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Abstract

Plant diseases severely limits agriculture production, ne-
cessitating the high-throughput monitoring of plant leaves.
Currently, this is formulated as an automatic disease seg-
mentation task addressed via deep learning frameworks.
These deep leaning frameworks trained with leaf im-
age data in a supervised paradigm have few limitations,
mainly: (1) training datasets are heavily imbalanced to-
wards healthy leaf images, (2) disease region annotation is
labour-intensive and (3) due to the heterogeneity of disease
symptoms, these frameworks lacks generalisability. In this
paper, we reformulate disease segmentation as an anomaly
localisation task. Specifically, we introduce a novel unsu-
pervised framework (AnoLeaf) based on an edge-guided in-
painting that optimises the learning of contextual attention
on only healthy leaf images. The network utilisation on dis-
eased leaf images results in reconstruction of its healthy
counterparts, generating an inpainting error. The contex-
tual attention maps reinforce the inpainting error to effec-
tively localise the disease. Thus, AnoLeaf alleviates the ac-
quisition and annotation of rare disease images. Additional
experiments on MVTec anomaly detection dataset further
demonstrate its generalisability.

1. Introduction
Plant diseases pose a significant threat to agricultural

production, highlighting the significance of selecting dis-
ease resistant plants [39]. Mostly, the disease symptoms are
reflected on plant leaves as changes in its texture and colour.
Thus, plant researchers primarily rely on visual leaf moni-
toring for the selection of disease resistant plants. This con-
tinuous monitoring of symptoms at different stages of dis-
ease progression is a highly subjective and time-consuming
task. With acquisition of leaf image data, the aforemen-
tioned task has emerged as an application domain for com-
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puter vision algorithms and is currently formulated as an au-
tomatic disease segmentation. In this context, Otsu’s thresh-
olding and k-means clustering in excess green and excess
red image space has been widely adopted [36]. However,
these methods struggle to deal with: (1) non-uniform con-
trast that leads to mild symptoms undetected and (2) curved
surfaces and veins results in edges misclassified as disease
regions. In addition, the priors utilised for disease symptom
characterisation vary among disease classes, necessitating
its repetitive formulation for accurate disease segmentation.
Figure 1 highlights the heterogeneity of disease symptoms.

In contrast to the traditional methods, supervised deep
learning frameworks have also been proposed for disease
segmentation. For example, Dechant et al. [11], used differ-
ent convolutional neural networks (CNNs) combinations to
generate a heat map of lesion probabilities. These probabil-
ities were obtained from the classification of small patches
using sliding window over maize leaf images. In another
study, Cruz et al. [10] proposed an improved LeNet model
for disease segmentation. It is to be noted that the accu-
racy of these methods heavily rely on large training images
with pixel-level annotations. However, limited annotated
leaf datasets are available with high imbalance towards the
healthy leaf class [35]. In addition, widely used ImageNet
weights are obtained with image data that semantically dif-
fers from diseased leaf images [17].

As previously mentioned, pixel-level annotations of dis-
ease regions is a time consuming task. Thus, most of the
leaf disease datasets are weakly labeled i.e. disease class,
indicating the type of disease at an image level. Conse-
quently, deep learning based methods have primarily fo-
cused on disease classification with limited studies on dis-
ease segmentation [39]. Disease segmentation permits dis-
ease forecasting and understanding relationships between
disease symptoms and the environment [11]. This accu-
rate assessment of disease intensity is not offered in a dis-
ease classification paradigm. Thus, disease segmentation is
an important and non-trivial task. Few methods have been
proposed that train deep learning networks in a weakly su-
pervised paradigm to generate an explainable map show-
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Figure 1. Sample leaf images (Coffee dataset) with contrast dis-
ease symptoms.

ing pixels that determined the classification results [26, 27]
and facilitating the localisation of disease spots. Authors
in [31, 41] used AlexNet and GoogLeNet architectures for
disease classification and visualisation activation in the first
layers to indicate the disease regions However, with a large
number of feature maps it still remains challenging to select
a specialised activation that precisely localise these symp-
toms.

