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Abstract

Heart rate (HR) is a crucial physiological indicator of
human health and can be used to detect cardiovascular dis-
orders. The traditional HR estimation methods, such as
electrocardiograms (ECG) and photoplethysmographs, re-
quire skin contact. Due to the increased risk of viral in-
fection from skin contact, these approaches are avoided in
the ongoing COVID-19 pandemic. Alternatively, one can
use the non-contact HR estimation technique, remote photo-
plethysmography (rPPG), wherein HR is estimated from the
facial videos of a person. Unfortunately, the existing rPPG
methods perform poorly in the presence of facial deforma-
tions. Recently, there has been a proliferation of deep learn-
ing networks for rPPG. However, these networks require
large-scale labelled data for better generalization. To al-
leviate these shortcomings, we propose a method ALPINE,
that is, A noveL rPPG technique for Improving the remote
heart rate estimatioN using contrastive lEarning. ALPINE
utilizes the contrastive learning framework during training
to address the issue of limited labelled data and introduces
diversity in the data samples for better network generaliza-
tion. Additionally, we introduce a novel hybrid loss com-
prising contrastive loss, signal-to-noise ratio (SNR) loss
and data fidelity loss. Our novel contrastive loss maximizes
the similarity between the rPPG information from different
facial regions, thereby minimizing the effect of local noise.
The SNR loss improves the quality of temporal signals, and
the data fidelity loss ensures that the correct rPPG signal is
extracted. Our extensive experiments on publicly available
datasets demonstrate that the proposed method, ALPINE
outperforms the previous well-known rPPG methods.

1. Introduction
The heart is an essential human body organ, and heart

rate (HR) can detect cardiovascular diseases. The conven-
tional HR estimation methods, electrocardiograms (ECG)
and photoplethysmographs (PPG) require skin contact and
perform spuriously in the presence of motion. Thus, these
methods are avoided in the ongoing COVID-19 pandemic

as skin contact increases the viral infection risk. Alterna-
tively, several methods have been proposed in the litera-
ture to perform non-contact HR estimation and overcome
the abovementioned limitations. The non-contact HR esti-
mation methods utilize the remote photoplethysmography
(rPPG) technique, wherein HR is estimated from a face
video of a person by analyzing the color or motion vari-
ations present in the video. The rPPG is actively used in
chronic disease treatment therapies [16], and cardiac activ-
ity monitoring [9]. Apart from the applications in health-
care, rPPG is also used for micro-expression recognition
[21], Deepfake detection [11], micro-expression spotting
[24], liveness detection [41] and spoof detection [4, 5].

The rPPG is based on the phenomenon that the heart
pumps the blood in carotid arteries beneath the facial skin,
resulting in color or motion variations in the facial region.
Though the variations are latent to the human eye, these
can be captured using a camera and processed using sig-
nal processing or machine learning techniques to compute
the physiological parameters [26]. The facial variation sig-
nal is referred to as a temporal signal. Usually, multiple
facial regions are used to compute the temporal signals,
and these extracted signals are consolidated using blind
source separation algorithms to estimate the pulse signal
[22]. In this direction, several rPPG methods have been
proposed based on signal processing, and deep learning
[22, 25, 23, 2, 3, 28, 34].

The existing methods are incompetent for rPPG estima-
tion when the face videos contain facial deformation due
to eye-blinking, illumination variations, head movements,
and facial expressions. Moreover, the regime of supervised
deep learning methods requires extensive labeled data for
training the network correctly. Unfortunately, the flexibil-
ity of having costly labeled data is absent in our case as
it requires enormous data collection and operator interven-
tion [6, 18, 17]. This limitation is mitigated in [18] using
self-supervised learning based on contrastive learning (CL).
The CL is a self-supervised machine learning technique
that allows a network to learn the features from a dataset
without utilizing the labels. In this technique, the network
learns which features are similar and which are different.
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The method proposed in [18] uses temporal augmentation
to learn the similarity features between the actual and aug-
mented samples, using a triplet loss. The loss forces the
network to learn the similarity between the temporal sig-
nal and its augmented version. This leads to incorrect pulse
modeling when the temporal signal contains noise; hence
resulting in limited network performance.

