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Abstract

Video provides us with the spatio-temporal consistency
needed for visual learning. Recent approaches have utilized
this signal to learn correspondence estimation from close-
by frame pairs. However, by only relying on close-by frame
pairs, those approaches miss out on the richer long-range
consistency between distant overlapping frames. To address
this, we propose a self-supervised approach for correspon-
dence estimation that learns from multiview consistency in
short RGB-D video sequences. Our approach combines
pairwise correspondence estimation and registration with a
novel SE(3) transformation synchronization algorithm. Our
key insight is that self-supervised multiview registration al-
lows us to obtain correspondences over longer time frames;
increasing both the diversity and difficulty of sampled pairs.
We evaluate our approach on indoor scenes for correspon-
dence estimation and RGB-D pointcloud registration and
find that we perform on-par with supervised approaches.

1. Introduction
Consider the couch in Fig. 1. While the start and end

frames depict overlapping regions in space, the large view-
point change makes them appear significantly different. The
ability to establish correspondence across views lies at the
core of scene understanding and visual tasks such as SLAM
and structure-from-motion. The common approach to learn-
ing correspondence estimation relies on correspondence su-
pervision; i.e., telling the model which pixels belong to
the same point in space. However, we commonly learn
about the world by moving and observing how appearance
changes without such explicit supervision. Could we learn
correspondence estimation directly from video?

Modern correspondence estimation approaches rely
heavily on supervision. This is typically obtained by ap-

* Work done during an internship at Meta AI.

Figure 1. Multiview RGB-D registration allows us to learn from
wide-baseline view pairs which exhibit more appearance change
that adjacent frames.

plying classical 3D reconstruction algorithms on large im-
age collections [41, 61, 66] or carefully captured indoor
scans [11, 15, 16], and then sampling overlapping view
pairs for training. This has been widely successful, as it
provides correspondence supervision with large viewpoint
and lighting changes. While current methods benefit from
supervision, they are limited to learning from carefully cap-
tured videos that can already be constructed using stan-
dard algorithms. Recently, there has been a rise in self-
supervised correspondence approaches that rely on close-
by frames in video [20, 21, 32, 38]. This sampling strategy
limits the appearance change, as shown in Fig. 1, resulting
in poor performance on image pairs with large viewpoint
changes. Ideally, we would leverage the temporal consis-
tency within the video to learn from distant overlapping
frames while ignoring non-overlapping pairs.
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To this end, we propose SyncMatch: a self-supervised
approach for learning correspondence estimation through
synchronized multiview pointcloud registration. Our ap-
proach bootstraps itself, generating wide-baseline view
pairs through registering and synchronizing all pairwise
transformations within short RGB-D video clips. Our core
insight is that through synchronizing transformations across
longer time frames, we can detect and learn from difficult
pairs with large viewpoint changes. Despite only relying on
geometric consistency within RGB-D videos, we achieve
comparable performance to fully-supervised approaches.

Our approach is inspired by self-supervised pointcloud
registration [20, 21] and transformation synchronization [3,
23]. The core insight in self-supervised pointcloud regis-
tration is that randomly initialized networks provide suffi-
ciently good features for narrow-baseline pointcloud reg-
istration. This allows them to provide good pseudolabels
for self-supervised training. Meanwhile, transformation
synchronization allows us to estimate an accurate camera
trajectory from a potentially noisy set of pairwise relative
camera poses. Our approach combines both ideas for self-
supervised multiview registration; allowing us to learn cor-
respondence estimation across large viewpoint changes.

We evaluate our approach on RGB-D indoor scene
videos. We train our model on RGB-D videos from ScanNet
and ETH-3D, and evaluate it on correspondence estimation
and RGB-D pointcloud registration. Despite only learning
from RGB-D video, our approach achieves a similar per-
formance to supervised approaches with more sophisticated
matching algorithms. Furthermore, we provide a compre-
hensive analysis of our approach to understand the impact
of the training data and the model components.

In summary, our contributions are as follows:
• A self-supervised correspondence estimation approach

based on multiview consistency in RGB-D video.
• A novel SE(3) transformation synchronization algorithm

that is fast, and numerically stable during training.

