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Abstract

The unpaired domain-to-domain translation aims to
learn inter-domain relationships between diverse modali-
ties without relying on paired data, which can help com-
plex structure prediction tasks such as age transformation
where it is challenging to attain paired samples. A com-
mon approach used by most current methods is to factor-
ize the data into a domain-invariant content space and a
domain-specific style space. In this work, we argue that
the style space can be further decomposed into smaller
subspaces. Learning these style subspaces has two-fold
advantages: (i) it allows more robustness and reliabil-
ity in the generation of images in unpaired domain trans-
lation; and (ii) it allows better control and thereby in-
terpolation of the latent space, which can be helpful in
complex translation tasks involving multiple domains. To
achieve this decomposition, we propose a novel scalable
approach to partition the latent space into style subspaces.
We also propose a new evaluation metric that quantifies
the controllable generation capability of domain transla-
tion methods. We compare our proposed method with sev-
eral strong baselines on standard domain translation tasks
such as gender translation (male-to-female and female-
to-male), age transformation, reference-guided image syn-
thesis, multi-domain image translation and multi-attribute
domain translation on celebA-HQ and AFHQ datasets.
The proposed technique achieves state-of-the-art perfor-
mance on various domain translation tasks while outper-
forming all the baselines on controllable generation tasks.
Code - https://github.com/GauravBh1010tt/
Controllable-Domain-Translation

1. Introduction
Translating data from one domain to another requires

modeling complex inter-domain relationships. Recent ef-
forts have shown the efficacy of deep generative mod-
els such as Generative Adversarial Networks (GANs) and
other latent variable models for domain translation tasks

[26, 18, 1, 16, 25, 20, 8, 6, 14, 5, 23]. A specific setting
of domain translation that has received attention in recent
years is the use of unpaired data. In many applications, ac-
cess to paired data can be a bottleneck as it requires signif-
icant human effort for data capture. Unpaired domain-to-
domain translation (UDT) leverages unmatched pairs from
two different domains to learn the domains’ structural and
semantic relationships. The objective of UDT is to translate
data from source to target domain with the constraint that
the paired samples are not available, i.e., for any sample in
the source domain, we do not have access to its counterpart
in the target domain, which makes this problem challeng-
ing.

A common approach adopted by most recent UDT meth-
ods is to factorize the image distribution into a domain-
invariant content space that helps capture information
across domains and a domain-specific style space to capture
the style variations [12, 25, 20, 16, 9]. However, using a sin-
gle style space to capture different stylistic variations in the
image may restrict reliable translation of domains as differ-
ent stylistic variations may get mixed up at various levels.
For example, consider two commonly used cases in gender
translation: (i) generating female images corresponding to
a bald male image; and (ii) generating a male image with
a beard corresponding to a female image. In such cases,
reliably translating images based on a particular style at-
tribute could allow faithful translation. A possible remedy
is to decompose the style space into smaller style subspaces
where each subspace controls a unique stylistic variation in
the data. This, in turn, allows controlled interpolation of the
entire style space. In this work we focus on learning parti-
tioned style space to achieve reliable UDT which helps us to
mitigate the limitation of unreliable translations by existing
UDT methods such as [12, 25, 20, 16, 9, 8].

Realizing such an idea of style decomposition may re-
quire several subspace encoders in existing methods that
may not be scalable in practice. Another essential aspect
to consider here is that though the style subspaces are not
dependent on each other, they may not be mutually exclu-
sive during generation. That is, an image may be generated

4220



Figure 1. Controllable male-to-female translation. Top block
captures our method’s results with top-row representing the
style-subspace ’age’ (older, younger), middle-row representing
’hair color’ (black, blonde, and brown), and last-row repre-
senting ’smile’ (smiling, non-smiling). Bottom block shows re-
sults obtained using StarGAN v2 [8] for comparison. The pro-
posed method generates samples from diverse subspaces such as
old/young, smile/non-smile; whereas StarGAN v2 lacks control
over such diversity in its translations.