The disease progression can be considered as a degrada-
tion of healthy (normal) parts of plant leaves [39]. Thus,
we reformulate leaf disease segmentation as an anomaly lo-
calisation task, with its training paradigm dependent only
on healthy (normal) leaf images. This reformulation al-
leviates the task of generating data based on acquisition
of rare disease images and corresponding pixel-level an-
notations. In this context, we present AnoLeaf, a deep in-
painting based framework that learns an optimal reconstruc-
tion of healthy leaf images. The current state-of-the-art in-
painting networks [48] utilize edge information, model self-
attention, incorporate texture, structural and semantic cues
[18, 34, 47, 52] in a coarse-to-fine set-up. In contrast, we
propose to utilize structural information by developing an
adversarial edge prediction framework and integrate it with
the coarse inpainted image via contextual attention refine-
ment framework (colour, shape). The network utilisation on
diseased leaf images results in the reconstruction of only its
healthy counterparts. Based on this reconstructed image, a
widely adopted strategy is to compute its difference with the
input diseased image using metrics such as Euclidean dis-
tance and structural similarity index (SSIM) [24]. However,
each pixel in an inpainted region is assigned the same met-
ric value, resulting in a coarse disease segmentation. Con-
sidering the fact, that an inpainting network has learnt to
restore the healthy counterparts, we propose to utilise an
attention map that highlights the regions not utilised for in-
painting. This novel strategy permits precise disease local-
isation with robustness to disease symptoms heterogeneity
(shown in Figure 1). In summary, the paper has the follow-
ing contributions:

• To the best of our knowledge, we are the first to refor-
mulate plant disease segmentation as an unsupervised
anomaly localisation task.

• We propose a novel two stage framework (AnoLeaf )
based on an edge-guided inpainting network for im-

proved inpainting. To further refine the localisation of
diseased regions, a novel strategy of utilising learned
contextual attention maps is implemented.

• We also conduct additional experiments on the MVTec
anomaly detection dataset (MVTec AD) [4] that fur-
ther shows the generalisability of the proposed frame-
work.

The rest of the paper is organized as follows: Section
2 gives an overview of the relevant disease segmentation
literature, Section 3 presents the methodology, experimental
results and analysis are included in Section 4 and Section 5
concludes the paper.

2. Related Work
The relevant literature on leaf disease segmentation

can be broadly divided into three categories: (i) tradi-
tional methods (ii) supervised convolutional neural net-
works (CNNs) based methods and (iii) CNNs visualisa-
tion based methods. The following subsections provides an
overview of the aforementioned categories.

2.1. Traditional methods

Traditional methods extracts hand-crafted features such
as colour, texture etc. to characterise disease regions (also
termed as lesion spots) based on prior knowledge of plant
diseases. For example, authors in [28] utilised an interac-
tive region growing method based on three channel colour
components (1) Excess Red Index (ExR), (2) H component
of HSV colour space and (3) b component of Lab colour
space. Whereas, Xiong et al. [46] proposed to use Grab-
Cut algorithm for automatic disease segmentation. Several
other researchers [1, 2, 22, 28, 51] employed Otsu’s thresh-
olding on Lab colour image space, HSV colour space and
Excess Green space (ExG). In these methods, the accuracy
of disease segmentation is highly dependent on a thresh-
old value. Authors in [29] investigated these methods and
reported misclassification of illuminated regions as lesion
spots. k-means clustering of Lab colour space was inves-
tigated in [40, 50] whereas, Bai et al.[3] proposed an im-
proved fuzzy c-means based clustering technique for dis-
ease segmentation. As shown in Figure 1, the disease re-
gions (clusters) vary depending on the disease type and its
degree of progression. However, dynamically determining
these clusters is time-consuming [1, 42].

In contrast to these traditional methods, the proposed
framework (AnoLeaf ) do not rely on disease priors i.e dis-
ease symptoms (colour, texture etc.) or disease clusters.

2.2. Supervised CNNs based methods

Supervised CNNs based methods primarily utilise CNN
architecture to automatically learn features for disease re-
gion characterisation. For example, Ha et al. [19] employed
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a hybrid model based on VGG-CNN and k-means clus-
tering method to segment disease regions, whereas Wang
et al. [53] constructed a regional disease detection net-
work (RD-net) with traditional VGG16 model. Authors
in [13, 25] presented UNet based semantic segmentation
model and [14] designed SegNet based encoder-decoder ar-
chitecture for disease region segmentation. Another study
[16] compared Feature Pyramid Network (FPN), UNet and
DeepLabV3+ with Xception backbone for pixel-level pre-
dictions of disease regions.