2. Related Work
Correspondence Estimation. Correspondence estimation
is the task of identifying points in two images that corre-
spond to the same physical location. The standard approach
for establishing correspondence has two distinct steps: fea-
ture extraction and feature matching. Early work exploited
hand-crafted feature detectors [43, 46] to extract normalized
image patches across repeatable image points, combined
with hand-crafted descriptors based on local statistics to ob-
tain features with some robustness to illumination changes
and small translations [1, 6, 43]. These features are matched
via nearest neighbor search and filtered using heuristics; e.g.
ratio test [43] or neighborhood consensus [58]. With the ad-
vent of deep learning, learnt keypoint detectors [37, 40], de-
scriptors [5, 63], and correspondence estimators [54, 57, 69]

have been proposed. These models are trained using corre-
spondence supervision from traditional 3D reconstruction
algorithms [16, 59] on image collections of tourist land-
marks [41, 61, 66] or indoor scene video scans [11, 15, 70].
Other approaches have explored self-supervision using syn-
thetic data [18, 45, 53, 73], traditional descriptors [67], or
RGB-D pairs from video [20, 21]. Our work shares the
motivation of self-supervised approaches and extends it to
learning from multiview consistency to better exploit the
rich signal in video.

Pointcloud Registration. Pointcloud registration is the
task of finding a transformation that aligns two sets of 3D
points. Early work assumes access to perfect correspon-
dence and devised algorithms to estimate the rigid body
transformation that would best align them [4, 34, 64]. Later
work proposed robust estimators that can handle correspon-
dence errors and outliers that arise from feature match-
ing [22, 71]. More recently, learned counterparts have
been proposed for 3D keypoint descriptors [14, 17, 25],
correspondence estimation [8, 9, 13, 23, 30, 51, 68], as
well as models for directly registering a pair of point-
clouds [17, 26, 39, 44]. Closest to our work are approaches
that use RGB-D video to learn correspondence-based point-
cloud registration [20, 21, 65]. Similar to our approach,
they learn from the geometric consistency between RGB-
D frames in a video. However, unlike those approaches, we
train on short sequences of videos instead of frame pairs, al-
lowing us to train on view pairs with larger camera changes.

SE(3) Transformation Synchronization Given a set of
pairwise estimates, synchronization estimates that set of
latent values that explains them. Transformation syn-
chronization refers to this problem applied to SO(3) and
SE(3) transformations, as it commonly arises in SLAM set-
tings [10, 36, 47, 56]. For video, one could naively only
consider adjacent pairs to construct a minimum spanning
tree and aggregate the transformations. However, this only
works if all pairwise estimates are accurate, since a single
bad estimate can be detrimental. More robust approaches
have been proposed that can leverage the information from
multiple (or all) edges in the graph [7, 28, 29, 31, 36, 55].
Most relevant to our work is Arrigoni et al. [2, 3] and Go-
jcic et al. [23]. Arrigoni et al. [2, 3] propose a closed-
form solution to SO(3) and SE(3) synchronization based
on the eigendecomposition of a pairwise transformation
matrix. Gojcic et al. [23] builds on those ideas and in-
tegrates transformation synchronization with a supervised
end-to-end pipeline for multiview registration. We are in-
spired by this work and propose a different approach to
SE(3) synchronization based on iterative matrix multiplica-
tion, which allows for accurate synchronization while be-
ing more numerically stable. Furthermore, unlike prior
work [23, 29, 55], we use transformation synchronization
for learning without supervision.

1217



Figure 2. SyncMatch. Given a sequence of N RGB-D video frames, we extract features for each image and project them to a 3D
pointcloud using input depth. We extract all pairwise correspondences to estimate pairwise SE(3) transformations. We then synchronize
the pairwise transformations to register the scene. Finally, we use the estimated registration to refine our correspondence and transformation
estimates. We compute correspondences losses for both the initial and refined registrations, and backpropagate them to the feature encoder.

