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Abstract

Multi-task learning (MTL) paradigm focuses on jointly
learning two or more tasks, aiming for an improvement
w.r.t model’s generalizability, performance, and train-
ing/inference memory footprint. The aforementioned ben-
efits become ever so indispensable in the case of training
for vision-related dense prediction tasks. In this work, we
tackle the MTL problem of two dense tasks, i.e., seman-
tic segmentation and depth estimation, and present a novel
attention module called Cross-Channel Attention Module
(CCAM), which facilitates effective feature sharing along
each channel between the two tasks, leading to mutual per-
formance gain with a negligible increase in trainable pa-
rameters. In a symbiotic spirit, we also formulate novel
data augmentations for the semantic segmentation task us-
ing predicted depth called AffineMix, and one using pre-
dicted semantics called ColorAug, for depth estimation
task. Finally, we validate the performance gain of the
proposed method on the Cityscapes and ScanNet dataset.
which helps us achieve state-of-the-art results for a semi-
supervised joint model based on depth estimation and se-
mantic segmentation.

1. Introduction
Convolutional Neural Networks (CNNs) [35] have

helped achieve state-of-the-art results for a range of com-
puter vision tasks including image classification [23], se-
mantic segmentation [46, 3, 4, 37], and depth estima-
tion [20]. Generally, each of these tasks is trained in iso-
lation, assuming that inter-task features are largely inde-
pendent. On the contrary, multiple works in the domain
of multi-task learning (MTL) [67, 43, 80, 7, 29, 32, 57, 25]
point towards an inherent symbiotic relation among multi-
ple tasks, where one task benefits from other sibling tasks.
In [66], Standley et al. particularly point towards a synergy
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between semantic segmentation and depth estimation task,
when trained jointly.

Despite previous success, the lack of sufficient labeled
data for multi-task training can affect the performance of
MTL. To address this limitation, MTL models such as
[24, 33, 47, 16] propose parameter sharing to overcome
data sparsity and enforce generalization by leveraging task
losses to regularize each other. The data sparsity prob-
lem is more emphatically seen for dense tasks such as se-
mantic segmentation and depth estimation, where obtain-
ing perfect per-pixel annotations is both expensive and un-
tenable in some scenarios, thus fully supervised learning
may not be feasible. Motivated by the above observa-
tions, we propose to leverage large-scale video data using
a semi-supervised MTL training paradigm [34, 68, 52, 76]
where semantic segmentation follows a semi-supervised
setting and the depth sub-model is trained in self-supervised
manner. Specifically, to improve semi-supervised semantic
training, we propose an AffineMix data augmentation strat-
egy, which aims to create new labeled images under a var-
ied range of depth scales. Under this scheme, randomly se-
lected movable objects are projected over the same image,
for a randomly selected depth scale. This unlocks another
degree of freedom in data augmentation scheme, generating
images which are not only close to original data distribu-
tion but also more diverse and class balanced. On the depth
augmentation end, we propose a simple yet effective data
augmentation scheme called ColorAug, which establishes
strong contrast between movable objects and adjacent re-
gions, using intermediate semantics information. At last,
we employ orthogonal regularization as an strategy to im-
prove MTL training efficacy, which has a positive impact
on both semantics and depth evaluation.

Besides training paradigm, the architecture of MTL
model is equally important as it determines how exactly
the intermediate features, belonging to different tasks, in-
teract with each other. As highlighted in [80], what to
share and how to share still remains an open question. To
improve MTL performance, we adopt a hybrid parameter
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sharing approach [77, 25], which enforce a soft parame-
ter sharing at decoder layers to facilitate both flexibility and
inter-feature learnability. To emphasize inter-channel inter-
actions between tasks, our proposed Cross-Channel Atten-
tion Module (CCAM) enforces dual attention on interme-
diate depth and segmentation features over both spatial and
channel dimensions. This enables us to estimate a degree-
of-affinity between inter task channel-features as an inter-
mediary score in an end-to-end differentiable framework.
Using CCAM, we can linearly weight the contribution of
features from each task before sharing and thus encourage
a more informed and reliable feature transfer between two
tasks.