We propose a novel rPPG-based HR estimation method,
ALPINE, that is, A noveL rPPG technique for Improving
the remote heart rate estimatioN using contrastive lEarning,
which mitigates the limitations mentioned above and im-
proves the HR estimation. It introduces a TCN-based deep
learning network that models rPPG information to mitigate
the noises from temporal signals using CL. To denoise the
temporal signal and predict a clean pulse signal, we propose
a novel network that utilizes the temporal signals extracted
from the multiple facial regions. These temporal signals
enable the network to learn rPPG information across all the
regions. Contrastive loss is utilized to learn the similarity
between the different temporal signals. It suppresses any fa-
cial deformations-based noises that deteriorate the extracted
temporal signal. We utilize the SNR loss to reduce the noise
present in temporal signals. Finally, we utilize the data fi-
delity loss to ensure that the denoised signal corresponds
to the ground truth. Furthermore, the proposed network is
based on TCN, to effectively learns the temporal informa-
tion of long sequences than its sequential counterparts [1].
Our primary research contributions are:
(1) We propose a novel CL-based network that utilizes the
temporal augmentation technique to automatically learns
the rPPG information present in different facial regions. (2)
We propose a novel hybrid loss function to train the net-
work. It enables the network to automatically learn the
similarity between temporal signals extracted from differ-
ent facial regions, and predicts denoised temporal signals.
(3) Our experimental results on publicly available datasets
reveal that the proposed method performs better than state-
of-the-art rPPG-based methods.

2. Literature Survey

2.1. Traditional rPPG estimation

The rPPG estimation consists of analyzing the minute
variations in the facial videos caused by the pulse motion.
The variations are captured by measuring the color varia-
tions [37] or the motion variations [2] in the facial video.
The information provided by them diminishes in the pres-
ence of noise caused by camera artifacts and motion [38],
resulting in incorrect HR estimation. Thus, to suppress the
noise, several conventional rPPG methods have been pro-
posed. For instance, green color variations are used in [43]
for HR estimation as green color is better absorbed by the
blood haemoglobin, thereby providing better rPPG infor-

mation [47]. Independent Component Analysis (ICA) is
used for separating the pulse signal from the temporal sig-
nals in [37]. Furthermore, color subspace transformation
to Chrominance is proposed in [13] to the suppress the il-
lumination variations. Similarly, Eigen decomposition of
the temporal signals followed by spatial subspace rotation
is used for HR estimation in [44]. These rPPG methods uti-
lized color variations for modeling rPPG information. In
contrast, [2] has used facial motion caused by pulse fol-
lowed by Principle Component Analysis (PCA) for HR es-
timation. The aforementioned rPPG methods benefit from
the handcrafted features for alleviating the effect of noise.
However, the noise sources induce varying characteristics
that cannot be separated from domain-specific knowledge
[3].

2.2. Deep Learning-based rPPG estimation

Deep learning methods are capable of automatically
learning the feature representations from data [19], which
can be used for suppressing noise for correct rPPG es-
timation. In this direction, Convolutional Neural Net-
work (CNN) based VGG15 is used for estimating the HR
frequency from the time-frequency representation of the
CHROM [13] signals is used in [28]. Spatiotemporal con-
volution is used [32] for rPPG signal estimation. A time-
domain subnet for learning temporal correlations corre-
sponding to the pulse signal is employed for pulse estima-
tion in [29]. A combination of 2D CNN and 1D CNN net-
work is used in [40] for HR estimation. The 2D CNN is
used for extracting rPPG information from the facial videos
that are fed to the 1D CNN for pulse estimation. Further-
more, normalized frame difference is used by end-to-end
rPPG methods. For instance, a two-stream network is used
for rPPG-based HR estimation in [10]. The network em-
ploys an attention-based appearance stream to identify the
facial regions that provide important rPPG information and
a CNN-based motion stream to learn the pulse signal fea-
tures. Spatio-temporal networks are used for pulse estima-
tion in [46]. In essence, they have devised two networks,
one utilizing 3D CNN network and the other utilizing a
combination of 2D CNN and Long Short Term Memory
(LSTM) network for rPPG estimation. These methods com-
prise deep neural networks with learnable weights that re-
quire labeled training data in abundant quantities for cor-
rect generalization. Moreover, they fail to provide correct
HR estimation for small-scale rPPG datasets [8]. More-
over, the supervised learning-based methods provide incor-
rect HR estimation for samples having HR outside the HR
ranges in the training set [31].

