
Anomaly Detection in 3D Point Clouds using Deep Geometric Descriptors

Paul Bergmann
MVTec Software GmbH

Technical University of Munich
paul.bergmann@mvtec.com

David Sattlegger
MVTec Software GmbH
sattlegger@mvtec.com

Abstract

We present a new method for the unsupervised detection
of geometric anomalies in high-resolution 3D point clouds.
In particular, we propose an adaptation of the established
student-teacher anomaly detection framework to three di-
mensions. A student network is trained to match the out-
put of a pretrained teacher network on anomaly-free point
clouds. When applied to test data, regression errors be-
tween the teacher and the student allow reliable localization
of anomalous structures. To construct an expressive teacher
network that extracts dense local geometric descriptors, we
introduce a novel self-supervised pretraining strategy. The
teacher is trained by reconstructing local receptive fields
and does not require annotations. Extensive experiments on
the comprehensive MVTec 3D Anomaly Detection dataset
highlight the effectiveness of our approach, which outper-
forms the existing methods by a large margin. Ablation
studies show that our approach meets the requirements of
practical applications regarding performance, runtime, and
memory consumption.

1. Introduction
We address the challenging task of unsupervised

anomaly detection and localization in 3D point clouds. The
goal is to detect data points that deviate significantly from
a training set of exclusively anomaly-free samples. This
problem has important applications in various fields, such
as industrial inspection [7, 9, 14, 45], autonomous driv-
ing [11, 26], and medical imaging [2, 4, 33]. It has re-
ceived considerable attention in 2D, where models are typ-
ically trained on color or grayscale images with established
and well-studied architectures based on convolutional neu-
ral networks. In 3D, this problem is still comparatively
unexplored and only a small number of methods exist. In
this work, we follow the practice in other areas of com-
puter vision and take inspiration from recent advances in
2D anomaly detection to devise a powerful 3D method.

More specifically, we build on the success of using de-

Figure 1: Qualitative results of our proposed 3D–ST
method on the MVTec 3D Anomaly Detection dataset. It
reliably localizes geometric anomalies in test point clouds,
although it is trained only on anomaly-free samples. Top
row: Anomaly scores for each 3D point predicted by our al-
gorithm. Bottom row: Ground truth annotations of anoma-
lous points in red.

scriptors from pretrained neural networks for unsupervised
anomaly detection. An established protocol is to extract
these descriptors as intermediate features from networks
trained on the ImageNet [31] dataset. Models based on
pretrained features were shown to perform better than ones
trained with random weight initializations [8, 12, 17]. In
particular, they outperform methods based on convolutional
autoencoders or generative adversarial networks.

To date, there is no established pretraining protocol for
unsupervised anomaly detection in 3D point clouds. Exist-
ing work addresses the extraction of local 3D features that
are highly task-specific. For point cloud registration, fea-
ture extractors often heavily downsample the input data or
operate only on a small number of input points. This makes
them ill-suited for anomaly localization in 3D. In this work,
we develop a novel approach for pretraining local geomet-
ric descriptors that transfer well to the anomaly detection
problem. We then use this pretraining strategy to introduce
a new method that outperforms existing approaches in the
localization of geometric anomalies in high-resolution 3D
point clouds. In particular, our key contributions are:
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• We present 3D Student-Teacher (3D-ST), the first
method for unsupervised anomaly detection that op-
erates directly on 3D point clouds. Our method is
trained only on anomaly-free data and it localizes geo-
metric anomalies in high-resolution test samples with
a single forward pass. We propose an adaptation
of the well-established student-teacher framework for
anomaly detection to three dimensions. A student net-
work is trained to match deep local geometric descrip-
tors of a pretrained teacher network. During inference,
anomaly scores are derived from the regression errors
between the student’s predictions and the teacher’s tar-
gets. Our method sets a new state of the art on the
recently introduced MVTec 3D-AD dataset. It per-
forms significantly better than existing methods which
use voxel grids and depth images.