by combining inputs from multiple subspaces. Hence, using
separate encoder networks may not be a feasible solution to
incorporate such style subspaces. In this work, we propose a
new methodology to learn a single latent space to represent
style elements of domains but decompose this style space
by partitioning it into smaller subspaces during the learn-
ing itself. This is achieved by associating a group of latent
dimensions to a particular subspace using a learnable parti-
tion network. Interpolating across a particular latent group
allows us to reliably translate samples focused on a specific
attribute represented by a style subspace, as we show in our
results. Learning the partitioned style space gives us the
benefit of combining multiple subspaces during translation.
For instance, using the proposed method, we can translate
a given male image to a female image which is old, have a
specific hair color and is smiling/non-smiling. Most exist-
ing UDT methods (such as ([17, 4, 12, 25, 20, 16, 9, 8])) fail
to achieve such granularity in translation which is achieved
by the proposed method. Moreover, we design our architec-
ture and training procedure to incorporate all essential prop-
erties of an effective domain translation - high-quality im-
age synthesis, handling multiple domains, reference-guided
image synthesis, controllable generation, and scalable train-
ing. Figure 1 presents sample results that show the capabil-
ities of our method, comparing them to StarGANv2 [8], a
widely used UDT method. Our key contributions in this
work are summarized below:

• We hypothesize and demonstrate that decomposing
the domain-specific style space in unpaired domain-
to-domain (UDT) translation tasks into smaller style
subspaces allow for reliable controllable translation.

• We present a new method to learn the style space via
partitioning into subspaces that captures the require-

ments of controllable UDT translation. Our train-
ing procedure is scalable in practice and can be used
to synthesize high-quality images (256 × 256) when
trained on a single Tesla P100 GPU.

• To evaluate the performance of domain translation
methods on the task of controllable generation, we in-
troduce a new evaluation metric that quantifies the ex-
tent of reliable generation by any domain translation
method.

• We present comprehensive results, including high-
resolution generation, that show the usefulness and
control demonstrated by our approach over state-of-
the-art baselines on benchmark datasets, CelebA-HQ
and AFHQ.

2. Related Work
Most of the work in unpaired domain translation can be

broadly categorized into five categories: high-quality im-
age synthesis, handling multiple domains, reference-guided
image synthesis, controllable generation, and scalable train-
ing. We describe related efforts from each of these perspec-
tives below.
High-quality image synthesis - Existing work in domain-
to-domain translation is dominated by the use of Genera-
tive Adversarial Networks (GANs) with cyclic consistency
[26, 27, 18, 1, 12, 7, 15, 22, 2, 3, 16]. Cycle-GAN [26]
was the first work to introduce a cyclic consistency idea
that was effective when pairing information between do-
mains was not available. Cycle-GAN inherently models an
image-to-image mapping, which also results in mode col-
lapse and limits high-quality image generation. Later works
showed that such mode collapse could be resolved by em-
bedding the latent spaces [1, 12, 16, 25, 20]. Embedding
latent spaces with GANs results in diverse image synthesis
as the model learns multi-modal mappings.
Handling multiple domains - Most existing UDT methods
are restricted to two domains [26, 12, 16, 25, 20]. StarGAN
[6] was the first method that efficiently handled multiple do-
mains simultaneously. However, StarGAN does not employ
embeddings of a latent space and thus learns a deterministic
mapping. More recently, StarGAN v2 [8] proposed to han-
dle multiple domains where the mappings are multi-modal.
Reference-guided image synthesis - The idea of divid-
ing the data into a content and style space gives access to
reference-guided image synthesis, where an image can be
translated using the style information of a given reference
image. MUNIT-GAN [12] was among the first methods that
introduced this idea. Quite recently, several other works
have followed suit and allow reference-guided synthesis by
using content and a style space [16, 25, 20, 8].
Controllable generation - While most of the focus in UDT
translation has been on high-quality image synthesis or han-
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Method High-quality multi-domain Ref-guided controllable scalable

UNIT-GAN [18] - - - - -
CycleGAN [26] - - - - -

MUNIT-GAN [12] ✓ - ✓ - -
DRIT++ [16] ✓ ✓ ✓ - -

Council-GAN [20] ✓ - ✓ - -
ACL-GAN [25] ✓ - ✓ - -
StarGAN v2 [8] ✓ ✓ ✓ - ✓
DosGAN [17] - - - ✓ -