3. Approach
We learn correspondence estimation from multiview reg-

istration of short RGB-D sequences without relying on pose
or correspondence supervision. We first provide a high-
level sketch of our approach, shown in Fig. 2, before dis-
cussing each component in detail.
Approach Sketch. Given N RGB-D frames, we extract
features for each RGB image and project them onto a 3D
pointcloud using input depth and camera intrinsics. We
then extract correspondences between all pointcloud pairs
and estimate pairwise SE(3) transformations. Given

(
N
2

)
pairwise transformations, we apply transformation synchro-
nization to find the N camera extrinsic parameters in a
shared global frame. Given this coarse alignment, we re-
sample correspondences based on both feature and spatial
proximity. We repeat the registration using the updated
correspondences. Finally, we compute the loss using the
estimated correspondences and SE(3) transformations and
backpropagate it to the feature encoder.

3.1. Feature Pointcloud

We use a randomly-initialized ResNet-18 for feature ex-
traction. While correspondence estimation methods often
rely on keypoint detection, our approach is detector free and
generates dense features uniformly across the image. Simi-
lar to Sun et al. [62], we generate the feature grid at a lower
resolution (1/4) than the input image. For each frame i, we
use the input depth map and camera intrinsics to project the
features into a pointcloud Pi where each point p ∈ Pi has a
feature fp and a 3D coordinate xp.

3.2. Correspondence Estimation

We estimate feature correspondences for all view pairs
(i, j). We first generate an initial set of correspondences by
finding for each point in image i the point in image j with
the closest matching feature vector. The initial correspon-

dence set will include mismatches due to poor matching,
repetitive textures, or occlusion.

Correspondences can be filtered using measures of
unique matches or geometric consistency. Heuristics
such as Lowe’s ratio test [43] prefer unique matches and
have been extended to self-supervised pointcloud registra-
tion [20, 21] and attention-based matching [27, 57, 62].
Geometric consistency relies on the idea a geometrically
consistent set of correspondences is likely correct. This
can be done by estimating the transformation similar to
RANSAC [22] or directly estimating the inlier scores [13,
51, 69]. We use the ratio test for initial alignment and lever-
age geometric consistency for refinement (Sec. 3.5). Specif-
ically, we compute a ratio between the cosine distances in
feature space as follows:

wp,q = 1− D(p, q)

D(p, q′)
, (1)

where D(p, q) is the cosine distance between the features,
and q and q′ are the first and second nearest neighbors to
point p in feature space. We use the weights to rank the
correspondences and only keep the top k correspondences.
This results in a correspondence set Ci,j for each pair of
frames. The correspondences (p, q, wp,q) ∈ Ci,j consists of
the two matched points and the match weight.

3.3. Pairwise Alignment

For each pair of frames, we can identify a transformation
Ti,j ∈ SE(3) that minimizes the weighted mean-squared er-
ror between the aligned correspondences across the images:

Ti,j = argmin
T∈SE(3)

∑
(p,q,w)∈Ci,j

w||xq −T(xp)||22. (2)

A differentiable solution is given by the Weighted Pro-
crustes (WP) algorithm [13] which adapts the classic
Umeyama pointcloud alignment algorithm [34, 64].
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WP-RANSAC. While the WP algorithm can handle small
errors, it is not robust against outliers. El Banani et al. [20]
propose combining the alignment algorithm with random
sampling to increase robustness. However, a single large
outliers can still perturb the solution since solutions are
still ranked according to the average residual error on all
matches. We modify the WP algorithm to more closely
resemble classic RANSAC [22]. We randomly sample k
correspondence subsets, estimate k transformations, and
compute an inlier score based on each transformation. We
choose the transformation that maximizes the inlier score
instead of minimizing the weighted residual error [20];
making us more robust to large outliers. Finally, we update
the correspondence weights with the inlier scores which can
zero out large outliers. We compute the final registration
using the WP algorithms with the updated weights; main-
taining differentiability with respect to the correspondence
weights.

3.4. SE(3) Transformation Synchronization

Given estimates for the
(
N
2

)
camera-to-camera transfor-

mations, we want to find the N world-to-camera transfor-
mations that best explain them. Arrigoni et al. [2, 3] pro-
pose a closed-form solution to SE(3) synchronization using
spectral decomposition. This approach was latter extended
to end-to-end learning pipelines [23, 29]. The approach op-
erates by constructing a block matrix of pairwise transfor-
mations where block (i, j) corresponds to the transforma-
tion between camera i to camera j. The core insight in that
line of work is that the absolute transformations constitute
the basis of the pairwise transformations matrix, and hence,
can be recovered using eigendecomposition.