• We develop a self-supervised training protocol that al-
lows the teacher network to learn generic local geomet-
ric descriptors that transfer well to the 3D anomaly de-
tection task. The teacher extracts a geometric descrip-
tor for each input point by aggregating local features
within a limited receptive field. A decoder network is
trained to reconstruct the local geometry encoded by
the descriptors. Our pretraining strategy provides ex-
plicit control over the receptive field and dense feature
extraction for a large number of input points. This al-
lows us to compute anomaly scores for high-resolution
point clouds without the need for intermediate subsam-
pling.

2. Related Work
Our work touches on several aspects of computer vi-

sion, namely unsupervised detection of anomalies in two
and three dimensions and extraction of deep local geomet-
ric descriptors for 3D data.

2.1. Anomaly Detection in 2D

There is a large body of work on the unsupervised de-
tection of anomalies in two dimensions, i.e., in RGB or
grayscale images. Ehret et al. [22] and Pang et al. [36]
give comprehensive overviews. Some of the existing meth-
ods are trained from scratch with random weight initial-
ization, in particular, those based on convolutional autoen-
coders (AEs) [10, 27, 32, 47, 48] or generative adversarial
networks (GANs) [13, 38, 43].

A different class of methods leverage descriptors from
pretrained networks for anomaly detection [8, 17, 18, 25,
34, 39, 40]. The key idea behind these approaches is that
anomalous regions produce descriptors that differ from the
ones without anomalies. These methods tend to perform
better than methods trained from scratch, which motivates
us to transfer this idea to the 3D domain.

Bergmann et al. [8] propose a student-teacher framework
for 2D anomaly detection. A teacher network is pretrained
on the ImageNet dataset to output descriptors represented
by feature maps. Each descriptor captures the content of a
local region within the input image. For anomaly detection,
an ensemble of student networks is trained on anomaly-
free images to reproduce the descriptors of the pretrained
teacher. During inference, anomalies are detected when
the students produce increased regression errors and pre-
dictive variances. Closely following this idea, Salehi et al.
[41] train a single student network to match multiple feature
maps of a single teacher.

2.2. Anomaly Detection in 3D

To date, there are very few methods that address the task
of unsupervised anomaly detection in 3D data. None of
them leverages the descriptiveness of feature vectors from
pretrained networks.

Viana et al. [44] propose Voxel f-AnoGAN, which is an
extension of the 2D f-AnoGAN model [43] to 3D voxel
grids. A GAN is trained on anomaly-free data samples.
Afterwards, an encoder is trained to predict the latent vec-
tors of anomaly-free voxel grids that, when passed through
the generator network, reconstruct the input data. During
inference, anomaly scores are derived by a per-voxel com-
parison of the input to the reconstruction. Bengs et al. [6]
introduce a method based on convolutional autoencoders
that also operates on 3D voxel grids. A variational autoen-
coder is trained to reconstruct input samples through a low-
dimensional bottleneck. Again, anomaly scores are derived
by comparing each voxel element of the input to its recon-
struction.

Recently, Bergmann et al. introduced MVTec 3D-AD
[9], a comprehensive dataset for the evaluation of 3D
anomaly detection algorithms. So far, this is the only public
dataset specifically designed for this task. They show that
the existing methods do not perform well on challenging
high-resolution point clouds and that there is a need for the
development of new methods for this task.

2.3. Learning Deep 3D Descriptors

Geometric feature extraction is commonly used in 3D
applications such as 3D registration or 3D pose estimation.
The community has recently shifted from designing hand-
crafted descriptors [42, 46] to learning-based approaches.

One line of work learns low-dimensional descriptors on
local 3D patches cropped from larger input point clouds. In
3DMatch [51] and PPFNet [20], supervised metric learning
is used to learn embeddings from annotated 3D correspon-
dences. PPF-FoldNet [19] pursues an unsupervised strat-
egy where an autoencoder is trained on point pair features
extracted from the local patches. Similarly, Kehl et al. [30]
introduce an autoencoder that is trained on patches of RGB-
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Figure 2: (a) Training of our proposed 3D-ST method on anomaly-free point clouds. A student network S is trained to match
the local descriptors of a pretrained teacher network T . (b) Computation of anomaly scores during inference. Anomaly scores
are derived from the regression error between the student and the teacher network. Increased regression errors correspond to
anomalous 3D points.

D images to obtain local features. These methods have the
disadvantage that a separate patch needs to be cropped and
processed for each feature. This quickly becomes computa-
tionally intractable for a large number of points.