These methods were trained on diseased leaf datasets
with pixel-level annotations exhibiting specific disease
symptoms. Due to the high inter-class variance among dis-
ease classes, these methods may not be generalisable and re-
quire retraining. In contrast, AnoLeaf do not rely on pixel-
level annotations of diseased leaf datasets.

2.3. CNNs visualisation methods

Ghosal et al. [15] presented a deep CNN framework
for disease classification and its top-K high-resolution fea-
ture maps to isolate the disease symptoms. Several other
studies [27, 31, 41] also utilised visualisation of features
in each block. These methods primarily transform inter-
nal activations to visualise lesion spots. In contrast, authors
in [6] proposed to use saliency map for visualising disease
regions. Occlusion method investigated in [7], is another
method to localise disease symptoms. The primary idea
was to introduce occlusions to a portion of the image and
investigate CNN’s sensitivity to these occlusions with re-
spect to its output. However, occlusion approach is sensi-
tive to shape, size and the displacement stride of occlusion
regions. These factors limits its application on leaf images
with several disease regions. Also, in this scenario occlu-
sion of one disease region does not affect the network deci-
sion resulting in undersegmentation of disease regions. An-
other study [32], investigated various visualisation methods
namely smooth-Grad, boot back-propagation, depth Tay-
lor decomposition, integration gradient layered associated
transmission and gradient time input. The authors reported
that these visualisation methods detected the lesion spots for
some of the correctly classified disease categories. In this
respect, authors [8] concluded that the heat maps based on
these methods are noisy to interpret. To overcome this lim-
itation, a Teacher/Student architecture was presented that
handles the deconstruction and reconstruction of the image
to remove noise and extract salient disease features.

Previously discussed studies either rely on disease priors
or image/pixel-level disease annotations. Due to the hetero-
geneity of disease symptoms, unsupervised deep learning is
worthy of being exploratory in the application of plant dis-
ease segmentation. This permits disease localisation with
no domain knowledge. In this context, authors [21] re-

cently proposed to utilise a conditional adversarial network
for colour reconstruction of healthy leaf images correspond-
ing to its grayscale image. The inaccurate reconstruction of
colours for disease affected regions was subsequently used
for disease classification i.e. healthy and disease. In con-
trast to this study, AnoLeaf yield precise disease localisation
with no assumption for reconstruction of normal (healthy)
leaf regions. Additional experiments on MVTec anomaly
detection dataset demonstrates this generalisability.

3. Methodology
Plant disease segmentation is a non-trivial task with chal-

lenges such as: (1) variations in visual symptoms with re-
spect to shape and disease clusters, (2) multiple simultane-
ous disease manifestation on the same leaf, (3) similarities
in the visual symptoms of different diseases and (4) depen-
dence on domain experts for acquisition of annotated plant
disease data. Thus, we model leaf disease segmentation as
an anomaly localisation task. Specifically, anomaly local-
isation approaches are generally dependent on only mod-
elling normal (healthy) images [5, 9, 33, 45]. The deviation
of learnt features is used to detect anomalies (disease) dur-
ing inference, eliminating the dependency on large pixel-
level annotated datasets.

Anomaly localisation algorithms can be primarily cate-
gorised into (i) discriminative and (ii) reconstruction based
approaches. Since the accuracy of discriminative anomaly
localization approaches [5, 33] rely on the spatial size of the
regions utilised for modeling normality, these approaches
are not suitable for disease segmentation task. Specifically,
large spatial size miss small disease regions and small spa-
tial size is sensitive to non-disease local changes.

In this respect, reconstruction based anomaly localisa-
tion algorithms provides a suitable solution for this task. For
example, variational autoencoder (VAE) [12] was utilised
to obtain the nearest normal image by iteratively updat-
ing the VAE inputs via gradient descent. In another study,
AnoGAN proposed in [37] was trained only on normal im-
ages and defects were localised by computing the differ-
ences between test image and its nearest normal generated
image. These methods depend on an iterative procedure to
find the nearest normal image, thus decreasing its compu-
tational efficiency. In a recent study [24], inpainting net-
work was trained on normal images, this results in restor-
ing defect regions into its normal counterpart. Similar to
the previously mentioned algorithms the defect is localised
based on the difference between input test and inpainted im-
age. It is to be noted that the defect localisation is depen-
dent on accurate inpainting output. In this respect, authors
in another study [48] conducted extensive experiments that
highlighted the limitation of inpainting network to repro-
duce sharp edges and complex textures for anomaly local-
isation. To overcome this limitation, we propose a novel
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Figure 2. Workflow of the proposed inpainting network.

inpainting framework motivated by the current state-of-the-
art inpainting network [47].

