re-compute the
prototypes over all training images µk =

∑N
i=1 f ik
N after

every gradient step. Instead, we approximate the sample
mean via a cumulative moving average. Specifically, we
update µk with a training batch of size m using:

µk ← µk ∗ α+

∑m
i=0 f

i
k

m
∗ (1− α). (4)

Clutter Bank Update. The clutter bank contains a lim-
ited number C of clutter features {θc, c ∈ C}. In practice
the size of the clutter bank depends on the availability of
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Figure 2. Illustration the Keypoint and Clutter Bank update process. First, a feature map for the input image is extracted. After a
dimensionality reduction and L2 normalization, we retrieve the keypoint features (F1-F6) and randomly selected clutter features (F7-
F10). The Keypoint Bank is updated using a cumulative moving average update. The Clutter Bank is updated by replacing the oldest
features in the Clutter Bank with (F7-F10) based on the time tag.

GPU memory and we observe that the larger the bank, the
better the training performance (see experiments section).
We update the clutter bank during training by replacing the
oldest clutter features with newly extracted features from
the current training batch based on a time tag that indicates
how long features were stored in the bank.

3.1.2 Feature Extractor Training

When training the feature extractor with SGD, we freeze
the keypoint bank and clutter bank in every gradient step
and use them to compute the gradient update on the weights
of the feature extractor. To compute the distance between
two feature vectors, we use the L2 distance:

d(fa, fb) = (fa − fb)
2 = 2 ∗ (1− fa · fb). (5)

The last step in above equation leverages that all features
in our model are L2 normalized. From Eq. 5 observe
that we can minimize Dintra(f

i
k) by maximizing f ik · µk.

Similarly, we can maximize Dinter(f
i
k) and Dclutter(f

i
k) by

minimizing {f ik · µk′ |∀k′ ∈ K \ {k}} and {f ik · θc |∀c ∈ C}
respectively. To optimize those terms simultaneously, we

use a non-parametric softmax as our loss function. Thus,
the loss for each keypoint feature is calculated as:

L(f ik, {µk}, {θc}) =
ef

i
k·µk∑

k′∈K ef
i
k·µk

′ +
∑

c′∈C ef
i
k·θc′

,

(6)
where {µk} is the keypoint bank and {θc} is the clutter
bank.

Clutter Sampling Loss. A technical problem is that
the features in the clutter bank are copied from a large
number of training images, and therefore it is not practical
to calculate gradient directly w.r.t. {θc}, and therefore the
feature extractor is not optimized w.r.t. the clutter fea-
tures. This technical limitation makes the optimization w.r.t.
the clutter distance Dclutter(f

i
k) converge slowly, especial

when the clutter bank is large. To make the training more
efficient, we propose a clutter sampling loss, which uses the
sampled clutter features f ic from the current training batch
and directly maximizes the clutter to keypoint distance:

L(f ic , {µk}) =
∑
k′∈K

f ic · µk′ . (7)
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Thus, the final loss for training the feature extractor be-
comes:

L(Fi,{µk},{θc})=
∑
k∈K
L(f ik, {µk}, {θc})+

∑
c∈C
L(f ic , {µk}).

(8)

3.2. Inference with the CoKe Model

In the following, we describe the detection process for
keypoints of a single category, but note that this can be
trivially extended to multiple categories. Figure 3 illustrates
the inference process with the CoKe. To locate the predicted
the keypoint position pk for keypoint k on the feature map
of a test image Ii, we apply the following steps:

Extract a feature map Φ(Ii) = Fi using the trained
feature extractor Φ. Use the prototypes µk, k ∈ K to com-
pute the per pixel feature distance d(f , µk) for all feature
vectors f ∈ Fi and store the detection scores in the output
S ∈ RH×W×K . For each keypoint, select the position p
with the highest detection score in S. Project p back to the
original image coordinates.

4. Experiments
In this section, we experimentally evaluate CoKe and

compare it to related works. We first describe the exper-
imental setup, compare CoKe to related work on several
diverse datasets, and study their robustness to partial occlu-
sion. Then discuss qualitative results with ablation studies.

4.1. Experimental Setup

Evaluation Protocol. Evaluation is done using the stan-
dard Percentage of Correct Keypoints (PCK) metric which
reports the percentage of detections that fall within a nor-
malized distance of the ground truth. we use PCK=0.1 for
PASCAL3D+, ObjectNet3D and OccludedPASCAL3D+
datasets following the standard experimental protocol. For
MPII, we use PCKh=0.5 as the evaluation metric. Distance
is normalized by a fraction of the head size (PCKh). We fol-
low the common protocol of evaluating each object category
by computing the average accuracy on the visible keypoints
over all the test images.
Training Setup. We use the standard train-val-test split for
all the datasets. We use a batch size of 64 for training. For
each image, we randomly select a group of 20 clutter points.
The full clutter bank consists of 1024 such groups. We
choose the clutter features to be within two pixels distance
to the keypoint annotation in the feature map. We use the
non-parametric softmax [43] to calculate the similarity be-
tween features and banks. The temperature parameter[17]
that controls the concentration level of the distribution is set
to τ = 0.7.