To mitigate this problem, recent 3D feature extractors
attempt to densely compute features for high-resolution in-
puts. Choy et al. [16] propose FCGF, a fully convolutional
approach to local geometric feature extraction for 3D reg-
istration. They design a network with sparse convolutions
to efficiently processes high-resolution voxel data. Given a
large number of precisely annotated local correspondences,
their approach is trained using contrastive losses that en-
courage matching local geometries to be close in feature
space. PointContrast [50] learns descriptors for 3D registra-
tion in a self-supervised fashion and does not rely on human
annotations. Correspondences are automatically derived by
augmenting a pair of overlapping views from a single 3D
scan. While being computationally efficient, these methods
require a prior voxelization that can lead to discretization
inaccuracies. Furthermore, all of the discussed methods are
designed to produce feature spaces that are ideally invariant
to 3D rotations of the input data. In unsupervised anomaly
detection, however, anomalies can manifest themselves pre-
cisely through locally rotated geometric structures. Such
differences should therefore be reflected in the extracted
feature vectors. This calls for the development of a different
pretraining strategy that is sensitive to local rotations.

3. Student-Teacher Anomaly Detection in
Point Clouds

In this section, we introduce 3D Student-Teacher (3D-
ST), a versatile framework for the unsupervised detection
and localization of geometric anomalies in high-resolution
3D point clouds. We build on the recent success of leverag-
ing local descriptors from pretrained networks for anomaly

detection and propose an adaptation of the 2D student-
teacher method [8] to 3D data.

Given a training dataset of anomaly-free input point
clouds, our goal is to create a model that localizes anoma-
lous regions in test point clouds, i.e., assigns a real-valued
anomaly score to each point. To achieve this, we design
a dense feature extraction network T , called teacher net-
work, that computes local geometric features for arbitrary
point clouds. For anomaly detection, a student network S
is trained on the anomaly-free point clouds against the de-
scriptors obtained from T . During inference, increased re-
gression errors between S and T indicate anomalous points.
An overview of our approach is illustrated in Figure 2.

To pretrain the teacher, we present a self-supervised pro-
tocol. It works on any generic auxiliary 3D point cloud
dataset and requires no human annotations.

3.1. Self-Supervised Learning of Dense Local Geo-
metric Descriptors

We begin by describing how to construct a descriptive
teacher network T . An overview of our pretraining protocol
is displayed in Figure 3. Given an input point cloud P ⊂
R3 containing n 3D points, its purpose is to produce a d-
dimensional feature vector fp ∈ Rd for every p ∈ P . The
vector fp describes the local geometry around the point p,
i.e., the geometry within its receptive field.

Local Feature Aggregation. The network architecture of
T has two key requirements. First, it should be able to ef-
ficiently process high-resolution point clouds by computing
a feature vector for each input point without downsampling
the input data. Second, it requires explicit control over the
receptive field of the feature vectors. In particular, it has
to be possible to efficiently compute all points within the
receptive field of an output descriptor.
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Figure 3: Overview of our proposed self-supervised pre-
training strategy. A teacher network is trained to output
local geometric descriptors for each 3D point in the in-
put sample with a single forward pass. Simultaneously, a
decoder network transforms randomly sampled descriptors
of the teacher and attempts to fit the local receptive field
around its respective input point.

To meet these requirements, we construct the k-nearest
neighbor graph of the input point cloud and initialize fp =
0. We then pass the input sample through a series of residual
blocks, where each block updates the feature vector of each
3D point p from fp ∈ Rd to f̃p ∈ Rd. These blocks are in-
spired by RandLA-Net [28, 29], an efficient and lightweight
neural architecture for semantic segmentation of large-scale
point clouds. In semantic segmentation tasks, the absolute
position of a point is often related to its class, e.g., in au-
tonomous driving datasets. Here, we want our model to
produce features that describe the local geometry of an ob-
ject independent of its absolute location. We therefore make
the residual blocks translation-invariant by removing any
dependency on absolute coordinates. This significantly in-
creases the performance when used for anomaly detection
as underlined by the results of our experiments in Section 4.