The proposed framework (AnoLeaf ) comprises of two
modules (a) an inpainting network that learns to restore
only normal (defect/disease free) images and (b) a novel
strategy to utilise contextual attention maps for precise de-
fect/disease localisation. We elucidate these modules in the
following subsections.

3.1. Generative Inpainting Network

The inpainting network trained on synthesising the nor-
mal (healthy) regions of the image is utilised for localising
the anomaly (disease) regions. This is accomplished via
computing the difference between the input test image and
the corresponding restored image. Thus, the accuracy of
this localisation is highly dependent on the inpainted out-
put. However, current state-of-the-art inpainting networks
fails to reconstruct details and structures. This is because,
they employ a coarse to fine refinement architecture [47]
with refinement stage dependent on the inpainted output of
the coarse network. We propose to facilitate the refinement
stage with an edge map in conjunction with the already
available coarse information. Figure 2 shows the overview
of the proposed inpainting network consisting of three com-
ponents.

3.1.1 Component: Coarse Network

The first module is a dilated convolutional network (A1)
that is trained to produce a coarse inpainted output (Icoarse)
of an input image (Ioriginal) with binary mask image
(Imask), white pixels indicate missing regions. The mod-
ule follows the same architecture employed in [47] with ℓ1

reconstruction loss.

3.1.2 Component: Edge GAN

The second module predicts the fine grain edge image
(Oedge) corresponding to the coarse input (Icoarse). The ar-
chitecture of this component comprises of an encoder (A2)
with downsampling followed by eight residual blocks (di-
lated convolutions) and a decoder for upsampling [34].

Oedge = A2 (Icoarse, Iedge) (1)

We use Iedge and Oedge conditioned on Icoarse as inputs
of the discriminator that predicts whether or not an edge
map is real. The edge network is trained with an objective
based on an adversarial loss and feature-matching loss [43].

min
A2

max
B1

LA2
= min

A2

(
λadv max

B1

(Ladv) + λFMLFM

)
(2)

where, λadv and λFM are regularization parameters.
The adversarial loss is defined as

Ladv = E(Iedge,Icoarse) [logB1(Iedge, Icoarse)]

+ EIcoarse
log [1−B1(Oedge, Icoarse)] (3)

The feature-matching loss LFM compares the activation
maps in the intermediate layers of the discriminator. This
stabilizes the training process by forcing the generator to
produce results with representations that are similar to real
images. The feature matching loss LFM is defined as

LFM = E

[
L∑

i=1

1

Ni

∥∥∥D(i)
1 (Cgt)−D

(i)
1 (Cpred)

∥∥∥
1

]
(4)
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where L is the final convolution layer of the discrimina-
tor, Ni is the number of elements in the i’th activation layer,
and D

(i)
1 is the activation in the i’th layer of the discrimina-

tor. Spectral normalisation [30] scales down weight matri-
ces with their largest singular values to limit the network’s
Lipschitz constant to one, stabilising training. Edge GAN
module is trained on edge images trained with ground truth
edge image (Iedge) computed from Ioriginal using canny
edge detection algorithm [34].

3.1.3 Component: Refinement Network

This generated edge image (Oedge) and the coarse im-
age (Icoarse) is subsequently concatenated (Icombined) and
fed as an input to the refinement network (A3) to pre-
dict the output inpainted image (Iout). The combined im-
age (Icombined) provides complementary information to the
third component, specifically fine structural details via Iedge
and approximate details (colour, shape etc.) via (Icoarse).
This permits an improved restoration of (Ioriginal) in con-
trast to only utilising Icoarse. A3 consists of two parallel
encoder networks i.e. convolutional network and contex-
tual attention network [47] integrated into a single autoen-
coder and its discriminator (B2) learns to distinguish be-
tween Iout and Ioriginal. Both coarse network (first compo-
nent) and refinement network (third component) are trained
with spatially discounted reconstruction loss and WGAN-
GP loss [47]. We follow the same configuration as in [47]
for the refinement network.