Homographic [4] - ✓ - ✓ -
Proposed ✓ ✓ ✓ ✓ ✓

Table 1. Categorization of UDT translation methods.Here,
✓denotes if a particular property is satisfied.

dling multiple domains, the idea of controllable generation
(where the generated image can be controlled by factors that
can be specified) is addressed only by a few [4, 17, 14].
DosGAN [17] uses an attribute pre-trained classifier during
domain translation, which helped to learn disentanglement
among the domains. In another work, [4] introduced homo-
graphic interpolation of latent space to achieve controllable
generation for UDT translation.
Scalable training - Most domain translation methods are
based on generative models that are computationally expen-
sive to train. Hence, scalability is one of the important fac-
tors to consider while proposing any new architecture. Most
UDT translation methods are comprised of a pair of gen-
erators and discriminators (from source-to-target, and vice
versa) [12, 16, 20, 25], which makes it infeasible for them
to handle multiple domains simultaneously. Some new
methods have adopted different training paradigms, such
as learning a council of generator-discriminator networks
[20], or leveraging adversarial consistency [25]; nonethe-
less, their training procedure is not scalable to incorpo-
rate multiple domains. Scalability issue is better handled
by StarGAN [6] and its successor StarGAN v2 [8]. Start-
GAN v2 introduced the idea of using a single generator
framework that reduces computational burden and allows
scalable training.

In this work, we partition the style space into smaller
subspaces by introducing a partition network. The idea of
learning style-subspace specific latents gives us an advan-
tage of high-quality reliable UD2D translation over exist-
ing non-controllable methods such as [12, 25, 20, 16, 9, 8].
When compared to controllable generation methods such as
[17, 4], the proposed methods achieves granular translations
such as combining multiple style subspaces (to be discussed
in Section 4.2), which is not achieved by existing control-
lable generation methods. We further discuss the relation-
ship of proposed method to existing methods in Section 3.6.

3. Proposed Method
3.1. Problem Formulation

We begin by introducing the data from a source domain
Xsrc ∼ Psrc, and a target domain Xtrg ∼ Ptrg ( Psrc and
Ptrg denote the probability distribution over the domains

Xsrc and Xtrg). Our broad aim is to learn the translation,
g(·) from Xsrc to Xtrg . We operate in the challenging set-
ting where samples available from the two domains during
training are unpaired , i.e., ∀xs ∈ Xsrc, g(xs) /∈ Xtrg.
Our specific objective is to learn g(·) through a latent space
which can be decomposed into subspaces that allow us to
control the generation of samples in Ptrg given xs ∈ Xsrc.
For example, in human facial images, the subspaces could
correspond to attributes such as hair color, age, or smile.
We refer to these as style subspaces for this reason.
Issue of Non-identifiability. Due to the unpaired setting, it
may not be possible to identify the style subspace relevant
for a data pair {xs, xt} given during training. For instance,
in the case of male-to-female translation, sample xs could
be a male with black hair and a beard, while sample xt may
belong to a female with blonde hair and no facial hair. Con-
sidering there is more than one attribute changing, associat-
ing xs and xt to a common subspace (say, hair color) is not
possible. We refer to this issue as non-identifiability.

To solve this problem, we hypothesize a joint distribution
of both domains conditioned on a latent distribution that can
be factorized based on the style subspaces. We describe our
framework to achieve this below.

3.2. Proposed Framework
Our proposed architecture, shown in Figure 1, has four

basic modules: the style encoder, mapping network, parti-
tion network, and the generator (with a style mixing net-
work). Since it is possible to train in both directions in an
unpaired domain translation task, we refer to the two do-
mains as D1 and D2 going forward (instead of source and
target), for convenience and clarity of presentation. We as-
sume that there are K style subspaces that the latent space
is partitioned into.
Style Encoder. Our style encoder E takes in an im-
age xi; i ∈ {D1,D2} and extracts a style vector fx =
Ei

2(E1(xi)), i ∈ {D1,D2}, where fx ∈ Rl is an l-
dimensional vector, E1 corresponds to shared layers of the
encoder and Ei