To summarize our main contributions:

• To improve feature sharing for MTL, we propose
CCAM to estimate cross channel affinity scores be-
tween task features. Which enables better inter-task
feature transfer.

• To deal with data sparsity for MTL, we design a dual
data augmentation mechanism for both semantics and
depth. Our method encourages diversity, class balance
for semantic segmentation, and better region discrimi-
nation for depth estimation.

• We incorporate orthogonal regularization for depth and
semantics with diminishing weighting to facilitate bet-
ter feature generalization and independence.

2. Related Work
2.1. Multi-Task Learning (MTL)

MTL [2] has been used across various tasks, as it im-
proves generalization by transferring domain information
of related tasks as an inductive bias. Previous works such
as [2, 24, 33, 42] have advocated for hard parameter sharing,
where as others [47, 16, 49] advocate soft sharing of pa-
rameters, where specific parameters are connected through
a learnable link module. For encoder-decoder architectures,
previous works such as [60, 49, 16] are encoder focused,
while others [81, 77, 25] mainly focus on the decoder mod-
ules. Our work follows a hybrid approach. We use a shared
encoder but employ soft parameter sharing over the de-
coder module as shown in Fig 1(a). Our approach gravitates
more towards the decoder, but improves from the encoder-
focused approaches by enabling an efficient cross-task fea-
ture sharing mechanism using CCAM module. Work such
as [44, 58] employ Residual adapter module, to dedicate
a set of model’s parameters to each task in a MTL setup;
while we improve model’s shared representation capabil-
ity through effective inter-task feature sharing. From opti-
mization point of view, works such as [8, 62, 22] enforce
task balancing by using gradient based multi-objective op-
timization. We find little to no effect employing such regu-

larization during our training. Finally both adversarial train-
ing [65, 48] and uncertainty [30] are utilized for MTL. Both
of them have entirely different motivations compared to our
work, and are not necessarily looking to better feature shar-
ing, for two related tasks.

A few other methods [7, 57] leverage semantic labels to
jointly train on depth and semantics but mainly to improve
on depth results. Marwin et al. [32] focus on improving
depth results specifically for moving objects in a scene us-
ing the intermediary semantics information, whereas Jiao et
al. [29] tackle long-tail distribution in depth prediction do-
main using semantics. Some of these models are not truly
self-supervised for depth estimation or fail to jointly im-
prove both tasks. Another approach uses knowledge distil-
lation [21, 77] from segmentation to guide depth estimation.
Furthermore, some other methods [77, 43] exploit spatial at-
tention [53, 71] for more effective cross-feature distillation
and task related feature extraction. Most recently, Hoyer et
al. [25] propose a joint training network, which has a feature
sharing network between the task as proposed in [77]. Our
experiments show that there is little impact on the result of
depth metrics upon inclusion/exclusion of this feature shar-
ing module, suggesting ineffective feature transfer between
the two tasks. Also [25] focuses only on improving seman-
tic results using depth estimation procedure but not vice-
versa. In contrast, CCAM facilitates proportional sharing
of features between depth and semantics across each chan-
nel (Fig. 2) . Please refer to Sec.3.2 for more details.

2.2. Semi-supervised Semantic Segmentation

Deep convolutional neural network models [46, 63] have
been the go-to network for both supervised and semi-
supervised semantic segmentation tasks. Subsequent mod-
els have improved by leveraging multi-scale input im-
ages [11, 5, 13, 40, 41], which capture finer details using
multi-scale features. Furthermore, there have been models
using feature pyramid spatial pooling [45, 82] and altrous
convolutions [3, 4, 6, 37, 78] to further assist in better per-
pixel feature learning and achieve state-of-the-art results.
We choose an architecture similar to U-Net [59], details
about which is in Sec. 4.