The architecture of our residual blocks is visualized in
Figure 4(a). The input features are first passed through
a shared MLP, followed by two local feature aggregation
(LFA) blocks. The output features are added to the input
after processing both by an additional shared MLP. The
features are transformed by a series of residual blocks and a
final shared MLP with a single hidden layer that maintains
the dimension of the descriptors, i.e., f̃p ∈ Rd.

The purpose of the LFA block is to aggregate the ge-
ometric information from the local vicinity of each in-
put point. To this end, it computes the nearest neighbors
knn(p) = {p1,p2, . . . ,pk} of all p ∈ P and a set of local
geometric features G for each point pair defined by

G(p,pj) = (p− pj)⊙ ∥(p− pj)∥2, (1)

where j ∈ {1, . . . , k}. The operator ⊙ denotes the concate-
nation operation and ∥ · ∥2 denotes the L2-norm. Since G
only depends on the difference vectors between neighboring
points, our network is by design invariant to translations of
the input data. Our experiments show that this invariance of
our local feature extractor is crucial for anomaly detection
performance. Therefore, we make this small but important
change to the LFA block. A schematic description of such
a block is given in Figure 4(b).

For each LFA block, the set of geometric features
G(p,pj) is passed through a shared MLP producing feature
vectors of dimension dLFA. These are concatenated with
the set of input features {fp1 , . . . ,fpk

}. The output fea-
ture vector of the LFA block f̃p is obtained by an average-
pooling operation of the concatenated features, yielding a
feature vector of dimension 2dLFA.

Reconstructing Local Receptive Fields. To pretrain T
in a self-supervised fashion, we employ a network D that
decodes the local receptive field of a feature vector. The
design of our network architecture allows an efficient com-
putation of all points within the receptive field R(p) of a
point p, i.e., all points that affect the feature vector fp.
Each LFA block depends on the features of the surround-
ing nearest neighbors knn(p). Whenever an LFA block is
executed, R(p) grows by one hop in the nearest-neighbor
graph. The receptive field can therefore be obtained by iter-
atively traversing the nearest neighbor graph:

R(p) =

L⋃
l=0

knnl(p), knnl(p) =
⋃

q∈knnl−1(p)

knn(q) (2)

and knn0 = {p}. L denotes the total number of LFA blocks
in the network. Figure 4(c) visualizes this definition of the
receptive field.

The decoder D : Rd → R3×m upsamples a feature vec-
tor to produce m 3D points by applying an MLP. For pre-
training, we extract descriptors from an input point cloud
by passing it through the local feature extractor. We then
randomly sample a set of points Q from the input. For each
p ∈ Q, we compute the receptive fields R(p) and pass their
respective feature vectors through the decoder. To train D,
we minimize the Chamfer distance [3] between the decoded
points and the receptive fields. Since our network architec-
ture is not aware of the absolute coordinates of p, we addi-
tionally compute the mean p̄ of all p ∈ R(p) and subtract
it from each point, yielding the set R(p) = R(p)− p̄. The
loss function for our self-supervised training procedure can
then be written as:

LC =
1

|Q|
∑
p∈Q

Chamfer(D(fp),R(p)). (3)
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Figure 4: Overview of our network architecture. (a) Residual block that performs a series of local feature aggregation steps to
update the feature vectors. (b) The local feature aggregation block aggregates geometric information of surrounding points.
(c) Visualization of the receptive field of a point p.

Data Normalization. In order for our teacher network to
be applied to any point cloud not included in the pretraining
dataset, some form of data normalization is required. Since
our network operates on the distance vectors of neighboring
points, we choose to normalize the input data with respect to
these distances. More specifically, we compute the average
distance between each point and its nearest neighbors over
the entire training set, i.e.,

s =
1

k |P |
∑
p∈P

∑
q∈knn(p)

∥p− q∥2. (4)

We then scale the coordinates of each data sample in the
pretraining dataset by 1/s. This allows us to apply the
teacher network to arbitrary point cloud datasets, as long
as the same data normalization technique is used.