While those approaches are successful for inference,
they suffer from numerical instabilities during training.
This is caused by the backward gradient of the eigendecom-
position scaling with 1

mini̸=jλi−λj
where λ are the eigenval-

ues. Given that the rank of a perfect SE(3) pairwise matrix
is 4, mini ̸=jλi − λj approaches 0 for an accurate pairwise
matrix which results in exploding gradients. We observed
this instability during training. To avoid this instability,
we compute the relevant part of the eigendecomposition by
power iteration, similar to PageRank [49]. We observe that
this converges quickly while being stable during training.
We refer the reader to the appendix for more details.

Pairwise confidence. Synchronization is more effective
when provided with confidence weights for each of the pair-
wise estimates. While prior approaches train separate net-
works to estimate pairwise confidence [24, 29], we instead
opted for a simpler approach. We observe that the mean
confidence weight is well correlated with view overlap as
shown in Fig. 3, where pairwise confidence is computed as
ĉi,j =

1
|Ci,j |

∑
w∈Ci,j

w.

Figure 3. Mean correspondence confidence is an effective over-
lap filter. While confidence is not perfectly correlated with view
overlap, simple thresholding can accurately filter out low- and no-
overlap view pairs.

While confidence is correlated with view overlap, non-
overlapping frames still receive a non-zero confidence.
Incorrect transformations from non-overlapping pairs can
negatively affect both synchronization and learning. We
address this by rescaling the confidence values based on
a threshold to ignore any non-overlapping pairs. While
this criteria is simple, it has many false negatives as shown
in Fig. 3. To ensure that synchronization is always possi-
ble, we exclude adjacent pairs from rescaling since we know
they most likely overlap. The pairwise confidence terms are
adjusted as follows:

ci,j =

{
max(0, ĉi,j − γ)

/
(1− γ) if |i− j| > 1,

ĉi,j otherwise.
(3)

where γ is the confidence threshold. We only estimate
pairwise correspondences for pairs (i, j) where i < j to
avoid repeated calculations. For pairs where j > i, we set
cj,i = ci,j and Tj,i = T−1

i,j .

Pairwise Transformation Matrix. We form a block ma-
trix A using the weighted transformations as follows:

A =


c1I4 c1,2T1,2 · · · c1,NT1,N

c2,1T2,1 c2I4 · · · c2,NT2,N

...
. . .

...
cN,1TN,1 cN,2TN,2 · · · cNI4

 , (4)

where ci,j is the pairwise confidence, Ti,j is the estimated
pairwise transformation, and ci =

∑
k∈N ci,k. We perform

t matrix multiplications to calculate A2t and extract the
synchronized transformations by taking the first block col-
umn and normalizing each transformation by its confidence
(bottom right element). This results in N SE(3) transforma-
tions in the first view’s frame of reference.
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Figure 4. Geometry-aware sampling greatly improves our cor-
respondence set. GART allows us to extract accurate correspon-
dence even if the initial feature matches are very noisy.

3.5. Refinement

While feature-based matching is powerful, it can pro-
duce false positive feature matches that could be easily fil-
tered out through geometric consistency. To this end, we
use the predicted scene alignment to refine our correspon-
dences by filtering matches that are not geometrically con-
sistent with the estimated transformation. We resample the
correspondences but compute the ratio test based on both
feature similarity and spatial proximity. We update our cor-
respondence filtering criteria by changing the distance func-
tion in the ratio test to:

Drefine(p, q) = DC(fp, fq) + λ∥xp − xq∥2, (5)

where DC(x, y) is cosine distance, fp is the feature vector
belonging to point p, λ is a weighing constant, and xp is
the aligned 3D coordinate of point p in a common global
frame. We refer to this updated ratio test as a Geometry-
Aware Ratio Test (GART).

3.6. Losses

We emphasize that our approach is self-supervised.
Hence, we only rely on the consistency within the video for
training. We use the registration loss proposed by El Banani
and Johnson [21] which minimizes the weighted residual
error of the estimated correspondences using the estimated
alignment. For a given pair (i, j), we compute a registration
loss as follows:

Lreg(i, j) =
∑

(p,q,w)∈Ci,j

w∥T−1
j xq −T−1

i xp∥2, (6)

where p and q are the corresponding points, w is
their weight, and Ti is the synchronized transformation
(Sec. 3.4). We compute this loss for both the initial and
refined correspondence sets and predicted transformations
for all view pairs.