Semi-supervised semantic segmentation training makes
use of an unlabeled set of data. Many approaches
take image-level labels [36, 38, 74] and class activation
maps [83, 72] as a weak supervision signal, which gives
marginal assistance in a dense prediction task such as per-
pixel segmentation. Methods based on consistency train-
ing [34, 68, 52, 76] use the idea that label space for unla-
beled data should remain broadly unchanged after adding
noise or perturbation to the input. Ouali et al. [55] use
the same idea but apply perturbation on encoder features
instead. Similarly, CutMix [79] vouches for stronger aug-
mentations, where crops from input images and pseudo la-
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Figure 1. (a): Block diagram of the complete multi-task model with semantics and depth losses. (b): Orthogonal regularization enforced
on shared encoder(SE), depth decoder(DD) and semantic decoder(SD).

bels are used to generate additional training data. Class-
Mix [54] takes it a step forward by using pseudo labels to
get a mix mask, which is then used in consistency train-
ing. Our proposed data augmentation is most similar to
DepthMix [25], which uses the idea of ClassMix [54] but
also maintains geometric consistency. Our approach differs
from DepthMix [25] on three counts. Firstly, we propose a
new data augmentation strategy which generates the pseudo
labels for selected foreground classes under different ran-
domly selected depth scales, keeping geometric consistency
intact. Secondly, we mix foreground masks over the same
image and not across the other images for a given batch.
Lastly we only consider movable objects as part of the data
augmentation with the idea of better handling the intrinsic
data bias due to class imbalance. Please refer to Sec. 3.3 for
more details.

2.3. Self-supervised Depth Estimation (SDE)

Depth estimation in the absence of per-pixel ground truth
is a well-studied problem. The self-supervised model re-
lies on minimizing the image reconstruction loss, for an
input that could either be in stereo-pairs or in a monocu-
lar sequence format. Depth estimation under a stereo set-
ting [20, 17, 19] mainly focuses on predicting pixel dispar-
ity between the pairs and enforcing a consistency between
left and right views. In the monocular sequence scenario,
methods such as [20, 84, 17, 19, 27, 85, 69, 28] minimize
the photometric reprojection loss during the training phase
using the predicted depth and pose. Our depth module
largely follows Godard et al. [20]. In addition to the repro-
jection loss, we also enforce a per-pixel minimum appear-
ance loss and auto-masking which further improves predic-
tion for occluded and stationary pixels.

3. Proposed Method
In this section, we start with the basic architecture

in Sec. 3.1. We then discuss in detail about building
blocks of CCAM in Sec. 3.2. Different strategies used
for data augmentation for semi-supervised semantics and
self-supervised depth network are subsequently discussed
in Sec. 3.3. We then briefly discuss the training strategy
for depth and semantics part in Sec. 3.4 and Sec. 3.5 re-
spectively. We conclude this section by presenting how we
can effectively apply orthogonal regularization on seman-
tics and depth modules together to further enhance model’s
performance in Sec. 3.6.

3.1. Basic Architecture

For the multi-task training at hand, we follow soft or par-
tial parameter sharing between the tasks. We use a shared
encoder but separate decoders for semantics and depth tasks
respectively as shown in Fig. 1. Apart from this, we use a
separate encoder block for camera pose estimation, and an
encoder pretrained on ImageNet [61] to calculate the feature
distance loss, similar to [25]. The CCAM block (details in
suppl. material) consists of mainly two sub-blocks, which
mainly have convolutional, global average pooling and fully
connected layers to compute spatial and cross-channel at-
tention respectively. More specific details about different
blocks are mentioned in Sec. 4.1, under network architec-
ture.