2 corresponds to domain-specific layers. The
style encoder is designed such that only the last block of
neural network layers is specific to domain i (rest of the
layers are shared across domains). This architecture design
allows our training to be efficient.
Mapping Network. To induce diversity among the trans-
lated images, we introduce a mapping network M which
takes a noise vector from the standard normal Gaussian,
z ∼ N (0, 1), and generates a random style vector fz =
M i

2(M1(z)), i ∈ {s, t}, where fz ∈ Rl, M1 corresponds to
shared layers and M i

2 corresponds to domain-specific layers
(similar to the encoder). The mapping network’s role is to
transform a random Gaussian noise vector to a meaningful
style vector that can provide diversity of generation in the
target domain.
Partition Network. This component of our architecture is
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Figure 2. Architecture of our proposed model for controllable unpaired domain translation.

important to address the non-identifiability issue. To this
end, we introduce a partition vector pvec ∈ {0, 1}K (where
K is the number of subspaces) that stores the style subspace
information for each training sample. In particular, pvec is
designed as a one-hot vector where the kth position refers to
the kth subspace and is set to 1 when that style is present
in a given image. (For e.g., the face image of a female
with black hair and a smile would be associated with two
pvec vectors - one for hair color and another for the smile).
Given input images from D1 and D2 with a common trait
(say, black hair), we pass the corresponding one-hot par-
tition vector pvec to a partition network PN which trans-
forms the partition vector to a l-dimensional style vector
fp = PN(pvec). This network behaves like an additional
input to guide the styled generation of the translated image.
To achieve this, we concatenate fp with fx and fz (defined
above) to obtain two vectors:

fx
p = [fp; fx] and fz

p = [fp; fz] (1)

Learning fp, fx
p and fz

p facilitates the identification of style
dimensions that are responsible for generating samples cor-
responding to a specific subspace.
Generator (with Style Mixing Network). Our generator
module G, as shown in Figure 1, first extracts content in-
formation from a given image xi, i ∈ {D1,D2}. This con-
tent block consists of convolution, batch normalization and
downsampling layers. The output of the content block is
fed to a style mixing network which also takes in the out-
puts of the partition network, fx

p and fz
p , as input. The style

mixing network consists of convolution blocks and adaptive
instance normalization (AdaIN) layers [11] to facilitate this
mixing. The parameters for AdaIN are obtained by passing
fx
p and fz

p (separately) through a few neural network layers.
The last part of the generator consists of an image genera-
tion block and a partition vector generation module. Both
these blocks take the output of the style mixing network as
input. The image generation block synthesizes a translated
image in the target domain while the partition vector gener-

ation computes a partition vector corresponding to the given
source-target pair, i.e. we have:

[x̂x
j , p̂

x
vec] = G(xi, f

x
p )

[x̂z
j , p̂

z
vec] = G(xi, f

z
p ) (2)

where i, j ∈ {D1,D2} such that i ̸= j (i.e. the input and
output are from two different given domains). The genera-
tor hence outputs [x̂x

j , p̂xvec] corresponding to the real im-
age input, and [x̂z

j , p̂
z
vec] corresponding to the noise input.

We show in the next section how these are used to train the
overall framework.

3.3. Training Objectives
We now describe the objectives used to train our frame-

work.
Adversarial training. Given a source image sample xi, i ∈
{D1,D2} and its partitioned style vector fz

p sampled from
the mapping network M , the generator synthesizes a trans-
lated image in the target domain, x̂j , j ̸= i. We use a dis-
criminator Di for each domain (the architecture is similar
to the style encoder) to compute an adversarial loss:

Lz
Adv = E

xi,i∈{D1,D2}

[
logDi(xi)

]
+

E
xi,i∈{D1,D2}

z∼N (0,1)

[
log(1−Di(G(xi, f

z
p )))

]
(3)

We compute the above loss given input samples from both
D1 and D2. A similar loss is also computed for the other
output obtained through the generator as below:

Lx
Adv = E

xi,i∈{D1,D2}

[
logDi(xi)

]
+

E
xi,i∈{D1,D2}

[
log(1−Di(G(xi, f

x
p )))

]
(4)