4. Experiments

We evaluate our approach on two indoor scene datasets:
ScanNet [15] and ETH3D [60]. Our experiments ad-
dress the following questions: (1) does multiview training
improve over pairwise training?; (2) can multiview self-
supervision replace full-supervision?; (3) can we recon-
struct scenes from RGB-D sequences?; (4) can we learn
from videos that cannot be reconstructed using standard ap-
proaches?
Training Dataset. ScanNet provides RGB-D videos of
1513 scenes and camera poses computed using Bundle-
Fusion [16]. We use the train/valid/test scene split from
ScanNet v2. While automated reconstruction models
like BundleFusion are able to reconstruct ScanNet scenes,
ETH3D [60] videos are more challenging to such systems
with BundleFusion failing on most of those sequences. As
a result, ETH3D offers us with an interesting set of videos
which cannot be currently used by supervised training.

We emphasize that we only use RGB-D video and cam-
era intrinsics for training and any provided camera poses are
only used for evaluation. We generate view pairs by sam-
pling views that are 20 frames apart. For longer sequences,
we combine adjacent pairs to get N-tuples.
Training Details. We train our model with the
AdamW [35, 42] optimizer using a learning rate of 10−3

and a weight decay of 10−3. We train for 100K itera-
tions with a batch size of 16. Unless otherwise stated,
we use 6 views for training. Our implementation is
in PyTorch [50], with extensive use of PyTorch3D [52],
FAISS [33], PyKeOps [12], and Open3D [72]. We make
our code publicly available.1

4.1. Correspondence Estimation

We evaluate our model on correspondence estimation.
While our model is trained on adjacent pair sequences, the
primary challenge is how it performs for wide-baseline cor-
respondence estimation. We evaluate this on the test set pro-
posed by SuperGlue [57] of 1500 view pairs. This dataset
includes difficult pairs with large camera motions; e.g., im-
ages from opposite sides of a room.

Evaluation Metrics. We evaluate the estimated correspon-
dences based on their 2D and 3D errors. We lift the esti-
mated correspondences into 3D using known depth and in-
trinsics and only consider keypoints with valid depth values.
We use groundtruth transformations to align the keypoints
and compute the 3D error and the 2D reprojection error. We
extract 500 correspondences for all methods to allow for a
meaningful comparison between precision values.2

1https://github.com/facebookresearch/SyncMatch
2LoFTR and SuperGlue use a mutual check heuristic for matching

which can produce fewer correspondences. In such cases, we use all the
correspondences they produce.
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Figure 5. Correspondence Estimation on ScanNet. Our model extracts accurate correspondences for large viewpoint change. Through
combining both strong feature descriptors and geometric refinement, we can successfully handle cases where prior approaches fail. Corre-
spondences are color-coded by 3D error.

Baselines. We compare our approach against classic,
self-supervised, and supervised correspondence estimation
methods. First, we compare against two commonly used
feature descriptors: RootSIFT [1] and SuperPoint [18].
RootSIFT is a hand-crafted feature that is still used in mod-
ern pipelines, while SuperPoint is a self-supervised descrip-
tor trained on synthetic data and affine transformations of
web images. We report the performance of these features
for image-only matching using the ratio test [43] as well as
depth-refined matching using our proposed GART.

We consider three end-to-end approaches: Super-
Glue [57], LoFTR [62], and BYOC [21]. SuperGlue is an
attention-based matching algorithm built on top of Super-
Point. LoFTR and BYOC are both detector-free approaches
which train their own features from scratch. SuperGlue and
LoFTR both use transformers for matching that are trained
with correspondence supervision. BYOC is self-supervised
and uses a variant of the ratio test for matching.