3.2. Cross Attention Network Architecture

Cross-task feature transfer, can be broadly divided in to
three sub-categories as described in [80]: (i) sharing ini-
tial layers to facilitate learning common features for com-
plimentary tasks; (ii) using adversarial networks to learn
common feature representation as in [64]; and (iii) learn-
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Figure 2. Complete sub-blocks of Cross Channel Affinity Module (CCAM). N: Batch Size, C: Number of channels, H: Height, and W:
Width.

ing different but related feature representations as presented
in [50]. In this very context, Xu et al. [77] propose a multi-
modal distillation block, which shares cross-task features
through message passing. It simulates a gating mechanism
as shown in Eq. (1) and (2), by leveraging the spatial at-
tention maps of each individual features of all tasks, which
then helps decide what features a given task would share
with other tasks. Without loss of generality, suppose we
train a total number of T tasks, and Fi

k denotes the ith fea-
ture of the kth task before message passing and Fi

o,k after
message passing. Xu et al. [77] define the message transfer
as:

Fi
o,k = Fi

k +

T∑
t=1( ̸=k)

Gi
k ⊙ (Wt,k ⊗ Fi

t) , (1)

where ⊙ means element-wise product, ⊗ represents convo-
lution operation, Wt,k represents the convolution block and
Gi

k denotes the gating matrix for ith feature of the kth task:

Gi
k = σ(Wg

k ⊗ Fi
k) , (2)

where Wg
k is a convolution block and σ denotes the sig-

moid operator. We refer reader to [77] for more details
regarding above message passing strategy. According to
Eq. (1), it only shares cross-task features naively across the
channel dimension. Suppose we are training simultaneously
for two tasks namely: F k and F l. Eq. (1) indirectly im-
plies that ith channel-feature of F k is only important to ith

channel-feature of F l, which is not necessarily true in all
scenarios. We overcome this major limitation by designing
a module that calculates an affinity vector αi, which gives
an estimate about how the ith channel of task F k is related
to any jth channel of task F l. As shown in Fig. 2, the en-
tire process of building scores of inter-task channels can be
subdivided into four sub-blocks. Since in our case we are
dealing with two tasks, we denote them as Task A and Task
B. We extract intermediate output features from respective
decoder modules represented by AF and BF respectively,
where AF , BF ∈ RN×C×H×W .
CCAM Sub-block 1: We start with sub-block 1, where

task’s intermediate features AF and BF are passed through
a sequence of conv-blocks (WA and WB), which serves as
spatial attention layers, to compute ASF and BSF accord-
ing to the following equations:

ASF i
= σ(WA ⊗AFi

) , (3)

BSF i
= σ(WB ⊗BFi

) . (4)

The idea is to get much more refined features from both
tasks before estimating their cross-correlation. The output
of this layer preserves the spatial resolution of the input
features and gives output features represented by ASF and
BSF respectively.
CCAM Sub-block 2: Subsequently in sub-block 2, we
build a cross-task relation matrix CMi for each channel i
of ASF , where CMi ∈ RB×C×H×W . We then pass the re-
sultant matrix CMi to a channel attention module Ψ, which
estimates the affinity vector αi between ith channel of ASF

and all the channels of BSF in accordance with the equa-
tion:

αi = Ψ(ASF i
⊗ (BSF )

T ) , (5)

where Ψ denotes a combination of global average pooling
layer followed by fully connected layers, with a sigmoid
layer at the end, which serves as channel attention layer.
We repeat this for all the channels of ASF to get the corre-
sponding affinity vector α.
CCAM Sub-block 3: As part of sub-block 3, we accumu-
late Affinity Scores for all the channels of AF to achieve a
final cross task affinity matrix M , given by the equation:

M = [αi ⊕ αj ] ∀i, j ∈ [0, C) , (6)

where ⊕ denotes concatenation across the row dimension.
CCAM Sub-block 4: Finally in sub-block 4, the cross task
affinity matrix M achieved serves as a score accumulator,
which helps get a linearly weighted features A′

F and B′
F ,

given by equation:

A′
F = AF + (BF ⊙M) , B′

F = BF + (AF ⊙MT ) ,
(7)

where ⊙ represents element-wise multiplication.
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3.3. Data Augmentation

