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Abstract

Event-based cameras (ECs) are bio-inspired sensors that
asynchronously report pixel brightness changes. Due to
their high dynamic range, pixel bandwidth, temporal res-
olution, low power consumption, and computational sim-
plicity, they are beneficial for vision-based projects in chal-
lenging lighting conditions and they can detect fast move-
ments with their microsecond response time. The first gen-
eration of ECs are monochrome, but color data is very use-
ful and sometimes essential for certain vision-based appli-
cations. The latest technology enables manufacturers to
build color ECs, trading off the size of the sensor and sub-
stantially reducing the resolution compared to monochrome
models, despite having the same bandwidth. In addition,
ECs only detect changes in light and do not show static
or slowly moving objects. We introduce a method to de-
tect full RGB events using a monochrome EC aided by
a structured light projector. The projector emits rapidly
changing RGB patterns of light beams on the scene, the re-
flection of which is captured by the EC. We combine the
benefits of ECs and projection-based techniques and allow
depth and color detection of static or moving objects with a
commercial TI LightCrafter 4500 projector and a monocu-
lar monochrome EC, paving the way for frameless RGB-
D sensing applications. Our code is available publicly:
github.com/MISTLab/event based rgbd ros

1. Introduction
Event-based cameras (ECs) report pixel brightness

changes asynchronously, a behavior inspired by the hu-
man eye [10]. When the brightness changes over a cer-
tain threshold for a pixel, the camera generates an event
containing the coordinates of the pixel (x,y), a timestamp,
and the polarity of the event (i.e. increasing or decreasing).
Although ECs do not capture full images, they can detect
movement thousands of times faster than standard frame-
based sensors, and since they do not have an external shutter
cycle, their output is event-driven and frameless, resulting
in very low latency, power, and bandwidth demands.

Figure 1. Color detection of a stable (top row) and spinning (bot-
tom row) colorful paper pinwheel. Left column: monochrome
events without structured light. Right column: colorful image re-
constructed aided by structured light with two patterns and equiv-
alent speeds of 30 fps (top) and 150 fps (bottom).

ECs have been used in various computer vision applica-
tions such as fast movement detection and tracking [2, 22,
1], optical flow, pose tracking and visual-inertial odome-
tery [52, 26], Simultaneous Localization And Mapping
(SLAM) [37, 40], pattern recognition [44], depth estimation
and stereo vision [51, 36, 45], and many more.

In computer vision, color information has an important
role [47] and could be essential to many tasks such as seg-
mentation and recognition [19]. The first generation of ECs
are monochromatic, with color ECs only recently becom-
ing available [18, 46, 24, 23]. However, due to limitations
in terms of sensor size, color ECs have lower resolution than
mono ECs because they need to use color filters.

It is worth noting that ECs report pixel brightness
changes, meaning that an EC will not report anything when
the camera (and/or the object in its field of view) is static
or slowly moving (Fig. 1, top left), which can be critical
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in some cases (e.g. for a slow-moving robot). To over-
come this issue, one could use an external active device
such as a laser, a flashing LED, or a light projector to gen-
erate events in static and almost static situations. This ex-
ternal active lighting system could also be used to detect
depth by projecting detectable patterns called Structured
Light (SL) [5, 20, 28, 27].

We present a method to add color and depth to a monoc-
ular, monochrome event-based camera while maintaining
fast response time and resolution. We use a Digital Light
Processing (DLP) projector that emits patterns of lights that
we call Active Structured Light (ASL) on a scene, the re-
flection of which is captured by the EC which in turn gen-
erates events tagged with the color and depth of the scene.
It is worth noting that our ASL method could also be used
with color ECs, allowing the detection of static scenes. By
dynamically adjusting the projection, we have color data
when needed, managing the overall bandwidth of the sys-
tem. For example, we can use the full resolution of the
camera to detect static color scenes, or use more sparse pat-
terns for fast moving objects. Projecting patterns also al-
lows triangulation-based measurements to create a colorful
3D point cloud of the scene. Overall, our method generates
colorful events from a monochrome EC:

1. with no loss of spatial resolution;
2. with the ability to detect static objects and scenes;
3. optimizing the bandwidth of the EC by detecting the

color when and where it is needed;
4. using patterns that allow event-based depth measure-

ment, ultimately generating colorful point clouds.
In this work we focused on visual light wavelength

(emitted by the LED projector) and materials that are not
in the category of fluorescence and they do not change the
wavelength of the light. We validated our approach in dif-
ferent dynamic conditions: Fig. 2 shows the experimental
setup with a DLP projector1 and a Prophesee evaluation
kit2. With this setup, we achieved full color detection at
an equivalent rate of 1400 frames per second (fps) (note
that the camera is frameless, we use fps just for the pur-
pose of comparison). Fig. 2 also shows the color detection
of a static printed color wheel.