We take several measures to ensure a comprehensive and
fair comparison. First, We update BYOC’s visual backbone
from ResNet-5 to ResNet-18. This results in a stronger and
fairer baseline which we refer to as BYOC†. Second, Su-
perGlue and LoFTR are both fully supervised image-based
approaches which use transformers for feature matching.
Hence, it was unclear how to adapt their matching algo-
rithm to use depth information. Instead of adapting their
matching, we use GART to re-rank their proposed matches
and only retain the top set of matches. This resulted in large
performance improvements as seen in Tab. 1

How does heuristic matching perform? We find
that well-tuned matching allows hand-crafted features to
achieve a strong performance against learned features, as
observed by Efe et al. [19]. Nevertheless, self-supervised
feature descriptors still retain a performance advantage.
Furthermore, our proposed approach outperforms both
hand-crafted and self-supervised descriptors regardless of
whether depth is used at test time for refinement.

Table 1. Wide-Baseline Correspondence Estimation on Scan-
Net. SyncMatch extracts accurate wide-baseline correspondences;
performing on-par with supervised methods. Our proposed GART
uses estimated alignment to sample more accurate correspon-
dences regardless of the underlying feature descriptor.

3D Corres. 2D Corres.
Method 1cm 5cm 10cm 1px 2px 5px
Unsupervised Features with Heuristic Matching
RootSIFT [1] 7.1 29.2 35.1 2.8 8.6 22.9
RootSIFT [1] + GART 14.1 72.4 84.3 3.8 12.8 42.8
SuperPoint [18] 7.5 41.4 51.3 2.5 8.6 29.5
SuperPoint [18] + GART 16.8 73.7 84.3 4.7 15.5 47.9
BYOC† [21] 12.8 53.3 63.0 4.5 14.6 41.9
BYOC† [21] + GART 22.8 73.1 81.4 6.0 19.6 54.0
SyncMatch (Ours) 13.1 55.1 65.4 4.6 15.3 43.9
SyncMatch (Ours) + GART 26.8 76.5 84.4 7.5 23.5 59.7
Supervised Features with Trained Matching
SuperGlue [57] 8.7 62.4 78.7 2.5 9.0 36.9
SuperGlue [57] + GART 13.8 74.8 87.7 3.3 11.7 44.4
LoFTR [62] 16.0 72.2 84.6 5.6 18.5 55.5
LoFTR [62] + GART 21.4 80.8 90.2 6.5 21.2 59.0

Can self-supervision replace correspondence supervi-
sion? While our approach outperforms classic and self-
supervised approaches, it still underperforms the strongest
supervised approaches. This is expected since we use pseu-
docorrespondence labels from short sequences, whereas su-
pervised approaches are trained with view pairs that were
sampled the same way as the test pairs [57]. Nevertheless,
we argue that our approach is still promising, as it can match
SuperGlue supervised features and matching despite being
self-supervised and using the ratio-test for matching.

Does geometry based refinement help? We find that our
proposed geometry-based refinement improved the perfor-
mance for all methods. Furthermore, the improvement is
most pronounced for our method, which performs on-par
with supervised methods when using depth, and outper-
forms them for some thresholds.
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Table 2. Pairwise Registration on ScanNet. SyncMatch outper-
forms all approaches on narrow-baseline registration, while un-
der performing some methods for wide-baseline registration. WP-
RANSAC results in large performance gains for all methods across
metrics.

Narrow Baseline Wide Baseline
AUC5◦ AUC10cm AUC5◦ AUC10cm

Unsupervised Features with Heuristic Matching
RootSIFT [1] + RANSAC 36.7 28.9 15.5 11.1
SuperPoint [18] + RANSAC 50.3 39.8 24.9 17.0
RootSIFT [1] + Ours 84.3 77.9 64.4 52.3
SuperPoint [18] + Ours 83.8 77.0 61.7 49.2
BYOC† [21] 84.6 77.6 60.4 48.4
SyncMatch (Ours) 85.3 78.8 63.4 50.5
Supervised Features with Trained Matching
SuperGlue [57] + RANSAC 65.7 54.0 47.6 33.2
LoFTR [62] + RANSAC 75.0 64.6 57.2 41.8
SuperGlue [57] + Ours 82.3 75.0 66.0 51.2
LoFTR [62] + Ours 84.5 78.1 70.5 56.2

4.2. Pointcloud Registration

We next evaluate pairwise and multiview pointcloud reg-
istration performance. We evaluate pairwise registration us-
ing view pairs extracted from ScanNet. We also evaluate
our model’s ability to scale up to large sequences by recon-
structing the challenging sequences in the ETH-3D dataset.