2.3. CL and rPPG estimation using CL

The supervised learning-based rPPG methods suffer
from a lack of abundant labeled rPPG datasets [8] and the
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varying data distribution in the training and testing sets of
the rPPG datasets [31]. Thus, a meta-learner is used for
self-supervised test time weight adaptation in [31]. More-
over, the issue of limited data is prevalent in deep learning-
based methods, and CL has been used in this direction for
data augmentations. CL methods are widely used in un-
supervised visual representation learning [14] like action
recognition [33], image captioning [12], and image to im-
age translation [36].

CL-based rPPG methods are merely found in literature
as the evaluation in the absence of actual pulse is unreli-
able [18]. In this direction, a triplet loss is used in [17]. In
essence, they have used video resampling to generate pos-
itive and negative video samples. The loss function aims
to decrease the difference between the pulse estimated for
the original video sample and the positive sample while in-
creasing the distance between the pulse estimated for the
negative sample and the original video sample. However,
this approach is unable to specify whether the information
corresponds to the pulse signal or any other source; hence
the performance evaluation is unreliable [18]. To mitigate
this issue, [18] introduced a saliency sampling layer that
helps the rPPG method to identify important facial regions
that contribute to rPPG information.

3. Proposed Method
The rPPG estimation method, ALPINE, is presented in

this section. In this method, we divide the input face video
into non-overlapping clips of fixed size, and HR is estimated
from these input clips. To this end, the proposed method
detects the face and divides it into several ROIs. Then we
compute the temporal signals corresponding to each ROI.
We pass these temporal signals to the Contrastive rPPG Net-
work (CrPPG-Net) to compute the denoised temporal sig-
nals. The CrPPG-Net is based on the TCN . Also, it intro-
duces the hybrid loss function during the training in a semi-
supervised learning pattern. The loss consisting of three
components: contrastive loss, SNR loss, and data fidelity
loss. During the time of inference, we consolidate these
denoised temporal signals to compute the pulse signal us-
ing the blind-source-separation (BSS) based Multi-Kurtosis
Optimization method [26]. The proposed method ALPINE
is depicted using a flow diagram in Fig. 1.

3.1. ROI Extraction

In order to localize the facial region with significant
rPPG information, we require the discriminatory facial
points (known as facial landmark points), which outline the
facial regions as facial boundaries. To this end, we use the
Deep Alignment Network (DAN) [30]. We utilize the DAN
because it provides the landmark points for the forehead re-
gion along with the face, whereas well-known facial land-
mark point extraction networks like CLNF-Openface [48]

are unable to provide the forehead region landmark points.
Kindly note that we only use the landmark points corre-
sponding to the left cheek, forehead, nose, and right cheek
to extract the ROIs, as these regions are least influenced by
facial expressions [3]. The eyes and lips regions are avoided
as these are easily affected by the deformations, while the
chin region skin is avoided as it is occluded in subjects with
a beard. We extract these ROIs by estimating the minimum
enclosing area rectangle of that region’s landmark points,
as suggested in [4, 7]. Also, the facial boundary pixels
are prone to facial deformations and thereby reduce perfor-
mance. Hence, we remove the boundary pixels during ROI
extraction, as suggested in [24].

3.2. Extracting Temporal signal

We obtain the temporal signals from each ROI as the av-
erage of the intensity values of the green channel across all
ROI frames, as described in [3]. Formally, the temporal sig-
nal obtained from ith ROI, T̃i is given by:

T̃i =

(∑
gi,1

Pi,1
,

∑
gi,2

Pi,2
, . . . ,

∑
gi,f

Pi,f

)
(1)

where gi,k denotes the sum of green intensity values of the
pixels belonging to the ith facial ROI of the kth frame, Pi,k

denotes the total number of pixels in the ith facial ROI of
the kth frame and f denotes the total number of frames in
the given input video. The temporal signals thus obtained
consist of irrelevant signal components, such as noise from
facial movements, illumination variations, and other phys-
iological sources [25]. To suppress such spurious compo-
nents, we pass the obtained signals through a fourth-order
Butterworth bandpass filter [45]. The bandpass filter re-
moves any signal components corresponding to frequencies
outside the HR range (0.7 Hz to 4.0 Hz) [3]. Further, a de-
trending filter is applied to remove the non-stationary trends
in the temporal signals induced by illumination variations
[42]. The filtered temporal signal obtained after the filter-
ing operations is denoted by T̂i.