Eqn 3 promotes generation of diverse samples from the tar-
get distribution, while Eqn 4 promotes generation of sam-
ples similar in style to the given input, xi, from the target
distribution.
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Partition vector loss. Given the partition vector p̂vec gener-
ated by the generator (as described above), we compute the
partition loss by minimizing the squared error of the gener-
ated partition vector with the original input partition vector
pvec:

Lpar =
1

2

(
||p̂xvec − pvec||22 + ||p̂zvec − pvec||22

)
(5)

The partition loss encourages the generator not only to gen-
erate a relevant image from the target domain but also to
be aware of the style under consideration (this allows us to
change the input pvec to other styles at inference to control-
lably generate the same content with different styles).
Partition consistency loss. To ensure that the translated
image preserves the properties of the source domain, we in-
troduce a variant of cyclic consistency loss. We compute
the partition style vector corresponding to the original sam-
ple xi and the generated sample x̂i, and compute the L2-loss
between these two vectors:

Lpc = ||[fp;E(xi)]− [fp;E(x̂i)]||22 (6)

where x̂i is generated using the generator G(xi, f
x
p ) (see

Eqn 2), E(xi) denotes the output of the style encoder for
xi, E(x̂i) denotes the output of the style encoder for x̂i, and
each [fp;E(x)] term is as defined in Eqn 1. Note that while
L2 norm on the image space may not reflect human visual
perception, L2 norm in the latent space is generally more
meaningful. Using the partitioned latent space allows us to
use simple L2 or L1 norms effectively for comparisons.
Other Losses. In addition to the above loss terms, we
also use style reconstruction loss as in [8][12], and the R1-
regularizer loss as in [19], considering their effectiveness
for domain translation. These loss terms help achieve good
quality translations and better training convergence. We de-
note these together as Lo.
Final training objective. Our final training objective is
given as:

min
E,M,PN,G

max
D

Lx
Adv+Lz

Adv+λparLpar+λpcLpc+λoLo

(7)

where λpar, λpc, and λo controls the weights given to the
partition loss, consistency loss, and other losses respec-
tively.

3.4. Training and Inference
Training. During training, we switch between providing
images from both D1 and D2 as input, so that the model
learns the bi-directional mapping. In each case, the cor-
responding domain-specific layers are activated while the
rest of the network is shared (see Figure 1). Our frame-
work also allows translation from a domain to itself, where
the generator generates images from the source domain it-
self (we call this self-modal translation). In other words,
given domains male and female, we learn cross-modal

translations: {male → female} and {female → male};
as well as self-modal translations: {male → male} and
{female → female}. In our implementation, we do a
coin flip to choose between source and target domain for
each batch. This simple strategy is scalable and works well
in all our experiments.
Inference. During inference, our model has two options
to translate an image: we can extract the style information
from a reference image using the style encoder E, and then
using the appropriate domain information, generate the tar-
get domain image using the generator G. Alternatively, we
can sample a random style vector from the mapping net-
work M and synthesize the image using the generator G.
Interestingly, we demonstrate that we can achieve control-
lable generation at inference by simply changing the parti-
tion vector value pvec. Since each dimension of pvec is now
associated with a particular style subspace, we can interpo-
late across this kth subspace by varying the kth-dimension of
pvec. Our model also allows combining multiple subspaces
(where pvec is passed as a binary vector instead of a one-
hot vector), which provides image generation with multiple
desired attributes.

3.5. Evaluation of Controllable Generation
Existing methods that show controllable UD2D transla-

tion [17][4] broadly use qualitative results to demonstrate
the control. To improve this, we introduce a new quantita-
tive metric to study average controllable generation (ACG)
by a domain translation method. ACG is defined as the av-
erage classification accuracy of attributes in a dataset ob-
tained by training a classifier on the generated images for
each attribute’s presence and absence.