The rest of the paper is as follows: Section 2 presents re-
lated work; Section 3 describes our method for color detec-
tion; Section 4 details the results of our method in several
conditions; and finally, Section 5 draws some concluding
remarks and outlines possible future work.

2. Related Work

Digital color cameras use various Color Filter Array
(CFA) or Color Filter Mosaic (CFM) on their sensors to

1LightCrafter 4500 Evaluation Module
2Gen3-VGA

Figure 2. Left: The experimental setup with a DLP LightCrafter
4500 Evaluation Module and a Prophesee evaluation kit (Gen3-
VGA). Middle: Printed color wheel with the logo of the CEN-
SORED (for blind review) Lab., captured by a frame-based high-
resolution camera. Right: Colorful image reconstructed by pro-
posed method captured by monochrome EC aided by SL.

detect different colors for each pixel, and among them,
the Bayer array filter [3] is the most common CFA [35].
The size of a CFA is between 4 to 36 pixels (or some-
times larger [15]), which means that we need several
monochrome pixels to generate each color pixel, effectively
decreasing the resolution (e.g., 4x with a 2× 2 CFA).

Colorization is the process to generate a color image
based on a monochrome sensor or grayscale image with-
out loss of resolution. Colorization requires either external
data about the image colors, user interaction, or a trained
neural network embedding the knowledge of the colors on
the scene, and can be a time-consuming and expensive
task [16]. Levin et al. [16] introduced a method that needs
a few initial inputs from a user to generate a full color im-
age and keeps tracking the color on upcoming frames in a
video. Zhang et al. [50] introduce a fully automatic col-
orization approach based on a convolutional neural network
(CNN) that can change a grayscale image into a near-real
colorful image. Their method successfully deceived 32%
of human participants in distinguishing the generated and
ground-truth images. In contrast to these colorization ap-
proaches, our method does not need initial input data to get
color out of a monochrome camera and it can provide real-
istic color information faster than CNN models.

Another approach to generate color data without quality
loss on a monochrome image is to use separate cameras:
the monochrome sensor takes a more detailed and higher
contrast image, while a lower resolution RGB camera adds
color information. This combination is common, but the
image fusion, colorization, or the color transfer process are
still a challenge [14].

Event-based cameras have introduced a new field of
imaging systems. Due to their advantages compared to stan-
dard cameras, many scientists investigated ways to generate
and reconstruct images from events to use in frame-based
computer vision algorithms. A monochrome EC has been
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used in many image reconstruction works [29, 41, 38, 42,
33, 13]. Also, combining a standard frame-based camera
and an EC can produce a deblurred high frame rate (HFR)
and high dynamic range (HDR) video [21].

By combining three ECs using dichroic filters Marcireau
et al. [19] introduced a prototype to capture a stream of
events in RGB separate channels for color segmentation.
This method maintains the monochrome resolution but in-
creases the bandwidth 3x.

With the introduction of color event-based cameras [24],
some research focused on the reconstruction of images and
videos based on color events [39, 32, 25]. Scheerlinck
et al. [43] presented a dataset for color ECs. They also
compared the output quality of some image reconstruction
methods such as [41, 29, 38] in color.

As digital color cameras, current color ECs also use CFA
to generate color events, which reduces their output resolu-
tion leading to lower bandwidth when compared with Mar-
cireau et al. [19]. Our method reconstructs color data when
needed, keeping the bandwidth of the system in check.

3. Monochrome to color
Compared to frame-based cameras, ECs are faster sen-

sors, however, since they report nothing in a static situation
or with slowly moving objects, they require an additional
sensor to provide visual perception in these situations. We
use an external event generator, namely a DLP projector.
By emitting a pattern of light on objects in the scene, not
only we can detect their color, but we are also able to de-
tect depth, which makes event-based RGB-D sensing possi-
ble. Moreover, since ECs have high dynamic range, a high-
power light projector is not necessary in dark environments.