3.2. Matching Geometric Features for 3D Anomaly
Detection

Finally, we describe how to employ the pretrained
teacher network T to train a student network S for anomaly
detection. Given a dataset of anomaly-free point clouds,
we first calculate the scaling factor s for this dataset as de-
fined in (4). The weights of T remain constant during the
entire anomaly detection training. S exhibits the identi-
cal network architecture as T and is initialized with uni-
formly distributed random weights. Each training point
cloud Pt ⊂ R3 is passed through both networks, T and
S, to compute dense features fT

p and fS
p for all p ∈ Pt, re-

spectively. The weights of S are optimized to reproduce the
geometric descriptors of T by computing the feature-wise
L2-distance:

LST =
1

|Pt|
∑
p∈Pt

∥∥fS
p − (fT

p − µ) diag(σ)−1
∥∥2
2
. (5)

We transform the teacher features to be centered around 0
with unit standard deviation. This requires the computation

of the component-wise means µ ∈ Rd and standard devia-
tions σ ∈ Rd of all teacher features over the whole training
set. We denote the inverse of the diagonal matrix filled with
σ by diag(σ)−1.

During inference, anomaly scores A(p) are derived for
each point p ∈ Pi in a test point cloud Pi ⊂ R3. They
are given by the regression errors between the respective
features of the student and the teacher network, i.e.,

A(p) = ∥fS
p − (fT

p − µ) diag(σ)−1∥2. (6)

The intuition behind this is that anomalous geometries pro-
duce features that the student network has not observed dur-
ing training, and is hence unable to reproduce. Large regres-
sion errors indicate anomalous geometries.

4. Experiments

To demonstrate the effectiveness of our approach, we
perform extensive experiments on the MVTec 3D Anomaly
Detection (MVTec 3D-AD) dataset [9]. This dataset was
designed to evaluate methods for the unsupervised detec-
tion of geometric anomalies in point cloud data (PCD).
Currently, this is the only publicly available comprehensive
dataset for this task. It contains over 4000 high-resolution
3D scans of 10 object categories of industrially manufac-
tured products. The task is to train a model on anomaly-free
samples and to localize anomalies that occur as defects on
the manufactured products during inference.

4.1. Experiment Setup

We benchmark the performance of our 3D-ST method
against existing methods for unsupervised 3D anomaly de-
tection. In particular, we follow the initial benchmark on
MVTec 3D-AD and compare 3D-ST against the Voxel f-
AnoGAN, the Voxel Autoencoder, and the Voxel Variation
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Model. The benchmark also includes their respective coun-
terparts that process depth images instead of voxel grids
by exchanging 3D with 2D convolutions. The GAN- and
autoencoder-based methods derive anomaly scores by a per-
pixel or per-voxel comparison of their reconstructions to
the input samples. The Variation Model is a shallow ma-
chine learning model that computes the per-pixel or per-
voxel means and standard deviations over the training set.
During inference, anomaly scores are obtained by comput-
ing the per-pixel or per-voxel Mahalanobis distance from a
test sample to the training distribution. We employ the same
training and evaluation protocols and hyperparameters set-
ting as listed in [9].

Teacher Pretraining. To pretrain the teacher network (cf.
Section 3.1), we generate synthetic 3D scenes using objects
of the ModelNet10 dataset [49]. It consists of over 5000 3D
models divided into 10 different object categories.

We generate a scene of our pretraining dataset by ran-
domly selecting 10 samples from ModelNet10 and scaling
the longest side of their bounding box to 1. The objects are
rotated around each 3D axis with angles sampled uniformly
from the interval [0, 2π]. Each object is placed at a random
location sampled uniformly from [−3, 3]3. Point clouds are
created by selecting n points from the scene using farthest
point sampling [35]. The training and validation datasets
consist of 1000 and 50 point clouds, respectively. Our ex-
periments show that using such a synthetic dataset for pre-
training yields local descriptors that are well suited for 3D
anomaly detection. In our ablation studies, we addition-
ally investigate the use of real-world datasets from different
domains for pretraining, namely Semantic KITTI [5, 24],
MVTec ITODD [21], and 3DMatch [51].