For example, we consider images on attributes provided
in the widely used CelebA dataset – smile, age, hair color
(black, brown, blonde), lips, and nose size. We also use a
combination of attributes such as smile+age, smile+black
hair, and so on, providing us a total of 16 style attributes
(which define our style subspaces). Next, we train a multi-
label classifier (CACG) with the output layer neurons as 16.
For a given domain translation model M, we generate im-
ages conditioned on the above 16 subspaces. Let the source
image passed to M be xs and the translated image for a
subspace k be x̂k = M (xs, k). We compute the classifica-
tion accuracy of the classifier trained on the above data. We
expect that for a given subspace, higher classification per-
formance should be achieved if the quality of translations
are good. ACG is hence computed as:

ACG =
1

N

1

15

15∑
k=1

N∑
n=1

Acc(CACG(x̂
k
n); c

k
n) (8)

where N is the number of samples generated for each sub-
space, and ckn is the ground truth subspace for the given
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sample. (We use N = 500 in our experiments). The higher
value of ACG corresponds to a better controlled generation.
We also compute ACG@r, where the model M is given r
chances to predict the subspace label. For all controllable
generation methods – DosGAN [17], homographic interpo-
lation [4], and ours – we keep the value of r = 1, while
for other methods that don’t offer explicit control, we vary
r between 1 to 5 to give them a better chance.

3.6. Relationship to Existing UD2D Methods
Our idea of introducing a mapping network is also ex-

plored in some styleGAN-based works [21, 8]. The map-
ping network has an advantage over VAE-based methods
that try to achieve control in the generation, as shown in
these efforts. The proposed method shares some similar-
ities with StarGAN-v2 [8], such as using domain-specific
layers to handle multiple domains and the mapping net-
work. However, StarGAN-v2 had a different objective,
and the addition of partition network and partition loss al-
lows us to address the non-identifiability issue and pro-
vide us with the ability to achieve controllable genera-
tion over StarGAN-v2. We also factor the image into a
content space, and a style space, similar to MUNIT-GAN
[12] and its most recent variant ACL-GAN [25]. Nonethe-
less, none of the MUNIT-GAN variants (Council-GAN[20],
ACL-GAN[25]) achieve controllable generation. Moreover,
these methods use multiple generators-discriminators for
bi-directional translation. We use a simpler architecture to
achieve our objectives herein.

DosGAN [17] introduces a classification loss using a
pre-trained classifier in terms of controllable generation.
Their architecture is not trained end-to-end and hence falls
short in smoothly interpolating the latent space. A more re-
cent method [4] uses an interpolation network to learn vari-
ous paths for UD2D translation. Their method is restricted
to a single path at a time and thus falls short of learning
complex granular translations that are achieved by combin-
ing multiple subspaces (see Sec 4 for our study). For exam-
ple, their method does not support male-to-female transla-
tion when conditioned on multiple attributes. Our idea and
approach to partitioning the attribute space give us more
flexibility and robustness to control the style space while
maintaining quality and diversity.

4. Experiments and Results
We evaluate the performance of our model on a variety

of UDT tasks on celebA-HQ [13] (celebrity with attributes)
and AFHQ [8] (animal faces HQ) datasets: gender trans-
formation (male-to-female and female-to-male), age trans-
formation (young-to-old, old-to-young), reference-guided
image synthesis, multi-attribute domain translation, and
multi-domain image translation. We compare our work
with several strong baselines for UDT such as CycleGAN
[26], MUNIT-GAN [12], DRIT++ [16], Council-GAN [20],

ACL-GAN [25], StarGAN v2 [8], DosGAN [17], and ho-
mographic interpolation [4]. In all our experiments, we set
λpar and λpc to 1.

To evaluate the diversity and quality of translated im-
ages, we use LPIPS score (Learned Perceptual Image Patch
Similarity) [24] and FID metric (Frechet Inception Dis-
tance) [10]. For LPIPS score, we generate 10 samples for
each testing data, while for FID, we generate 5000 fake
samples used to compute the generated distribution statis-
tics. (Due to space constraints, please refer to our Supple-
mentary section for implementation details).

4.1. Dataset Preparation

We use 10 attributes provided in the CelebA-HQ dataset
as style-subspaces: ’Bags Under Eyes’, ’Big Lips’, ’Blond
Hair’, ’Big Nose’, ’Black Hair’, ’Double Chin’, ’Oval
Face’, ’Smiling’, ’Brown Hair’, ’Young’. Before training,
we divide the data into its respective subspace, where we
have 5000 pairs (male and female) per subspace, amount-
ing to a total training set of 50000 pairs. For testing on
celebA-HQ, we use the same split provided by [8] for fair
comparison; this consists of 1000 male-female pairs in the
test set.