At the inference step, the trained inpainting module is
utilised for input test and mask image pair to restore its
missing regions. Multiple mask images with patches of
fixed size are generated for the test image to achieve com-
plete image traversal. The difference between inpainted and
input test image (Idiff ) for each mask image is computed
to obtain a defect/disease map. It is to be noted that met-
ric utilised for Idiff computation should display large vari-
ance between normal and abnormal inpainted regions. It
was empirically observed that the Euclidean distance, struc-
tural similarity index (SSIM) and Peak Signal-to-Noise Ra-
tio (PSNR) failed to provide a robust threshold for distin-
guishing the normal and anomaly regions. Thus, perceptual
similarity metric [49] was employed to produce coarse lo-
calisation of the defect/disease regions.

3.2. Attention Map Module

Disease/defect regions exhibit size variance and each
pixel in an inpainted patch is assigned the same metric
value, this provides a coarse disease/defect map. A similar
methodology was presented in [24] that employed super-
pixels regions from normal images to train the inpainting
network and an anomaly heat map was extracted based on
SSIM.

Figure 3. Pseudo Code of the proposed framework AnoLeaf.

For precise disease/defect localisation, we propose to
generate an activation map from the contextual layer [47].
The activation maps represent long-term correlations be-
tween distant contextual information and the missing re-
gions based on high-dimensional features. Specifically, it
highlights the related spatial regions for each missing re-
gion that is subsequently utilised for inpainting. As pre-
viously discussed, the first component generates the blurry
normal counterparts for each missing patch. Based on this
input, the contextual layer does not attend to abnormal (dis-
ease/defect) image content. This leads to overlooked abnor-
mal regions in the corresponding activation maps. Figure
4(b) shows the overlay of the activation map indicating the
regions employed for inpainting and over-looking disease
regions. Thus, the computed map provides additional pixel-
level information of the normal region. This information is
subsequently integrated with (Idiff ) further facilitating the
precise disease/defect localisation.

6419



Method Precision Recall Jaccard Index F-value
Excess Green Threshold [44] 0.3875 0.7724 0.3269 0.4519
Student Teacher Network [8] 0.1131 0.8066 0.1099 0.1896
AnoGAN (Integrated) [37] 0.0818 0.2851 0.0679 0.1169
AnoGAN (CIEDE 2000) [37] 0.0846 0.0178 0.0147 0.0270
AnoGAN (Perceptual) [37] 0.5214 0.6443 0.4092 0.5359
RIAD (Integrated) [24] 0.1398 0.5605 0.1169 0.1976
RIAD (CIEDE 2000) [24] 0.1801 0.1040 0.0617 0.1064
RIAD (Perceptual) [24] 0.4746 0.4730 0.3031 0.4321
Pix2Pix GAN (CIEDE 2000) [21] 0.8655 0.5910 0.5281 0.6592
Pix2Pix GAN (Perceptual) [21] 0.9158 0.4319 0.4041 0.5354
AnoLeaf (Ours) 0.9644 0.8862 0.7730 0.9236

Table 1. Quantitative leaf disease segmentation results on Coffee dataset via traditional segmentation method (shown in dark gray), weakly
supervised segmentation method (shown in light gray), unsupervised segmentation methods (shown in blue) and AnoLeaf.

Figure 4. Attention map (b) based on sample Coffee leaf image.

4. Experiments and Results

In this section, we show the results and evaluation of the
proposed framework on publicly available datasets:

• Coffee dataset [13]: The dataset consists of top-down
views of healthy/disease leaves with a total of 372 im-
ages.

• MVTec Abnormal Detection dataset [4]: MVTec AD
is a benchmark for industrial inspection anomaly de-
tection methods. The dataset consists of 5000 images
in 15 object and texture categories. Each category
includes defect-free training images and test images
with/without defects.

• PlantVillage dataset [20]: The dataset contains 54,303
images of healthy/disease leaves categorised based on
plant species and diseases.

Coffee and MVTec AD datasets also comprises of an-
notated images, where a binary label is assigned to dis-
ease/defect regions differentiating it from healthy/normal
pixels. Thus, for quantitative analysis the aforementioned
datasets are utilised. In contrast, PlantVillage dataset was
employed only for qualitative results (shown in Figure 2),
since no pixel-level annotations are available.