The teacher network T consists of 4 residual blocks and
processes n = 64000 input points. We perform experiments
using two different feature dimensions d ∈ {64, 128}. The
shared MLPs in all network blocks are implemented with
a single dense layer, followed by a LeakyReLU activation
with a negative slope of 0.2. The input and output dimen-
sions of each shared MLP are given in Figure 4. For local
feature aggregation, a nearest neighbor graph with k = 32
neighbors is constructed. The pretraining runs for 250
epochs using the Adam optimizer with an initial learning
rate of 10−3 and a weight decay of 10−6. At each training
step, a single input sample is fed through the teacher net-
work. To generate reconstructions of local receptive fields,
16 randomly selected descriptors from the output of T are
passed through the decoder network D, which is imple-
mented as an MLP with input dimension d, two hidden
layers of dimension 128, and an output layer that recon-
structs m = 1024 points. Each hidden layer is followed by
a LeakyReLU activation with negative slope of 0.05. After
the training, we select the model with the lowest validation

error as the teacher network.

Anomaly Detection. The student network S in our 3D-
ST method has the same network architecture as the teacher.
It is trained for 100 epochs on the anomaly-free training
split of the MVTec 3D-AD dataset. We train with a batch
size of 1. This is equivalent to processing a large number of
local patches per iteration due to the limited receptive field
of the employed networks. We use Adam with an initial
learning rate of 10−3 and weight decay 10−5. Each point
cloud is reduced to n = 64000 input points using farthest
point sampling. For inference, we select the student net-
work with the lowest validation error.

The evaluation on MVTec 3D-AD requires to predict an
anomaly score for each pixel in the original (x, y, z) im-
ages. To do this, we apply harmonic interpolation [23] to
the pixels that were not assigned anomaly scores by our
method. We follow the standard evaluation protocol of
MVTec 3D-AD and compute the per-region overlap (PRO)
[7] and the corresponding false positive rate for successively
increasing anomaly thresholds. We then report the area un-
der the PRO curve (AU-PRO) integrated up to a false pos-
itive rate of 30%. We normalize the resulting values to the
interval [0, 1].

4.2. Experiment Results

Table 1 shows quantitative results of each evaluated
method on every object category of MVTec 3D-AD. The
top three rows list the performance of the voxel-based meth-
ods. The following three rows list the performance of
the respective methods on 2D depth images. The bottom
two rows show the performance of our 3D-ST method on
3D point cloud data, evaluated for two different descrip-
tor dimensions d ∈ {64, 128}. Our method performs sig-
nificantly better than all other methods on every dataset
category. Increasing the descriptor dimension from 64 to
128 yields a slight overall improvement of 1.5 percent-
age points. The latter outperforms the previously leading
method by 25.0 points.

Figure 1 shows qualitative results of our method. 3D-
ST manages to localize anomalies over a range of different
object categories, such as the crack in the bagel, the con-
tamination on the rope and the tire, or the cut in the foam.
Additional qualitative results are shown in the supplement.

The MVTec 3D-AD paper states that real-world anomaly
detection applications require particularly low false posi-
tive rates. We therefore report the mean performance of
all evaluated methods when varying the integration limit of
the PRO curve in Figure 5. Our method outperforms all
other evaluated methods for any chosen integration limit.
The relative difference in performance is particularly large
for lower integration limits. This makes our approach well-
suited for practical applications. Exact values for several
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bagel
cable
gland carrot cookie dowel foam peach potato rope tire mean

Vo
xe

l GAN 0.440 0.453 0.825 0.755 0.782 0.378 0.392 0.639 0.775 0.389 0.583
AE 0.260 0.341 0.581 0.351 0.502 0.234 0.351 0.658 0.015 0.185 0.348
VM 0.453 0.343 0.521 0.697 0.680 0.284 0.349 0.634 0.616 0.346 0.492

D
ep

th GAN 0.111 0.072 0.212 0.174 0.160 0.128 0.003 0.042 0.446 0.075 0.143
AE 0.147 0.069 0.293 0.217 0.207 0.181 0.164 0.066 0.545 0.142 0.203
VM 0.280 0.374 0.243 0.526 0.485 0.314 0.199 0.388 0.543 0.385 0.374

PC
D 3D-ST64 0.939 0.440 0.984 0.904 0.876 0.633 0.937 0.989 0.967 0.507 0.818

3D-ST128 0.950 0.483 0.986 0.921 0.905 0.632 0.945 0.988 0.976 0.542 0.833

Table 1: Anomaly detection results for each evaluated method and dataset category. The area under the PRO curve is reported
for an integration limit of 0.3. The best performing method is highlighted in boldface.