Data augmentation plays a pivotal role in all machine
learning tasks, as it helps gather varied data samples from
a similar distribution. In the spirit of cooperative multi-
tasking, in this subsection, we introduce novel ways of data
augmentation on both segmentation and depth estimation
tasks using predicted depth and semantics respectively.
Data Augmentation for Segmentation In the context of
semi-supervised semantic segmentation, models such as
[54, 79, 15] leverage consistency training by mixing image
masks across two different images to generate a new image
and its semantic labels. Hoyer et al. [25] go a step further to
generate a much more diverse mixed label space by main-
taining the integrity of the scene structure. We propose a
new version of data augmentation called AffineMix, which
considers mixing labels within the same image under a var-
ied range of random depth values, thus producing a new
set of affine-transformed images (see Fig 3(i)). To further
improve the data augmentation process, we mix masks as-
sociated with only movable objects, to counter class imbal-
ance, which is stark in a dataset such as Cityscapes. Given
an image I and corresponding predicted depth D, we seek to
generate a mixed image I’, by scaling the depth of a selected
movable object m by a scale factor of s:

D′ = s ∗D , (8)

such that its spatial location in the image is changed in a
geometrically realistic way. Changing the depth by a factor
of s, results in an inverse scaling in the image domain and
translational shift which would be given by:

tx = (1.0− 1/s) ∗ ox , (9)

ty = (1.0− 1/s) ∗ oy , (10)

where ox and oy are normalized offsets along x and y direc-
tions. Using tx, ty and inverse scaling 1/s, we can perform
affine transformation on the image and label space to gen-
erate Ia and La. We then estimate the foreground mask, by
comparing the new and old depths and masking it with the
region which has the movable object in Ia and name it Mm.
The final image and label would be then given by:

I’ = Mm ⊙ Ia + (1−Mm)⊙ I , (11)

L’ = Mm ⊙ La + (1−Mm)⊙ L . (12)

Data Augmentation for Depth As shown in work [18, 75],
factors such as position in the image, texture density, shad-
ing, and illumination are some of the pictorial cues about
distance in a given image. Recent work in this field [12]
also re-emphasizes the importance of contrast between ad-
jacent regions as well as bright and dark regions within an

image. We particularly leverage this simple albeit impor-
tant observation to develop an effective data augmentation
technique called ColorAug, which uses different appear-
ance based augmentation on movable and non-movable ob-
jects. We use the intermediate semantic labels predicted by
the model to guide us in developing such an data augmen-
tation as shown in Fig. 3(ii).

3.4. Self-Supervised Depth

Training formulation of the self-supervised depth net-
work mainly follows good practices of [20] in terms of
using a per-pixel minimum appearance, reprojection loss,
and an auto-masking strategy. Main backbone of the depth
network comprises of an encoder-decoder structure, repre-
sented by SE and DD in Fig. 1. We use a subsidiary pose
network PN , to predict the relative translation (T) and rota-
tion (R) of the source frames It−1 and It+1 with respect to
the target frame It. Predicted poses and depth are then used
to estimate the self-supervised depth loss, denoted by LD.
Building blocks of the encoder and decoder are specified in
more details in Sec. 4.1.

3.5. Semi-Supervised Semantic Segmentation

For the semi-supervised semantic segmentation module,
we start with a set of labeled images ΩL, unlabeled im-
ages ΩU , and N unlabeled image sequences. We pretrain
the pose network PN , shared encoder SE, and depth de-
coder DD (see Fig. 1) modules with N unlabeled image
sequences, in a similar fashion as mentioned in [25]. Dur-
ing the joint-training step, parameters of the depth decoder
(DD) are used to initialize the segmentation decoder (SD)
module. The CCAM module springs into action during this
stage of training, facilitating informative features transfer
between DD and SD modules. During semi-supervised
training, suppose the labeled and unlabeled samples are rep-
resented as (IL, SL) and (IU , SU ), where SU represents
pseudo labels that are generated using a mean teacher algo-
rithm [68]. The parameters of the mean teacher θT is given
by the following equation:

θ′T = αθT + (1− α)θSD , (13)

where θSD and α represent parameters of the segmentation
decoder module and smoothing coefficient hyper-parameter
respectively. We then generate the pseudo labels SU as sug-
gested in [54] as:

SU = argmax
l

(θT (IU )) , (14)

where l represents all possible classes in the Cityscapes
dataset. Using Eq. (13) and (14), we can formalize the total
semi-supervised loss as:

LSSL = LCE(θSD(IL), SL) + LCE(θSD(IU ), SU ) .
(15)
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Figure 3. (i) AffineMix for Semantic Segmentation: Steps involved : (a) GT/ Generated Psuedo label image; (b) Input image; (c)
Randomly selected movable object (‘Person’ class) with random depth scaling of 0.75; (d) Occlusion aware, affine generated foreground
mask; (e) Augmented label image; (f) Augmented Image. (ii) ColorAug for Depth: Using intermediate semantics output, purposefully
create regions of different brightness, contrast and saturation around movable objects highlighted using blue boxes. Row 1: Original Image,
Row 2: Augmented Image.

We then use our AffineMix samples, as a substitute for IU
and SU in Eq. (15) to get the final semi-supervised loss.

3.6. Orthogonal Regularization (OR)

Orthogonality constraint on model’s parameters has
shown encouraging results for tasks such as image clas-
sification [1, 70, 39], image retrieval [70], 3D classifica-
tion [56] to name a few. Enforcing orthogonality has also
helped improve model’s convergence, training stability, and
promote learning independent parameters. In a multi-task
setup such as ours, feature independence within a given task
is also important. We study the effect of applying a variation
of the orthogonal scheme proposed in [1] on different sub-
modules. The new loss function of the model, after adding
orthogonal constraint is given by:

LI = LSSL + LD, (16)

LF = LI + λ · ∥WTW − I∥σ , (17)

where W , ∥ · ∥σ , I , LF and LI represent the weights (for
each layer), spectral norm, identity matrix, final model loss,
and initial loss respectively. We find that enforcing orthogo-
nality, particularly on the parameters of shared encoder SE,
depth decoder DD, and segmentation decoder SD has the
most positive impact on the model’s performance. We con-
firm this by calculating average inter-channel correlation,
for all decoder layers for both the tasks, with and without
OR (more details in supplementary material). We postulate
that independent features within semantics and depth mod-
ule would make feature transfer between the tasks more ef-
fective. Details about enforcing this regularization and ab-
lation study based on this are provided in Sec. 4.1.

Model 1/8(372) 1/4(744) Full(2975)
Adversarial[26] 58.80 62.30
s4GAN [51] 59.30 61.90 65.80
DST-CBC [14] 60.50 64.40
CutMix[15] 60.34 63.87 67.68
ClassMix [54] 61.25 63.30
3-Ways [25] 68.01 69.38 71.16
Ours. 70.72 71.65 72.93

Table 1. Comparative mIoU (in %) numbers on Cityscapes Valida-
tion set. Reported numbers are mean over three runs, under same
experimental settings.

4. Experiments

4.1. Experimental Details

Dataset We use the Cityscapes dataset [9] and ScanNet
dataset [10] for training and evaluating the model. For eval-
uating on semantics we use the ground-truth labels pro-
vided as part of the datasets. We use the data prepossess-
ing and data augmentation step as suggested in [25], where
we downsample and center-crop the original 1024x512
color images to 512x512 images for training. For depth
we use the unlabeled frames provided by the Cityscapes
dataset during the training phase, whereas depth is evalu-
ated against 1,525 images from 6 cities taken from the test
set, for which we use the ground-truth depths generated by
Watson et al. in [73], using the disparity maps and for Scan-
Net we continue to use the provided ground-truth. More
details regarding it is provided in the suppl. material.
Network Architecture Basic network as part of our multi-
task training is similar to [25, 77] as seen in Fig. 1(a), which
provides an intuitive and effective network for simultaneous
training. It comprises of a shared encoder network which
is ResNet101 [23] and two separate but identical architec-
ture based on Deeplabv3 [3] with a U-Net [59] decoder. For
pose network we use ResNet18 [23], whereas for the shared
encoder network we use ResNet101 [23] pretrained on the
ImageNet dataset [61]. We refer the readers to the original
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Figure 4. Qualitative results: In each row we compare the semantics and depth results with the baseline [25]. Red boxes identify
shortcomings in the baseline method whereas green boxes highlight the corresponding improvement by using our method.