To evaluate the performance of the proposed method
on reference-guided image translation, we use the animal
translation task using the AFHQ dataset [8]. Specifically,
we perform cat-to-dog and dog-to-cat translation. The
AFHQ dataset consists of 5000 training samples of dogs
and cats, while 1000 samples from each domain are used
for testing.

4.2. Results and Discussion

Gender translation. The results on gender translation tasks
is shown in Table 2. Here, we evaluate the proposed model
on male-to-female and female-to-male translation tasks. We
use the mapping network M to translate the given source
sample using a Gaussian noise z = N(0, 1). The proposed
method achieves the highest LPIPS value and lowest FID
score, suggesting that we can maintain diversity and quality
among the generated images. Other methods that attempt
controllable generation - DosGAN [17] and homomorphic
interpolation [4] - do not produce high-quality samples, as
reflected in their higher FID scores.
Controllable generation. We use the proposed ACG met-
ric to evaluate the proposed method’s performance on con-
trollable generation (Table 3). We use ACG@1 for all con-
trollable UDT methods such as DosGAN [17] and homo-
morphic interpolation [4]. For other methods such as Star-
GAN v2 [8], MUNIT-GAN [12], ACL-GAN [25] which do
not attempt controllable generation, we evaluate the per-
formance on ACG@1 and ACG@5 to give them their best
chance (please refer to supplementary section for more ex-
periments). The proposed method outperforms all baselines
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male-to-female female-to-male
Method LPIPS ↑ FID ↓ LPIPS FID

MUNIT-GAN [12] 0.36 19.02 0.35 23.42
DRIT++ [16] 0.37 24.61 0.35 25.12

Council-GAN [20] 0.42 18.10 0.41 21.16
Homomorphic [4] 0.40 21.42 0.39 23.12
ACL-GAN [25] 0.43 16.63 0.43 18.31
DosGAN [17] 0.38 22.15 0.37 24.23

StarGAN v2 [8] 0.45 13.92 0.44 16.78
Proposed 0.46 11.79 0.45 16.42

Table 2. Results on gender translation task on celebA-HQ (male-
to-female and female-to-male). We evaluate the performance
based on quality and diversity of generated samples. ↑ denotes
higher the better, while ↓ means a lower value is desirable.

male-to-female female-to-male
Method ACG@1 ACG@5 ACG@1 ACG@5

MUNIT-GAN [12] 0.40 0.41 0.37 0.39
ACL-GAN [25] 0.41 0.42 0.38 0.40
StarGAN v2 [8] 0.43 0.45 0.40 0.42
DosGAN [17] 0.45 - 0.45 -

Homomorphic [4] 0.47 - 0.47 -
Proposed 0.57 - 0.59 -

Table 3. Results on Average Controllable Generation on CelebA-
HQ dataset

on the controllable generation task. The ACG metric varies
a lot between controllable and non-controllable methods
which justifies their (non-controllable methods) inability to
learn reliable domain translation. There are many cases
where non-controllable methods consistently fail, such as
shown in Figure 1, where for the given male image, the
StarGAN v2 is unable to generate an old female image
or a no-smiling female image. In contrast, the proposed
method can reliably translate images using different style-
subspaces, achieving better control over the generations.
Forward-backward interpolation. During training, the
partition vector (pvec) learns latent-to-subspace partition by
associating kth dimension of pvec to a group of latents that
controls a particular subspace k. During inference, pvec
allows us to linearly interpolate across a particular style-
subspace by varying the kth dimension of pvec and then
generating target sample x̂t.

pvec[k] = δ; δ ∈ {−∞,+∞} (9)
fp, fz = PN(pvec),M(z); z ∈ N (0, 1) (10)

fz
p = [fp; fj ]; x̂

t = G(xs, f
z
p ) (11)

where δ ∈ R is the weight given to the kth subspace. In-
terestingly, we found out that it is possible to interpolate a
subspace in the backward direction by using negative values
for δ. The backward interpolation has significance in cases
such as the ’age’ subspace, where forward interpolation
refers to making the translated image younger while back-
ward interpolation refers to making it older. Similarly, for
the ’smile’ subspace, a positive value means a more smiling

Figure 3. Forward-backward interpolation for gender translation.
The top block represents interpolating across ’age’ subspace,
while the middle shows ’blonde hair color’, and the bottom shows
’smile’ subspace. In each of the block, the top row shows male-
to-female translation and the bottom row shows female-to-male
translation.