PASCAL3D+ Dataset. The dataset contains 12 man-
made object categories with totally training 11045 images

and 10812 evaluation images. Different from previous
works [48, 38], we use all images for evaluation, including
occluded and truncated ones.

MPII Dataset. MPII Human Pose [1] consists of images
taken from a wide range of human activities with a chal-
lenging array of articulated poses. The keypoint visibility is
annotated, enabling us to report numbers for the full dataset
as well as partially occluded humans.

ObjectNet3D Dataset. ObjectNet3D consists of com-
mon daily life objects and is notably more difficult com-
pared to PASCAL3D+ as it contains more rare viewpoints,
shapes and truncated objects with occlusion. We test on
nine categories, chosen based on their high annotation ac-
curacy, as some categories in ObjectNet3D have low quality
annotations due to the complexity of this dataset.

OccludedPASCAL3D+ Dataset. While it is important
to evaluate algorithms on real images of partially occluded
objects, simulating occlusion enables us to quantify the
effects of partial occlusion more accurately. We use an
analogous dataset with artificial occlusion for keypoint de-
tection proposed in [39] for object detection. It contains
all 12 classes of the PASCAL3D+ dataset at various levels
of occlusion. The dataset has a total of 3 occlusion levels,
with Lv.1: 20-40%, Lv.2: 40-60% and Lv.3: 60-80% of the
object area being occluded.

4.2. Performance on Various Datasets

PASCAL3D+ and OccludedPASCAL3D+. Table 1
shows the keypoint detection results on the PASCAL3D+
dataset for CoKe models learned from three different back-
bones: ResNet-50 [15], Stacked-Hourglass-Network and
Res-UNet [47]. We also show the performance of StarMap
[48] as reported in the original paper. Note that StarMap
uses 3D models as additional supervision to jointly reason
about the relative position of the keypoints. The perfor-
mance of CoKe with all backbones is constantly high. The
highest performance is achieved with the most recently
developed architecture Res-UNet. When compared to the
original Stacked-Hourglass-Network trained with a regres-
sion loss (SHG) we can clearly observe a large gain in
performance. Most notably, the performance difference is
very prominent for strong occlusion. We believe CoKe
is more robust to occlusion, because of two reasons: 1)
It is actively optimized to discriminate between keypoint
features and clutter features based on their local repre-
sentations only, which might help to reduce the effective
receptive field size and hence reduces the negative effects
of occlusions. 2) CoKe stores the clutter representation
from a large number of images, and hence can better learn
to distinguish keypoints from clutter. Overall, our results
clearly highlight that CoKe is very competitive with related
work, while being highly robust to partial occlusion.

In Table 2, we demonstrate an additional robustness to
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Figure 3. Keypoint detection with CoKe. We first extract feature representation at different positions of input image. Each keypoint in
the Keypoint Bank has an individual representation used as a convolution kernel to compute a response map. The location of maximum
response is used as prediction result. Colored boxes show ground truth and dots the prediction result.

Figure 4. Eight examples of CoKe-Res50’s representation visualization. For each sub-figure, top is the original image with keypoint
annotation, labeled with red dot. Bottom is the response map, predicted by CoKe-Res50. It is worth noting that how all keypoints are
detected accurately despite the difficulty from false positives, occlusions, rare viewpoints, different domain, irregular appearance and
irregular state and rare viewpoints.

unseen object poses. We divide the azimuth pose in the
car category of Pascal3D+ into 4 bins, front, back, left and
right. We train CoKe on the front and back subsets, and
test on seen (7305 images) and unseen (3507 images) poses
separately. Table 2 shows that CoKe is much more robust
to unseen poses compared to SHG.

PASCAL3D+
Occlusion Level Lv.0 Lv.1 Lv.2 Lv.3 Avg
SHG 68.0 46.5 43.2 39.9 49.4
MSS-Net 68.9 46.6 42.9 39.6 49.5
StarMap 78.6 - - - -
CoKe-Res50 77.0 67.6 59.9 53.4 64.4
CoKe-SHG 78.3 66.3 58.4 52.3 63.8
CoKe-ResUnet 80.3 68.5 59.1 54.0 65.5

Table 1. Keypoint detection results on PASCAL3D+ under dif-
ferent levels of partial occlusion (Lv.0:0%,Lv.1:20-40%,Lv.2:40-
60%,Lv.3:60-80% of objects are occluded, L0 is the original
dataset). CoKe outperforms baseline models and is highly robust
to partial occlusion.