Model Seg. Metrics Depth Metrics
mIoU↑ AbsRel↓ SqRel↓ RMSE↓ a1↑ a2↑ a3↑

3-ways* [25] 68.09 0.150 2.032 7.492 0.824 0.953 0.985
3-ways*[25] w/o attn 68.07 0.152 2.497 7.621 0.824 0.952 0.982
Ours (CCAM) 69.35 0.142 1.653 7.230 0.824 0.957 0.988
Ours + AM 69.84 0.149 1.651 7.521 0.817 0.952 0.984
Ours + AM + OR 70.72 0.146 1.546 7.239 0.815 0.953 0.987
Ours + AM + OR + CA 70.20 0.142 1.553 7.284 0.824 0.956 0.987

Table 2. Comparative mIoU and depth results between baseline model with (vanilla) attention, without attention, and with cross channel
affinity attention. Models with * show the results as reproduced by us running the original model. AM: AffineMix, OR: orthogonal
Regularization, CA: ColorAug.

Metric CutOut CutMix ClassMix DepthMix AffineMix
mIoU 57.74 60.34 63.86 68.09 68.70

Table 3. Table presents the comparative performance of AffineMix method with previous semi-supervised works, which establishes Affine-
Mix superiority over previous approaches on Cityscapes dataset(1/8 labeled images).

paper’s [25] suppl. section for more details. CCAM block
consists of mainly two sub-modules, which are, spatial and
channel attention layers. Spatial attention comprises of con-
volutional blocks with kernel size of 3x3. Where as chan-
nel attention consist of a global average layer, and two fully
connected layers respectively, followed by a sigmoid acti-
vation layer. Finer details about CCAM block architecture
are provided in suppl. material.

Training For most part of the training, we follow the
strategy as mentioned by Hoyer et al. [25]. We first train
the self-supervised depth and pose module alone using
Adam [31] till 300K iterations, with an initial learning rate
of 10−4, which is reduced by a factor of 10 using the step-
scheduled learning rate mechanism. In the second iteration

we only look to finetune the shared encoder with a Ima-
geNet feature distance for another 50K iterations. During
joint training, we use SGD with an initial learning rate of
10−3 and 10−2 for encoder and decoder respectively, which
are reduced by a factor of 10 after 30K iterations. We refer
readers to [25] for more details. In our observation, we find
freezing depth decoder parameters during data augmenta-
tion steps of self-supervised semantic learning leads to bet-
ter model stability without any adverse effect on semantics
or depth results. For orthogonal regularization we follow
SRIP et al. [1] based method, starting with an initial weight
λO = 10−4, which is then reduced gradually to 10−5, 10−6,
and 10−7 after 10K, 20K and 30K iterations respectively.
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Model Seg. Metrics Depth Metrics
mIoU↑ AbsRel↓ SqRel↓ RMSE↓ a1↑ a2↑ a3↑

3-ways* [25] 39.05 0.184 0.106 7.492 0.688 0.931 0.986
Ours (CCAM) 41.57 0.174 0.095 7.230 0.715 0.939 0.989

Table 4. Comparative mIoU and depth results between baseline model with (vanilla) attention, and with cross channel affinity attention for
ScanNet dataset