There are many standard color formats for digital color
descriptions (additive or subtractive), such as CMY (cyan,
magenta, yellow), or with black CMYK, RYB (red, yellow,
blue), RGB (red, green, blue) or with white RGBW and etc.
Selecting the color space could depend on the application
and the color range of the desired objects in the environ-
ment. Without loss of generality, we select the RGB color
space which is more common in vision applications.

We use the EC to measure the amount of reflection of the
emitted light on an object. To measure the color, we project
three different wavelengths (structured light in red, green,
and blue) on the environment and measure the amount of
reflected light captured by the EC. During each pattern ex-
posure time, the received events are gathered in an appro-
priate color channel on the initial frame.

To synchronize the DLP projector with the EC, we con-
nect the trigger pins of the camera to the projector. By
changing the pattern color, the DLP sends a pulse to the
camera which identifies the incoming events as belonging
to the appropriate color channel. Fig. 3 depicts the output
of the color detection of a printed RGB color wheel sepa-

Figure 3. Color detection of a printed color wheel. Top left cap-
tured by frame-based high-resolution camera, top right is color-
ful image reconstructed by proposed method, captured by a VGA
monochrome EC aided by SL. Bottom from left to right are col-
lected event-frames for each color light (red, green and blue) by
monochrome EC.

rated in each color channel. The bottom frame of the Fig. 3
shows that the printed color wheel does not have pure green
(0, 255, 0) and blue (0, 0, 255) colors in 24 bit RGB for-
mat. For example, in the red light channel (bottom left), the
green circle also reflected some light (although less than the
red circle) and as a result, it appears gray.

3.1. Color detection speed limits

One of the main advantages of the ECs is their response
time which is in the range of microseconds. However, with
the introduced method, we need to gather events of each
color separately, limiting the speed of color detection to the
maximum speed of pattern switching of the DLP projector.
With the LightCrafter 4500 Evaluation Module, we are able
to detect color with an equivalent frame rate up to 1400 fps
due to its high frequency (4225 Hz1). However, assuming
that the color of the object is not changing, we could still use
the other methods to track the object only based on the high
speed stream of events [22, 1] and use the color detection
method for a short period of time. Fig. 4 shows the output
of the color detection of a spinning colorful paper pinwheel
reconstructed at different frame rates.

3.2. Advantages over monochrome cameras

Monochrome or grayscale cameras have been used in
vision-based applications that do not need color informa-
tion. As mentioned in Section 2, the combination of a
monochrome camera and a color camera could be chal-

1Switching rate for preloaded 1 Bit depth pattern of the LightCrafter
4500 Evaluation Module
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Figure 4. Color detection of a spinning colorful paper pinwheel
reconstructed at different frame rates. Top row (static) left: cap-
tured by frame-based high resolution camera, right: colorful im-
age reconstructed by proposed method captured by monochrome
EC. Bottom row (spinning pinwheel) reconstructed at, from left to
right, 30, 100, 120 and 150 fps.

lenging for image fusion, colorization, or the color transfer
process [14]. A dual-camera consisting of a frame-based
camera and an EC can produce a deblurred high frame rate
(HFR) and high dynamic range (HDR) video [21]. How-
ever, adding a second camera increases the required band-
width. Our method allows us to benefit from ECs’ features
and detect/update the color information for a given period of
time. Moreover, the camera-projector combination enables
depth sensing and simplifies feature detection and matching
(w.r.t. stereo cameras) [5, 20, 28, 27].

3.3. Advantages over color event-based cameras

As mentioned in Section 2, digital cameras often use
CFA to detect color. For instance, the Color-DAVIS346 [46]
is one of the most recent color EC that uses an RGBG Bayer
pattern with an output resolution of 346× 260 pixels. This
kind of camera is reporting the stream of events in 3 or 4
different channels, which increase the need for bandwidth.
Higher bandwidth requirements can cause bus saturation (as
described in Section 4). In addition, despite increasing the
bandwidth needs and decreasing the resolution, color ECs
cannot detect the environment when the camera or object
is static or moving very slowly. Our method is useful to
efficiently use the bandwidth by detecting the color only
when and where it is needed. Moreover, our method also
gathers information from the environment from an initially
static robot or camera, meaning there is no need to have
mechanical parts to move the camera and receive events,
which makes the system more reliable. Further, since a
high-resolution EC could be subject to more noise in a dark
environment compared with a low-resolution EC [11], our

method could still get the benefits of the high-resolution
monochrome EC in a dark environment.