Figure 5: Performance of each method with respect to the
integration limit. The AU-PRO at an integration limit of
0.3 is marked by a vertical line. In real-world scenarios,
the performance at lower integration limits is of particular
importance.

integration limits can be found in the supplement.

4.3. Ablation Studies

We additionally perform various ablation studies with re-
spect to the key hyperparameters of our proposed method.
Again, the exact values for each experiment can be found in
the supplementary material. Figure 6 shows the dependency
of the mean performance of our method on the number of
input points n, the feature dimension d, or the number of
nearest neighbor points k used for local feature aggregation.
We additionally visualize the inference time and the mem-
ory consumption of each model during training and evalua-
tion1. We find that our method is insensitive to the choice of
each hyperparameter. In particular, the mean performance
of each evaluated model outperforms the best performing
competing model from the baseline experiments by a large
margin. The mean performance of our model grows mono-
tonically with respect to each considered hyperparameter. It
eventually saturates, whereas the inference time and mem-
ory consumption continue to increase super-linearly.

1All models were implemented in PyTorch [37]. Inference times and
memory consumption were measured on an NVIDIA Tesla V100 GPU.

Feature Space of the Teacher Network. We depict the
effectiveness of our pretraining strategy in Figure 7. The
left bar plot shows the mean performance with respect to
changes in the training strategy of our method. The first bar
indicates how the performance changes when we initialize
the teacher’s weights randomly and perform no pretraining.
As expected, the performance drops significantly. The next
bar shows the performance when concatenating the abso-
lute point coordinates of each 3D point to the local feature
aggregation function G, as proposed in [28]. This no longer
makes our network translation invariant and decreases the
performance. This indicates that translation invariance is
indeed important for our network architecture and that our
modification to the local feature aggregation module has a
significant impact. The third bar shows the performance of
our method when trying to additionally incorporate rotation
invariance. We achieve this by augmentation of the training
data with randomly sampled rotations such that locally ro-
tated geometries are also considered as anomaly-free. The
performance is still significantly below our method, which
indicates that sensitivity to local rotations is beneficial for
3D anomaly detection.

Pretraining Dataset. In most of our experiments, we use
synthetically generated scenes created from objects from
the ModelNet10 dataset as described above. Our pretrain-
ing strategy does not require any human annotations and can
operate on arbitrary input point clouds. We are thus inter-
ested in whether the performance varies when using differ-
ent pretraining datasets. As first experiment, we randomly
select 1000 training scenes from the Semantic KITTI au-
tonomous driving dataset, which is captured with a LIDAR
sensor. Secondly, we pretrain a teacher on all samples of
3DMatch, an indoor dataset originally designed for point
cloud registration. Finally, we use all samples of the MVTec
ITODD dataset, an industrial dataset originally designed for
3D pose estimation. The center bar chart in Figure 7 shows
the mean performance of our method when using these three
datasets for pretraining, compared to our baseline model.
We find that our method does not strongly depend on the
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Figure 6: Performance of our method when changing various key hyperparameters, i.e., the number of input points, the
feature dimension, and the number of nearest neighbors used for local feature aggregation.

Figure 7: Sensitivity of our method to the pretraining strat-
egy of the teacher network, different pretraining datasets,
and different feature extractors.

specific dataset chosen for pretraining when using ITODD
or 3DMatch. We observe a slight performance gap for the
KITTI dataset, which is likely due to the large domain shift.

Feature Extractor. We additionally test the performance
of our method when our pretrained teacher network is re-
placed by descriptors obtained from different feature extrac-
tors. We compare against features obtained from PPFFold-
Net [19] and FCGF [16]. For both, we use publicly avail-
able pretrained models [1, 15]. PPF-FoldNet outputs a sin-
gle 512-dimensional descriptor for patches cropped from a
local neighborhood of 1024 points around each input point.
Since it requires patch-based feature extraction, producing
descriptors for a large number of input points becomes pro-
hibitively slow. We therefore only extract 1000 descriptors
for each point cloud with PPF-FoldNet. FCGF outputs 32-
dimensionsal descriptors and was pretrained in a supervised
fashion on the 3DMatch dataset by finding correspondences
for 3D registration. Since it requires a prior voxelization of
the input data, we select a voxel size of 3.5mm and extract
descriptors for 64000 points.