Module Precision Recall Jaccard Index F-value
Contextual Attention 0.3875 0.7724 0.3269 0.4519
Edge GAN 0.9186 0.5076 0.4940 0.5813
AnoLeaf (Ours) 0.9644 0.8862 0.7730 0.9236

Table 2. Ablation Study

4.1. Training Details

We elucidate the training details of three components in
the proposed inpainting framework (see section 3.1). Dur-
ing training, we resize the image to 256 × 256 with fixed
rectangle patches of size 64 × 64 (shown in Figure 8 (b)).
The learning rate of Adam optimiser was set to 0.0001, β1

to 0.5 and β2 to 0.9 with a batch size of 12. We first train the
coarse network and then use the results of the trained coarse
model as an input to EdgeGAN. We choose λadv = 1 and
λFM = 10 as hyperparameters for training EdgeGAN. The
refinement network is trained as the final step to obtain an
inpainted image. The discriminator to generator learning
ratio was set to 0.1 for EdgeGAN and 0.5 for the refinement
network. It is important to note that although the edge net-
work takes a coarse image as input, it was able to predict
a fine-grained edge map that was very similar to the edge
map computed using its ground truth image. The proposed
inpainting framework was trained for 200k and 300k itera-
tions on coffee dataset and MVTec AD dataset respectively.
At the inference stage, the input test image is resized as
mentioned previously and image traversal is achieved with
fixed patch size 64×64. The inpainted output for each patch
is utilised to generate the corresponding reconstructed im-
age. Pseudo code for disease segmentation based on the
reconstructed image is shown in Figure 3. To evaluate the
performance of the proposed framework, following metrics
are utilised:

• Precision [37]: computes the ratio of true positives
(TP) and all the positive predictions (TP+FP).

• Recall [37]: computes the ratio of true positive predic-
tions (TP) and all the actual positives (TP+FN).

• Jaccard Index [37]: computes the percent overlap be-
tween the ground truth mask (GT) and predicted mask.

• F1-value [37]: measures the weighted average of pre-
cision and recall.
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(a) Masked input (b) Ground truth (c) Contextual attention (d) Edge GAN (e) Proposed inpainting module
Figure 5. Qualitative comparison of the inpainted output based on Coffee sample images.

(a) Input (b) S.T. (c) RIAD (d) Pix2Pix (e) AnoGAN (f) AnoLeaf (g) GT
Figure 6. Qualitative comparison of the disease segmentation results based on Coffee sample images, here S.T. denotes student-teacher
method and GT denotes the ground truth.

For disease (anomaly) segmentation, TP refers to correctly
classified disease (anomaly) pixels, FP refers to healthy
(normal) pixels classified as disease (anomaly) pixels, FN
refers to disease (anomaly) pixels classified as healthy (nor-
mal) pixels. The best value of these metrics is 1.

4.2. Disease segmentation baselines

As evident from the related work (section 2), the prob-
lem of disease segmentation has been addressed via (a) tra-
ditional methods, (b) supervised CNNs based methods and
(c) CNNs visualisation methods (weakly supervised). For
a fair comparison, the baseline is formulated with widely
adopted traditional excess green method [44] and student-
teacher based visualisation method [8]. Since, we train
Anoleaf in a reconstruction based anomaly paradigm, state-
of-the-art anomaly localisation methods such as AnoGAN
[37] and RIAD [24] have also been included as baselines. It
is to be noted that for disease localisation, the difference be-
tween the reconstructed and input image is computed differ-
ently in AnoGAN and RIAD. Since, this step is critical for
accurate disease localisation, additional baselines based on
(1) integrated metric used in AnoGan and RIAD, (2) CIEDE
2000 colour difference anomaly score [38] and (3) state-of-
the-art perceptual metric score [49] have been included. We
also extended an unsupervised disease classification frame-
work based on colour reconstructibility of pix2pix GAN
[21] for disease localisation. CIEDE 2000 and perceptual

metric was used for computing the difference between the
input and reconstructed test image.

These baselines permits an exhaustive comparison of
Anoleaf with leaf disease segmentation methods and recon-
struction based anomaly localisation methods using various
metrics. We also perform an ablation that highlights the
contribution of each component (section 3.1) in the pro-
posed inpainting framework.