Pairwise Registration. We evaluate the approaches on
pairwise registration for both narrow-baseline and wide-
baseline view pairs, as shown in Tab. 2. We evaluate nar-
row baseline view pairs similar to BYOC and wide-baseline
view pairs similar to SuperGlue. We report the area un-
der the curve for pose errors with a threshold of 5◦ and
10cm for rotation and translation errors, respectively. For
RootSIFT and SuperPoint, we compute correspondences
using the ratio test, while SuperGlue and LoFTR provide us
with matches. We use either Open3D’s [72] RANSAC or
our proposed WP-RANSAC for alignment. For SyncMatch
and BYOC, we use the method’s estimated transformation.
We report numbers without depth refinement to avoid con-
founding the evaluation.

Our approach outperforms all baselines for narrow-
baseline registration but underperforms several in wide-
baseline registration. This is surprising given our model’s
strong performance in wide-baseline correspondence esti-
mation, but probably arises from the domain shift from
the mostly narrow-baseline pairs used for training. Fur-
thermore, we note that our proposed alignment algorithm
greatly improves the performance of all baselines, espe-
cially RootSIFT. We observe this improvement from super-
vised models with trained correspondence estimators, sug-
gesting that their predicted correspondences still contain
significant structured error that benefit from robust estima-
tors that can utilize the match confidence weights.

Figure 6. RGB-D Scene Reconstruction. SyncMatch can scale at
inference time to longer videos to reconstruct longer sequences.

Scaling up to longer sequences. Computing pairwise
correspondence for N frames scales as O(N2), which is
problematic for longer videos. However, with minor re-
formulation, SyncMatch can be adapted to significantly re-
duce its run-time. Instead of considering all pairs, we only
consider adjacent frames in the first step to give us an ap-
proximate camera trajectory from N−1 pairs. We use this
trajectory to refine the correspondences and then consider
all frames within a specific window w; i.e., only consider
frames (i, j) if |i − j| < w. We can then run the synchro-
nization step with the confidence of all other pairs set to 0.
This allows us to scale the model’s run-time linearly with
number of frames, instead of quadratically, which allows us
to handle hundreds of frames. We visualize two reconstruc-
tions from ScanNet in Fig. 6.

We apply our adapted model to the challenging ETH3D
dataset. ETH-3D sequences are challenging to traditional
RGB-D reconstruction models, with BundleFusion failing
on nearly 75% of the sequences. SyncMatch can reconstruct
33/61 training scenes and 16/35 test scenes. This outper-
forms standard systems such as BundleFusion (14/61 and
7/35) and ORB-SLAM [48] (25/61 and 16/35). Since such
systems are often used to automatically generate annota-
tions for RGB-D video datasets, SyncMatch’s strong perfor-
mance against them shows the promise of self-supervised
approaches to use videos that currently are missing from
large-scale RGB-D scene datasets. We emphasize that our
model was not designed for full-scene reconstruction; this
evaluation is only intended to showcase our model’s perfor-
mance against existing methods for automatically generat-
ing pose annotation for RGB-D videos.

4.3. Analysis

We analyze our model through a series of experiments
aimed at answering some key questions regarding its perfor-
mance. The analysis experiments are aimed at understand-
ing the impact of the multiview setting, training data, as
well as the impact of our model’s components during both
training and inference.
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Table 3. Impact of number of training views. Training with more
views improves correspondence estimation performance.

3D Corres. 2D Corres.
Num. of Views 1cm 5cm 10cm 1px 2px 5px
2 24.7 73.9 81.6 6.2 19.8 54.0
3 26.2 76.8 85.2 7.0 22.6 58.8
4 26.8 75.4 83.5 7.5 23.3 59.2
5 26.9 75.9 83.6 7.6 23.5 59.7
6 26.8 76.5 84.4 7.5 23.5 59.7

Table 4. Ablation Experiments. While WP-RANSAC is crucial
to model performance, the impact of other components depends
on downstream tasks.