3.3. Data augmentation

There is an uneven distribution in the rPPG datasets
where most samples contain HR ranging between 60-90
BPM, whereas the normal human HR ranges between
40–240 BPM. Due to skewed data distribution, the trained
network becomes biased to the samples having HR between
60 and 90 BPM. To tackle this issue, temporal scaling-based
data augmentation is described in [35], where the videos are
scaled up and down to generate samples with HR ranging
outside the 60-90 BPM range. Since augmenting the data
by interpolating video frames is computationally expensive,
we employ temporal signal interpolation. In essence, to ob-
tain a sample with HR k times HR of the original video, the
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Figure 1. The flow diagram of our proposed method ALPINE. It shows the (a) Training routine and (b) Testing routine. Kindly note that the
loss depicted in the Training routine shows the loss for a particular face ROI. The complete loss is obtained by consolidating the losses for
each of the individual ROIs. In the Testing routine, peak frequency detection is employed for obtaining the heart rate from the estimated
pulse signal.

temporal signal is scaled by 1/k times, using linear inter-
polation. For instance, to generate temporal signals having
the HR half and double of the original HR, k is set to 2 and
1/2, respectively. New samples may have HR outside of 40-
240 BPM due to upscaling and downscaling of the tempo-
ral signals. We exclude such samples to train the network.
Kindly note that the original and augmented temporal sig-
nals are denoted by T̂ o

i and T̂ a
i , respectively. Furthermore,

we employ the augmented signals for contrastive loss-based
training (refer section 3.6.1).

3.4. Contrastive rPPG Network (CrPPG-Net)

Unfortunately, the temporal signals obtained above pro-
vide incorrect HR estimation under the influence of noise

[3]. Thus, suitable denoising methods are required for cor-
rect HR estimation. To this end, we propose a Contrastive
rPPG network (CrPPG-Net). The network is based on TCN
[1] for learning the correlations among the temporal signals
that correspond to the pulse signal. The TCN network ef-
fectively learns the long temporal dependencies among the
temporal signals for correct pulse signal estimation [20].
The network is trained using a hybrid loss function that
comprises contrastive loss, SNR loss, and data fidelity loss
functions that force the network to estimate a denoised tem-
poral signal. Finally, the Multi-Kurtosis optimization tech-
nique is used to compute the pulse signal from the denoised
temporal signals [26]. Kindly note that when we pass the
temporal signal T̂ o

i from the CrPPG-Net, the obtained de-
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Figure 2. The depiction of our proposed CrPPG-Net.

noised signal is denoted by T o
i .

The TCN-based rPPG network is depicted in Figure 2. It
consists of two levels of TCN network stacked sequentially;
the output from the TCN network at the first level is fed to
the second level TCN network. The first TCN block takes
the input signal of dimensions 1 × f and passes it to the
1D convolutional layer with 9 convolutional filters of size
1× 9. The temporal direction of convolution operation uti-
lizes the same padding, and no padding is used in the other
direction. The output from the 1D convolutional layer is of
size 9×1×f , which is then fed to an average pooling layer
that transforms the features into the vector of the same size
as the input. Then we introduce non-linearity by using Rec-
tified Linear Unit (ReLU) as the activation layer. A residual
connection is provided to the output from the TCN block for
performance improvement [15]. The resulting output size
1 × f is passed to the second block. Kindly note that the
TCN block at the second level has the same configuration
as the first, except for dilations used for the convolutions. A
dilation of 2 is used for the first level TCN and 4 for the sec-
ond level TCN. Please note that TCN can be of two types,
casual and non-casual. The casual TCN is used when future
time steps are not taken into consideration during the con-
volution operation, whereas the non-casual TCN utilizes the
future information. Since the temporal signals are available
for the entire time duration, we have used the non-casual
TCN [3]. Further, we also add the skip connection between
both the network blocks to improve their performance [15].
In the section 4.2, details of other parameters are discussed.

3.5. Estimating Pulse signal and HR

During the time of inference, we consolidate the de-
noised temporal signals obtained from CrPPG-Net to com-
pute the pulse signal. To this end, we use the Multi-Kurtosis
Optimization [25] to compute the pulse. It utilizes period-
icity and BSS simultaneously to compute the pulse. Subse-
quently, we obtain the pulse spectrum by applying the Fast
Fourier transform (FFT) to the pulse signal. The maximum
amplitude in the pulse spectrum corresponds to the HR fre-
quency. Formally, the HR is given by:

hr = freqmax × 60

where freqmax = argmax
freq

PS (freq) (2)

where freqmax is the frequency of pulse spectrum con-
taining maximum amplitude, and PS (k) denotes the pulse
spectrum’s amplitude at kth frequency. PS (k) denotes the
pulse spectrum’s amplitude at kth frequency. HR is com-
puted by multiplying freqmax by 60.