4.2. Ablation Studies

Cross Channel Affinity Block We study the effective-
ness of the self-attention distillation module used in base-
line [25] for cross-feature transfer between depth and se-
mantics tasks. We follow that up with an experiment, incor-
porating the CCAM module and validate its positive impact
on both tasks. As shown in Tab. 2, we observe minimal im-
provement to semantics and depth metrics with and without
self-attention based distillation module; with mean IoU and
absolute relative errors hovering around 68% and 15%. In-
cluding just the CCAM module, we see an improvement of
1.28% in mIoU and a drop of 5.3% in the absolute relative
depth error.
AffineMix Augmentation We further incorporate the pro-
posed AffineMix data augmentation, mainly with an aim to
improve on semi-supervised semantic segmentation train-
ing. Through our experiments, we find that AffineMix con-
sistently improves upon the baseline by 1.75% respectively
as shown in Tab. 2. We see a drop in the depth metrics after
applying AffineMix. We postulate this drop in depth per-
formance is due to visual incoherence in the local region
adjoining to newly added objects, which might be detri-
mental to the depth task. We also did a comparative abla-
tion experiment verifying the efficacy of proposed data aug-
mentation with the previous data augmentation approaches.
As shown in Tab. 3, we observe an improvement of about
8.36%, 4.64% and, 0.61% in mIoU numbers when com-
pared to [79, 54, 25] respectively.
Orthogonal Regularization For verifying the efficacy of
OR (Fig. 1(b)), we start out by comparing models trained
with and without OR, from the perspective of feature inde-
pendence after the completion of training. As postulated,
we find that the features across all 4 layers of depth and
semantics decoder module are much more independent af-
ter applying such a regularization.(More details in supple-
mentary material). We further validate this claim by seeing
a consistent improvement in semantics and depth metrics.
We see an average gain of about 0.88% over a run of three
experiments for AffineMix augmentation, and an improve-
ment of about 2.63% compared to the baseline model. We
also observe a marginal boost to depth metrics after inclu-
sion of OR by 2.01%(see Tab. 2).
ColorAug Augmentation For the depth augmentation ex-
periment, we leverage the intermediate semantics informa-
tion to create a new set of images, which help us cre-
ate regions of different contrast, brightness, and saturation

around movable objects. We use this data augmentation
scheme only after 10K steps of training, such that semantic
outputs from the network are reliable to some extent (mIoU
≥ 60%). We achieve a reduction of about 2.8% to reach
an absolute relative error of 14.2% as seen in Tab. 2, along
with an improvement of about 2.11% for semantics.

We also conduct ablation experiments covering all dif-
ferent permutations of AM, CA and OR along with CCAM
module(details in suppl. material), mostly giving incremen-
tal improvements, proving utility of each individual part.
Overall, as seen in Tab. 1, we achieve improvements of
about 2.63%, 2.27%, 1.77% for semantic metrics for 372,
744, and 2,975 samples of Cityscapes dataset respectively,
and depth metrics by 5.3% in parallel. Fig. 4 highlights
qualitative improvement seen for both depth and semantic
segmentation network. We took a closer look to narrow
down the classes, which are most positively impacted by
our training strategy. We find that much of improvement is
mainly seen for low-mIoU-classes such as motorcycle, wall,
rider, and movable-classes such as bicycle, train, truck, and
bus. saturated-class such as building, vegetation, car, sky,
and road shows marginal improvements as these classes al-
ready have achieved about 90% mIoU (Qualitative details
in supplementary material).
ScanNet Dataset At last, as part of verifying generaliz-
ibility of our proposed CCAM module, we conduct experi-
ments on ScanNet [10], which is an indoor dataset, entirely
different from Cityscapes dataset in more than one aspects.
We observe that with no obvious changes to our training
strategy, simply employing CCAM module, our model im-
proves semantics metrics by 2.52% and depth metrics by
5.7% as shown in Tab. 4. With more than 3% mIoU im-
provement for classes such as door, box, screen, and cabi-
net. Due to dearth of space, we provide more details about
data pre-processing and structuring, train/val split, and class
wise mIoU numbers in the suppl. material.

5. Conclusions
Through this work, we go on to establish, how effec-

tive transfer of features between semantics and depth mod-
ules, could result in substantial performance gain for both
the tasks, in a semi-supervised setting. We follow this up
with an intelligent and diverse data augmentation for both
depth and semantics. We hope these encouraging results
would further push the research community in working to-
wards finding much more efficient and effective ways for
multi-task learning.
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