3.4. White balance and color correction

White balance and color correction can make the cap-
tured image close to its natural color. White balance can
be adjusted before or after capturing the image. Gener-
ating white light with the DLP projector can change the
image white balance, because the color temperature of a
light source or the warmth/coolness of the white light can
change the white balance directly. The DLP projector has
three different LED colors: red, green, and blue. Generating
LED-based white light could be challenging with wideband
wavelength RGB LEDs [31, 30, 7]. Since the DLP projector
has narrowband LEDs, the white balance can be adjusted by
changing the current of each LED separately.

Lighting model: If we consider the DLP projector as
a point-sized light source, we can model the lighting with
the Lambertian shading model which is one of the simplest
bidirectional reflectance distribution functions (BRDF) and
an appropriate approximation to many real-world material
surfaces [34]. In the Lambertian shading model, R, G, B
values of the resulting pixel are independent of the angle
that the viewing ray hits the surface:

W = SrefSpowmax(0, n · b), (1)

where W is the combination of (R,G,B) values for a de-
sired pixel, and Sref is the spectral reflectance of the mate-
rial, Spow represents the spectral power distribution of the
projector (as the light source), n is the outward surface nor-
mal (of the object) and b is the light beam vector which
is from the surface intersection point to the projector. The
dot product of these two unit vectors gives the amount of
attenuation based on the angle between the surface to the
projector. The max function is used to prevent a condition
where n · b < 0, because the projector would be behind the
object in this case. This model could be divided for each
color, for example the model for red light is:

R = SrefRSpowR
max(0, n · b) (2)

To generate white light in an ideal situation, we con-
sider that each color has the same power distribution and
SpowR

= SpowG
= SpowB

. And for a white or gray sur-
face we would have SrefR = SrefG = SrefB . As a result,
by controlling the current of each LED (Spow) we can have
balanced white light.

We can use a gray card, a color wheel, or a Macbeth
color chart/color checker to calibrate our system. We used a
printed Macbeth color chart to do the calibration, and Fig. 5
shows the output of the color detection with the proposed
method with and without white balance calibration.

Absolute error: To check the quality of the recon-
structed image, we need to have a base image and specify
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an error calculation method. We consider the captured im-
age by a frame-based high-resolution camera as the base
image (Ground Truth or GT) in Fig. 5. To calculate the ab-
solute error, we compared the histogram of two images in
Hue Saturation Value (HSV) format based on the correla-
tion metric1:

c = d(Ho, Hb) =

∑
I(Ho(I)− H̄o)(Hb(I)− H̄b)√∑

I(Ho(I)− H̄o)2
∑

I(Hb(I)− H̄b)2
,

(3)
where

H̄k =
1

N

∑
J

Hk(J), (4)

and N is the total number of histogram bins, which in our
case is 256 (8 bit in each color channel). The Ho and Hb

are respectively histogram of the output image and the base-
line image with a Histogram Correlation (HC) between 0
and 1. The HC between the base image (left) and each re-
constructed image is respectively 0.22 and 0.76 for the re-
constructed image without white balance (middle) and with
white balance (right) in Fig. 5. Moreover, to check the dif-
ference between each pixel in the reconstructed image and
the GT, and calculate the absolute error, we calculated the
root mean square error (RMSE) separately for each channel.
As an example, the RMSE for the red channel is:

RMSEr =

√∑
N (por − pbr )

2

N
, (5)

where por and pbr are respectively the pixel value in the red
channel of the output frame and the baseline frame. N is the
total number of pixels, i.e. 640× 480 = 307200. Table 3.4
shows the quality of the color detection for each image in
Fig. 5 compared to the GT image. Table 3.4 also shows
that, after manual white balance tuning, all three channels
had 12% better RMSE on average. To have a more realistic
color detection, an online white balance calibration could
be helpful in minimizing the average RMSE if needed. To
check the quality of each image we computer the Peak
Signal-to-Noise Ratio (PSNR), shown in Table 3.4.

Another way to do the color correction is to capture the
image with a white channel by RGBW color spaces and
perform the correction on four channels similar to RGBW
CFA-equipped sensors [6]. This comes at the cost of adding
a 4th color light to the SL, adding at least 33% to the length
of the capture time.

4. ASL: Adaptive Structured Light
High-resolution ECs have a higher event rate and need

more bandwidth compared to low-resolution ECs, but each
1The OpenCV histogram comparison correlation method.