4.3. Disease segmentation results

Figure 5(e) show the output images on two sample
leaf images (Figure 5(a)) based on the proposed inpainting
framework. The utilisation of inpainting network without
edge information leads to blurring and loss of vein struc-
tures (Figure 5(c)). EdgeGAN [34] improved the inpaint-
ing of the veins but still missed to reconstruct it completely
(Figure 5(d)) as compared to the proposed inpainting frame-
work. This is because the predicted coarse image with fine-
grained edge map robustly predict a structurally consistent
inpainted image. Table 2 presents the quantitative segmen-
tation results based on this ablation.

We also present qualitative comparison of AnoLeaf
based on the reconstructed leaf image with the anomaly
frameworks in Figure 7. It is evident that AnoGan [37] re-
sults in smooth leaf textures and fails to replicate the leaf
shape. This results in leaf contour being falsely misclas-
sified as disease regions (shown in Figure 6(e)). RIAD
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(a) Original Image (b) AnoGAN (c) Pix2Pix (d) RIAD (e) Proposed
Figure 7. Qualitative comparison of the reconstruction results based on Coffee sample image.

[24] suffers from shape reconstruction errors and random
noise (shown in Figure 7 (d)). It is to be noted that al-
though pix2pix [21] shows better reconstruction compared
to AnoGAN [37] and RIAD [24], this method rely on an as-
sumption that disease progression only leads to changes in
leaf colour and this simplistic assumption may prevent its
applicability on diseases with textural and shape changes.
In contrast, AnoLeaf do not rely on disease characterisation
priors and was also be utilised for anomaly localisation on
MVTec AD dataset (see next subsection).

The quantitative comparison of AnoLeaf with the base-
lines (subsection 4.2) is presented in Table 1 and qualitative
results are shown in Figure 6. It is evident in Figure 6(b)
that the weakly supervised method results in misclassifica-
tion of veins as disease regions (lowest precision). The ex-
periments also revealed that the performance of perceptual
similarity metric is consistently superior to the integrated
and CIEDE 2000 metrics for reconstruction based anomaly
localisation methods.

Figure 8. Inpainting results (c) & (f) on MVTec AD sample images
(a) & (d) from proposed inpainting framework.

Figure 9. Attention maps (b) & (d) on MVTec AD sample images
(a) & (c) respectively.

4.4. MVTec Anomaly Results

Figure 8 shows the output image from the proposed in-
painting network with missing patches at different spatial
locations. It can be observed that the missing patch on
the defected area (Figure 8(e)) results in the reconstruc-
tion of a defect-free zipper adhering to texture and shape
details. Table 3 demonstrates the effectiveness of the pro-
posed approach compared to the existing anomaly localisa-
tion methods i.e. AnoGAN [37] and Autoencoders (AEs)
with L2 and SSIM [23]. The baseline framework corre-

Method Precision Recall
Autoencoder L2 [23] 0.65 0.63
Autoencoder SSIM [23] 0.88 0.89
AnoGAN [37] 0.92 0.91
Baseline Framework 0.90 0.89
Proposed Framework 0.93 0.92

Table 3. Quantitative comparison of anomaly localization results
on MVTec AD dataset.

sponds to only utilising inpainting module for disease local-
isation (w/o contextual attention strategy). It is to be noted
that AnoGAN performs iterative backpropagation to esti-
mate the latent space at the inference stage, in contrast the
proposed framework is computationally efficient. As pre-
viously mentioned, the contextual attention maps indicates
regions employed for inpainting. Figure 9(b) and 9(d) em-
pirically shows the overlay of the activation map (shown in
green) and ground truth anomaly region (shown in pink).
This yield missing regions in the generated dense activation
maps corresponding to the disease regions. In this context,
Figure 10 highlights the efficacy of the proposed framework
to segment small anomaly regions (shown in green).

Figure 10. Anomaly segmentation results (b) & (d) on MVTec AD
sample images (a) & (c) using the proposed framework.

5. Conclusion
We propose a novel unsupervised framework for leaf dis-

ease segmentation. AnoLeaf trained in an anomaly local-
isation paradigm, integrates structurally consistent recon-
structed image with contextual attention map for precise
segmentation. With an improved segmentation, subtle dif-
ferences among the plant species may be revealed. Since,
no priors regarding disease characterisation was utilised
in AnoLeaf, additional experiments on MVTec AD dataset
demonstrates its generalisability.
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