Ablation PW Corr. MV Reg.
Train Test AUC10cm AUC10px AUC5◦ AUC10cm

Full Model 65.9 48.1 83.4 77.8
Naive Sync. ✗ 65.7 48.9 82.8 76.2
No Depth Refine ✗ 66.0 49.0 82.9 76.3
No Conf Threshold ✗ 35.2 20.4 17.9 14.5
No WP-RANSAC ✗ 1.2 0.2 1.1 3.3
Naive Sync. ✗ 65.9 48.1 82.6 76.9
No Depth Refine ✗ 29.7 19.4, 83.4 77.7
No Conf. Threshold ✗ 65.9 48.1 76.9 70.9
No WP-RANSAC ✗ 42.2 27.7 74.4 66.0

What’s the impact of the number of training views?
We train our model with a variable number of training views
to understand the impact of multiview training. We observe
that increasing the number of training views results in pro-
gressively better performance. However, the performance
gains saturate after 5 views. This could be explained how
ScanNet videos were captured: often, the camera is mov-
ing laterally and after 5 frames (3 seconds), there is often
no overlap. Our results suggest that using more views for
training will not help until enough frames are used to pro-
vide loop closure for the model to learn from.
How do the different components contribute to the
model performance? We analyze the impact of various
model components through a series of ablations that are ap-
plied either during training or testing. We report the per-
formance for both pairwise correspondence estimation (3D
and 2D correspondence error) as well as multiview registra-
tion with 6 views (rotation and translation error) in Tab. 4.
Similar to prior work [20], we observe that ablations that
make it harder to register the pointcloud can boost corre-
spondence performance when ablated during training; e.g.,
using naive synchronization based only on adjacent views
or training without depth refinement. However, replacing
WP-RANSAC with WP prevents the model from learning
due to inaccurate registration early during training. We also
observe that almost all test-time ablations result in worse
performance. One surprising exception is removing depth
refinement which greatly reduces wide-baseline correspon-
dence estimation accuracy, while not impacting multiview
registration. This could be explained by the performance
saturating for narrow-baseline registration such that depth
refinement is not needed there.

Table 5. Training on ETH-3D data. Our model is capable of
learning for the more challenging videos in ETH-3D.

3D Corres. 2D Corres.
Training Set 1cm 5cm 10cm 1px 2px 5px
ETH-3D 17.4 66.4 74.5 4.8 16.1 47.3
ScanNet Mini 18.5 67.0 75.6 4.8 16.2 47.6

Can we learn from more challenging sequences? While
ScanNet offers a large set of videos, these videos are care-
fully captured to ensure successful downstream 3D recon-
struction. We investigate whether our approach can be
trained on more challenging videos, such as ETH-3D. ETH-
3D has fewer and more erratic videos, forcing us to reduce
the view stride during training. However, our model can
still learn without supervision on ETH-3D videos and the
features can be used for wide-baseline correspondence es-
timation as shown in Tab. 5. For comparison, we train a
on a subset of ScanNet to match number of instances and
view spacing. Both models achieve similar performance.
This suggests that our approach could scale to challenging
videos beyond carefully captured ScanNet sequences.

5. Conclusion

We present SyncMatch: a self-supervised approach to
learning correspondence estimation that relies on multiview
registration to learn from difficult view pairs. Our core in-
sight is that multiview registration allows us to leverage the
consistency within short video sequences to obtain difficult
view pairs for learning. To this end, we propose a series of
components that integrate self-supervised correspondence
estimation with multiview registration in a single end-to-
end differentiable pipeline. Our approach follows the con-
ventional registration pipeline with several technical contri-
butions that improve registration and correspondence esti-
mation performance while maintaining differentiability.

Our goal is not to beat supervised methods, but rather
to show that supervision might not be needed. While stan-
dard 3D reconstruction systems like COLMAP and Bundle-
Fusion provide us with good reconstructions, learned ap-
proaches trained with their outputs are starting to rival their
accuracy. This raises an interesting question: how can we
exceed standard pipelines when our training data is limited
by what they can handle and our supervision is limited by
their error? Through proposing self-supervised pipelines
that learn directly from videos, we take a step towards en-
abling the development of approaches that go beyond con-
ventional setups and scale to more uncurated data, allowing
us to both achieve better 3D reconstruction and tackle diffi-
cult challenges like dynamic scene reconstruction.
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