Table 1. Color detection quality w.r.t. ground truth (GT)

GT No WB WB

RMSEred 0 83.89 83.65
RMSEgreen 0 87.79 71.16
RMSEblue 0 92.76 76.97
RMSE 0 88.15 77.26
PSNR 0 dB 9.88 dB 8.82 dB
Histogram Correlation (HC) 1 0.22 0.76

GT HC = 0.22 HC = 0.76
Figure 5. Color detection of printed Macbeth color chart. Im-
age captured by a frame-based high-resolution camera (left), the
colorful image reconstructed by the proposed method captured by
monochrome EC, without (middle) and with (right) white balance.

EC has a limited data rate (finite bandwidth) on the output
interface or bus. If the data rate or the number of events
exceeds the limit, bus saturation could happen [10, 11]. Fil-
tering [9] or online event-rate control [8] can mitigate this
issue. When using an external event generator such as the
DLP projector which emits SL on the scene, controlling the
event rate is even more important. One method to control
the event rate when using a projector is to define a region
of interest (ROI) and project the pattern only where it is
needed. Muglikar et al. [28] used one EC camera to de-
tect the ROI (generally the area of the image frame that
has more events due to the movement) and then projected
the SL on that area followed by detecting the depth with
a second EC. Instead of adding a second EC to the sys-
tem, we introduced ASL to control the event-rate. Fig. 6
shows different patterns of the SL which change based on
the number of received events. As expected, there is a trade-
off between having high-resolution (dense) and high-speed
(sparse) color detection. The generated SL patterns are,
multiple dots or lines patterns and solid patterns. In static
conditions, ASL could also be used with a color EC and
white light. However, it should be noted that color ECs
need more bandwidth compared to monochrome ECs with
the same resolution.

Bandwidth control: By frequently projecting SL into
the scene, we receive events caused by the SL alongside the
events caused by the movement of objects or the camera.
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Figure 6. Different types of SL patterns have been used to control
the event rate by Adaptive Structured Light.

We want to control the biases of the camera to prevent bus
saturation, but we do not want to lose data by excessively
decreasing the camera sensitivity. In general, the number of
events must be lower than the bandwidth of the EC:

Max.Bandwidth < eventsSL + eventsM , (6)

where eventsM is the number of events caused by the
movement of the EC or any object in the scene (i.e.,
any other events that have not emerged due to the SL).
eventsSL is the number of events caused by the SL, and
we can control it by changing the pattern and the power
of the LED projector. eventsSL is not only linked to the
color of the object (and its reflectivity/fluorescence percent-
age, which we do not investigate in this paper), but also it is
related to the distance of the camera-projector from the ob-
ject. Increasing the distance, the spectral power distribution
decreases because of the reduction in power density. Unfor-
tunately, there is no information available concerning the
variation of power density changes with distance for each
LED of the DLP projector. Modelling the DLP projector
power density could be useful, but it is out of the scope of
this paper. In this work, we make the simplifying assump-
tion that all LEDs have the same power density. As a result,
to control eventsSL, we need to control Spow from (1).

Considering a one-bit pattern, we can control Spow by
changing the pattern (changing the number of white pixels
in a black and white frame), instead of changing the current
of the LEDs. We call the number of white pixels per frame
as the coverage percentage (CP), with each pattern type hav-
ing a different CP. To additionally simplify the problem, we
assume that the DLP and the EC are close and we can con-
sider the CP on the DLP frame plane despite the fact that,
depending on the relative pose of the camera to the projec-
tor, the CP could be different on the camera frame plane.
We used a colorful board in our experiments, placed 160cm

from the camera-projector, shown in Figs. 7 and 8.

Dot pattern Dot grid and circle patterns are one of the
simplest patterns to detect the local depth from SL [17] or
even calibrating the camera when it is out of focus [49].
Changing the number of dots (feature points) or their dis-
tance affects the depth resolution. However, more feature
points lead to additional processing time as well as gener-
ating more events, which can lead to bus saturation in ECs.
By changing the number of dots dynamically based on the
event rate, we are able to control the trade-off between the
speed of scanning and the amount of detail. Fig. 6’s top
two rows show the proposed ASL with dot-grid patterns
where M and N (M < N ) are the number of dots on each
grid. Fig. 7 shows three different dot patterns with differ-
ent CPs. The top row is generated with a temporal window
size of 2.5ms (equivalent to 400fps). Similarly, the second
row has a window of 4.34ms or 230fps, and the bottom
row for 7.14ms or 140fps. The leftmost column of Fig. 7
is a ground truth (GT) frame generated with a one-second
temporal window; the middle column is an example frame
among the 430 frame samples. We compare each frame
pixel by pixel with the GT frame to compute the RMSE
for each channel, shown in the rightmost column.