Figure 4. Results on age transformation. Here, forward translation
corresponds to older-to-younger, while backward translation refer
to younger-to-older translation.

face while a negative value means lesser or no-smile. The
result of forward-backward interpolation is shown in Fig-
ure 3 where we achieve controllable gender translation by
interpolating across style-subspaces.
Age transformation. The design of our architecture
and training procedure allows us to also perform domain-
specific transformation (self-modal translation, as noted in
Section 3.4). At inference time, using domain-specific lay-
ers, we achieve age transformation (young-to-old and old-
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Figure 5. Combining ’age’ and ’blonde hair color’ style-subspace
while performing male-to-female translation. Here, the horizontal
axis is the ’age’ style-subspace, and the vertical axis is the ’blonde
hair-color’ style-subspace.

to-young) on the same domain. The images are synthesized
using Eqns 9 - 11, where the δ corresponding to age sub-
space is varied. The old-to-young translation is achieved
by forward interpolation, while the young-to-old translation
is achieved by backward interpolation. The result of age
transformation is shown in Figure 4. Our method provides
smooth interpolation of the style space. With negative val-
ues of δ, the generated image is older, while with positive
values of δ, the generated image is younger.
Combining multiple style-subspaces. Our idea of learning
style-subspaces gives us the capability of combining multi-
ple subspaces, making it possible to achieve multi-attribute
domain translation. As shown in Figure 5, we achieve male-
to-female translation by interpolating across ’age’ (k1) and
’blonde hair color’ (k2) subspaces simultaneously. This is
achieved by associating δ1 to the ’age’ subspace while δ2
to ’blonde hair color’ subspace. The partition vector in this
case is a vector with weights δ1 and δ2. Figure 5 shows
how the proposed method allows controllable generation
across multiple subspaces by smoothly interpolating across
the style-subspaces. These results demonstrate our effec-
tiveness over controllable methods such as [4] and [17].
Reference-guided image synthesis. In reference-guided
image synthesis, at inference time, we extract the content
information from a given source image while style informa-
tion is extracted from another reference image. Given two
source images (xc and xs), we use the style encoder E to
compute the feature vector fs

x for image xs. The generator
G takes xc as input while the style information is provided
in the form of fs

x . The results on dog-to-cat and cat-to-dog

cat-to-dog dog-to-cat
Method LPIPS ↑ FID ↓ LPIPS FID

MUNIT-GAN [12] 0.29 21.32 0.30 45.23
DRIT++ [16] 0.30 20.15 0.33 44.87

Council-GAN [20] 0.32 16.23 0.39 40.98
Homomorphic [4] 0.30 19.25 0.35 43.68
ACL-GAN [25] 0.33 15.05 0.40 41.07
DosGAN [17] 0.30 19.64 0.34 47.34

StarGAN v2 [8] 0.35 10.06 0.41 39.05
Proposed 0.37 7.50 0.42 39.31

Table 4. Results on animal translation task on AFHQ dataset (cat-
to-dog and dog-to-cat).

Figure 6. Reference guided images translation on AFHQ dataset.
Here, the content information (xc) is extracted from top row, while
the first column is used to get the reference style (xs).

translation tasks are reported in Table 4. We use the FID and
LPIPS scores to validate the quality and diversity of trans-
lations. The proposed method receives highest LPIPS score
and lowest FID values when compared to other baselines.
We also use the AFHQ dataset to evaluate the reference-
guided image translation task. These results are shown in
Figure 6.

5. Conclusion

In this work, we proposed a novel architecture to
achieve controllable generation in unpaired domain trans-
lation, based on learning style subspaces. To evaluate
the model’s capability of controllable generation, we intro-
duced the ACG metric. The introduction of partition net-
work and partition loss outperformed various UDT meth-
ods [8, 25, 17, 4] on the task of controllable domain trans-
lation on different datasets, showing the usefulness of the
proposed method.
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