PASCAL3D+
Seen-Pose Unseen-Pose

CoKe-SHG 94.0 84.0
SHG 94.2 73.6

Table 2. Robustness of keypoint detectors to unseen poses. For the
car category, we separate PASCAL3D+ training and testing set
into 4 bins using azimuth annotations. We train CoKe on the front
and back subsets, and test under both seen and unseen poses.

MPII. We compare CoKe learned from the SHG back-
bone to a number of related works on MPII in Table 3.
CoKe-SHG is again highly competitive and outperforms
related work by a small but significant margin. Table 4
compares CoKe-SHG and SHG for both occluded and non-
occluded keypoint detection on the MPII dataset. We can
observe that CoKe achieves significantly higher results on
occlusion scenarios compared with SHG. When compared
to a recent and highly competitive baseline such as RSNs
[4], we can observe that RSN achieves a higher performance
on the full dataset, due to its advanced architecture that
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has more than four times more parameters compared to our
model. However, we observe that the model suffers from
a relatively higher performance decrease when the humans
are occluded, hence it is not as robust as our model that
uses a standard Stacked-Hourglass backbone. We also see
the potential for the performance of our model to further
increase with more advanced backbones.

MPII
RecurrentPose[2] 88.1
PoseMachines[40] 88.5
DeeperCut[19] 88.5
PartHeatmap[3] 89.7
SHG[28] 90.9
DualPathNetworks[29] 91.2
PoseRegression[3] 91.2
CoKe-SHG 91.4

Table 3. Keypoint detection results on MPII compared with regres-
sion based algorithms.

MPII
Full Occluded

SHGs 90.1 84.3
RSN [4] 92.7 86.9
CoKe-SHG 91.4 86.7

Table 4. Keypoint detection results on MPII of CoKe-SHG and
SHG on both original and challenging scenarios.

ObjectNet3D. We compare SHG and a CoKe-SHG on
ObjectNet3D in Table 5. CoKe-SHG outperforms SHG by a
large margin on every category. Since ObjectNet3D dataset
contains much more challenging scenarios, we claim that
CoKe is more robust.

ObjectNet3D
coffee dryer kettle jar wash

SHG 31.0 35.1 32.2 41.9 33.9
CoKe-SHG 36.4 37.6 37.8 45.2 36.1

can calc eyegls guitar mean
SHG 66.8 52.3 44.6 45.8 42.62
CoKe-SHG 70.2 57.7 51.3 49.6 46.88

Table 5. Keypoint Detection results on ObjectNet3D+ [44].

In summary, we observe that CoKe is a general pur-
pose framework that constantly achieves a very high perfor-
mance across a wide range of backbone architectures and
for a range of datasets with very different characteristics,
while also being highly robust to occlusion.

4.3. Qualitative Results

Visualization of Keypoint Detection Maps. We visual-
ize the part detection maps from CoKe-Res50 in Figure 4.
Images are selected from the car category in PASCAL3D+

PASCAL3D+
Backbone Reg Class CoKe
SHGs 68.0 67.8 78.3
Res50 68.9 69.3 77.0
ResUnet 69.7 70.2 80.3

Table 6. Ablation study of CoKe training strategy in comparison
of standard regression or classification training loss.

which has complex changes in pose, illumination and object
structure. Note how all keypoints are detected accurately
despite the difficulty from false positives, occlusions, rare
viewpoints, different domain, irregular appearance. We can
observe that CoKe is robust in these challenging scenarios.

Visualization of Detection Results under Occlusion.
We visualize qualitative results in Figure 5. Overall, the
illustrations demonstrate the robustness of CoKe to partial
occlusions. Any keypoints that are not in the vicinity of
occluders are correctly detected and not affected by the oc-
clusion. Furthermore, keypoints that are partially occluded
(e.g. the wheel) can still be located robustly, although the
detections tend to move away from the occluder. Impor-
tantly, we do not observe false positive detections at locally
ambiguous keypoints. This demonstrates that CoKe lever-
ages the receptive field to disambiguate keypoints, while
still being able to localize individual keypoints accurately.

Inference Time and Memory Consumption. During
inference, CoKe-Res50 (params: 23M, acc: 77%) takes
0.01s per image, while SHGs (params: 25M, acc: 68%)
needs 0.06s. For the memory consumption, CoKe-Res50
needs 715MB, SHGs 786MB when batch size equals to
1. CoKe has an advantage of the inference time while
maintaining the competence of the memory consumption.