We train our student network to match the features ex-

tracted from these pretrained networks instead of our pro-
posed teacher network. The feature dimension of the output
layer of our student network is adapted to match the feature
dimension of the descriptors. The results are shown in the
right bar plot in Figure 7. Transferring the features of both
networks yields better performance than the Voxel GAN,
which is the previously best-performing method that was
trained from scratch. This underlines the effectiveness of
using pretrained geometric descriptors for 3D anomaly de-
tection. Both extractors do not reach the performance of our
proposed pretraining strategy that is specifically designed
for the anomaly detection problem.

5. Conclusion

We propose 3D-ST, a new approach to the challenging
problem of unsupervised anomaly detection in 3D point
clouds. Our method is an adaption of student-teacher
anomaly detection from 2D to 3D. While existing methods
are trained from random weight initialization, our method
leverages the descriptiveness of deep local geometric fea-
tures extracted from a pretrained network. To address the
lack of pretraining protocols for 3D anomaly detection, we
introduce a self-supervised strategy based on the recon-
struction of local receptive fields. This enables the train-
ing of teacher networks that produce dense local geometric
descriptors for arbitrary 3D point clouds.

For anomaly detection, a student network matches the
geometric descriptors of the teacher on anomaly-free data.
During inference, anomalies are detected in regions where
the student fails to reproduce the output of the teacher. Ex-
tensive experiments on the MVTec 3D Anomaly Detection
dataset show that our method outperforms all existing meth-
ods by a large margin. Our ablation studies demonstrate
that our method is computationally efficient and robust to
the choice of hyperparameters and pretraining datasets.
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Georg Langs, and Ursula Schmidt-Erfurth. f-AnoGAN: Fast
unsupervised anomaly detection with generative adversarial
networks. Medical Image Analysis, 54:30–44, 2019.

[44] Jaime Simarro Viana, Ezequiel de la Rosa, Thijs Vande Vy-
vere, David Robben, Diana M. Sima, and CENTER-TBI
Participants and Investigators. Unsupervised 3D Brain
Anomaly Detection. In Brainlesion: Glioma, Multiple Scle-
rosis, Stroke and Traumatic Brain Injuries, pages 133–142.
Springer International Publishing, 2021.

[45] Kechen Song and Yunhui Yan. A noise robust method
based on completed local binary patterns for hot-rolled steel
strip surface defects. Applied Surface Science, 285:858–864,
2013.

[46] Federico Tombari, Samuele Salti, and Luigi Di Stefano.
Unique Signatures of Histograms for Local Surface Descrip-
tion. In Proceedings of the 11th European Conference on
Computer Vision: Part III, page 356–369, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[47] Shashanka Venkataramanan, Kuan-Chuan Peng, Ra-
jat Vikram Singh, and Abhijit Mahalanobis. Attention
Guided Anomaly Localization in Images. In Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm, editors, Computer Vision – ECCV 2020, pages
485–503. Springer International Publishing, 2020.

2622



[48] Lu Wang, Dongkai Zhang, Jiahao Guo, and Yuexing Han.
Image Anomaly Detection Using Normal Data Only by La-
tent Space Resampling. Applied Sciences, 10(23), 2020.

[49] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D
ShapeNets: A Deep Representation for Volumetric Shapes.
In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1912–1920, 2015.

[50] Saining Xie, Jiatao Gu, Demi Guo, Charles R. Qi, Leonidas
Guibas, and Or Litany. Pointcontrast: Unsupervised pre-
training for 3d point cloud understanding. In Computer Vi-
sion – ECCV 2020, pages 574–591, Cham, 2020. Springer
International Publishing.

[51] Andy Zeng, Shuran Song, Matthias Nießner, Matthew
Fisher, Jianxiong Xiao, and Thomas Funkhouser. 3DMatch:
Learning Local Geometric Descriptors from RGB-D Recon-
structions. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 199–208, 2017.

2623