Multiple-lines pattern Since dot-grid patterns are lead-
ing to a sparse image, to generate a dense image, line pat-
terns are preferred in low-speed 3D scanning and multi-
shot 3D measurement methods. Sequential projection tech-
niques mostly use strip lines [48]. Since the DLP projector
can quickly switch (4225 Hz) between patterns, it is possi-
ble to generate a dense graph for some region of the object
by projecting lines and measuring the depth with triangu-
lation. Although for the spaces between lines we do not
have measurements, increasing the number of lines gener-
ates more features and it covers a larger area. Similarly to
the dot-grid pattern, increasing the number of lines or dots
increases the scanning processing time and event rate, so
speed and detail must be traded off. The third and fourth
rows from top in Fig. 6, show the proposed ASL with the
line patterns where M and N (M < N ) are the number of
lines in each pattern. As Fig. 7, Fig. 8 shows line patterns
with different CPs.

Moving-line pattern To have a full dense scanning in 3D,
a line pattern is very common [5, 20, 27]. We propose to
use a moving line pattern (horizontal or vertical depending
on the offset between the camera and the projector), when
the event rate is lower than the bandwidth limits, providing
dense scanning.

Solid pattern Whenever the 3D scanning is performed, or
when we need the color information only for a specific area
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CP=1.54% RMSE=10.78 Avg. RMSE=12.94

CP=2.22% RMSE=11.34 Avg. RMSE=13.83

CP=17.73% RMSE=33.95 Avg. RMSE=38.33
Figure 7. Colorful board scanned by dot patterns with varying CP. The temporal window sizes are 2.5, 4.3, and 7.14 ms from the top.

(the region of interest), we can use the ROI mode. As de-
scribed in Section 4, Muglikar et al. [28] defined an ROI dy-
namically based on the situation of the scene, then scanned
that area with more laser points. The bottom row of Fig. 6,
shows ASL with the solid pattern for the ROI mode.

To compare different pattern and speed of scanning, we
projected patterns with various CPs onto the colorful board.
Fig. 9 shows the trade-off between details, speed, and the
quality of the reconstructed colorful image. It shows that to
have a more detailed image, we need to spend more time
switching patterns to cover more area. Also, for high speed
scanning, a sparse pattern (lower CP with fewer details) is
needed. Note that a sparse pattern does not decrease the
quality of the color detection even with high speed sam-
pling. Fig. 9 has been generated by using ∼24000 frames.

5. Conclusions

We present a method to add color and depth to a monoc-
ular, monochrome event-based camera while maintaining

fast response time and resolution. Our method reconstructs
colorful events and frames using a monochrome EC aided
by adaptive structured light (ASL). By dynamically adjust-
ing the projection, we have color data when needed, man-
aging the overall bandwidth of the system.

We achieved a color detection speed equivalent of 1400
fps with a Texas Instrument’s DLP LightCrafter 4500 pro-
jector. Our method could be used in event-based depth
measurement and perception projects. Advantages of ECs,
makes the colorful depth detection much faster than RGBD
cameras.

Although color detection is related to the lighting condi-
tions and material properties at the intersection point (ob-
ject surface), the scope of this work was the color detection
on common materials that are generally matte and not too
shiny (with high reflection) or fluorescence. Some materi-
als can interact with light: they can be absorbing, scattering
or emitting light [12]. In this work we focused on visual
light wavelength (emitted by the LED projector) and mate-
rials that are not in the category of fluorescence and they
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CP=7.02% RMSE=17.54 Avg. RMSE=25.00

CP=14.04% RMSE=25.37 Avg. RMSE=37.48

CP=28.07% RMSE=36.69 Avg. RMSE=42.55
Figure 8. Colorful board scanned by line patterns with varying CP. The temporal window sizes are 6.67ms for the top and 7.14ms otherwise.

Figure 9. Comparing patterns with different CPs in speed and quality of color detection.

do not change the wavelength of the light. However, the
use of the event-based camera with a different type of light
source and materials could be investigated in future works.
Also, without considering color detection, static reflective

materials can be scanned more effectively with ECs when
compared to the other depth measurement devices [20]. To
detect the color of these kind of materials, a Blinn-Phong
shading model [4] could be considered in future works.
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