4.4. Ablation Study

Comparison with Other Losses. In Table 6, we ablate
the effect of the contrastive learning compared to other
common losses on different backbone architectures. Specif-
ically, we compare to a regression loss as used in SHGs and
a supervised classification loss. The classification baseline
enables us to compare the effect of the contrastive learning
with a cross-entropy loss. We implement keypoint detec-
tion as a classification problem by using the features at
the ground truth keypoint locations in the training data as
instances of different classes to train the backbone with the
cross-entropy objective. During testing, we use the average
representations from the training set as part detector, similar
as in the CoKe pipeline. The main difference to the CoKe
training is hence that the contrastive loss and the clutter
bank are not used. From the results, we observe that our
representation learning formulation of keypoint detection
constantly outperforms other losses by a large margin.

Clutter Bank Mechanism In Table 7, we study the
influence of the clutter features and the clutter sampling
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Figure 5. Qualitative detection results under different levels of partial occlusion for artificially occluded objects from PASCAL3D+ and
humans from MPII. The dots visualize the detection result of CoKe. The colored circles in indicate the ground-truth position within
PCK=0.1, and indicate ground-truth position within PCKh=0.5 for MPII. Note how CoKe is very robust even under strong occlusion.

Occlusion Level Lv.0 Lv.1 Lv.2 Lv.3
No clutter 79.3 75.4 71.8 65.8
Image-specific clutter 92.8 82.7 76.5 69.2
Clutter Bank (64 groups) 93.0 83.6 80.1 73.3
Clutter Bank (256 groups) 94.3 84.3 77.7 71.0
Clutter Bank (1024 groups) 95.5 85.9 79.0 70.6
Clutter Bank w/o
clutter sampling loss 94.2 83.1 76.8 68.0

Table 7. Ablation study on PASCAL3D+ with different settings:
no clutter features, image-specific clutter features (using 20 fea-
tures from the same image as clutter examples), our proposed
Clutter Bank with different number of groups (each group contains
20 features) and deactivating clutter loss. Note the benefit of using
clutter features in general, and in particular using a large clutter
bank, as well as the importance of the clutter sampling loss.

loss on the contrastive learning result. In particular, the
table shows the keypoint detection results for CoKe-Res-
UNet on the car category of the PASCAL3D+ dataset. We
observe that the performance decreases significantly when
no clutter features are used during training. An extension
of this basic setup is to use image-specific clutter features
but without maintaining the features in a Clutter Bank.
In particular, we select the clutter features from the same
image from which the keypoint features are sampled using
the same hard negative sampling mechanism as in our
standard setup. From the results we observe that using the
image-specific clutter features increases the performance
significantly. However, the best performance is achieved
using our proposed Clutter Bank mechanism. In particular,
the results show a general trend that the more features we
store in the bank, the higher the performance becomes.
Notably, lower occlusion scenarios benefit from a larger
clutter bank while for stronger occlusion a smaller clutter
bank is more beneficial. Finally, our ablation shows that
explicitly regularizing the clutter to be distinct from the
Keypoint Bank using the clutter sampling loss is highly

beneficial.

Cumulative Moving Average Update We also study the
importance of the cumulative moving average update. Here
we provide another possible method: average approxima-
tion. In particular, we calculate an average over the whole
dataset for {θ} each 10 epochs. We report the result using
CoKe-Res-UNet on the car category of the PASCAL3D+
dataset. We observe a deduction of keypoint detection
accuracy as L0: 94.2 → 88.7, L1: 83.1 → 80.0, L0:
76.8 → 75.0, L0: 68.0 → 68.9. Conclusively, the best
performance is achieved using our proposed cumulative
moving average update mechanism.

5. Conclusion

In this paper, we study keypoint detection from the per-
spective of contrastive learning. Our contrastive keypoint
learning framework (CoKe) makes several efficient approx-
imations to enable the contrastive representation learning
for keypoint detection: (i) A clutter bank to approximate
non-keypoint features; (ii) a keypoint bank that stores pro-
totypical representations of keypoints, to approximate the
within-keypoint distance; and (iii) a cumulative moving
average update to learn the keypoint prototypes while train-
ing the feature extractor. Our experiments on several di-
verse datasets (PASCAL3D+, MPII, ObjectNet3D) show
that CoKe is very general and performs well for rigid as well
as articulated objects. Compared to related work, CoKe
achieves higher performance, while also being much more
robust to partial occlusion and unseen object poses.
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