3.6. Loss Function

We design a novel hybrid loss function to train the net-
work. The hybrid loss consists of three components: con-
trastive loss, SNR loss, and data fidelity loss. The con-
trastive loss, LC(·) aims to maximize the normalized cor-
relation between the denoised temporal signals from differ-
ent facial ROIs. The SNR loss, LSNR(·), minimizes facial
deformation-based noises, thereby improving the quality of
the denoised temporal signal. Although these two losses en-
sure highly correlated and high-quality denoised temporal
signals, they do not ensure that the signals correspond to the
ground truth. Hence, we use data fidelity loss, LDF (·), to
minimize the error between the predicted temporal signals
and ground truth pulse signals. Thus, the proposed hybrid
loss enables the network to predict highly correlated signals
from different ROIs that are robust to facial deformation-
based noises. We discuss each loss component and its con-
tribution in the following sections.

3.6.1 Contrastive Loss Function

The contrastive loss LC(·) aims at maximizing the similar-
ity among the denoised temporal signals. In this direction,
we use three novel contrastive loss functions. The first loss
function, Lo

C(·), ensures a high correlation between the de-
noised temporal signal obtained from the ith ROI and the
denoised temporal signals obtained from other ROIs.

Lo
C

(
T o
i , T

o
j

)
= 1− Fcorr

(
T o
i , T

o
j

)
= 1−

∑
(T o

i × T o
j )√∑

(T o
i )

2 ×
∑

(T o
j )

2
(3)

where, T o
i and T o

j , denote the denoised temporal signal
obtained from the ith and jth ROIs, respectively; and
Fcorr

(
T o
i , T

o
j

)
is the normalised cross correlation between

the two signals. Furthermore, for enhancing the general-
ization of our network over the entire normal HR ranges,
we compare augmented temporal signals from the ith ROI
with the augmented temporal signals from the other ROIs.
Formally, our second contrastive loss, La

C(·), is denoted as:

La
C

(
T a
i , T

a
j

)
=1− Fcorr

(
T a
i , T

a
j

)
=1−

∑
(T a

i × T a
j )√∑

(T a
i )

2 ×
∑

(T a
j )

2
(4)
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where, T a
i and T a

j , are obtained by denoising the augmented
temporal signals from the ith and jth ROIs, respectively;
and Fcorr(·) is the normalised cross correlation operation.

Finally, to force the network to learn only those corre-
lations that contribute to the pulse signals, we use a third
loss term that minimizes the ℓ2 distance between the HR
obtained from the augmented temporal signal hrai and its
supposed HR value. Using the equation 2, we can find the
HR value from the augmented temporal signal in terms of
the HR from the original temporal signal, which is given as:

Lcross
C (hroi , hr

a
i ) = ∥k · hroi − hrai ∥

2
2 (5)

where, k is the scaling factor used to obtain the augmented
temporal signal T a

i .
Our complete contrastive loss LC(·), is obtained by tak-

ing the sum of its three components, that is

LC

(
T o
i , T

o
j , T

a
i , T

a
j

)
= Lo

C

(
T o
i , T

o
j

)
+ Lm

C

(
T a
i , T

a
j

)
+ Lcross

C (hroi , hr
a
i ) (6)

3.6.2 SNR Loss Function

For a high-quality denoised temporal signal, the frequency
corresponding to the heart rate should be considerably
higher than the noise signals. To this end, we use the Signal-
to-Noise Ratio (SNR) loss LSNR(·), in order to maximize
the SNR of the denoised temporal signal obtained from the
proposed CrPPG-Net. Mathematically, the SNR loss for a
denoised temporal signal T i

o can be denoted as:

LSNR(T
o
i ) =

1

SNR(T o
i )

(7)

3.6.3 Data Fidelity Loss Function

The above loss functions ensure that correlated and high-
quality temporal signals are obtained from the CrPPG-Net.
However, they do not ensure that the obtained signals cor-
respond to the ground truth signal. Hence, we use the data
fidelity loss function LDF (·) to force the network to predict
the correct pulse signal. To this end, we use the squared l2
distance between the predicted denoised temporal signal T i

o

and the ground truth signal Tgt. Mathematically, the data
fidelity loss is given as:

LDF (ho
i , hgt) = ∥ho

i − hgt∥22 (8)

3.6.4 Combined Loss Function

The overall loss for the ith ROI of a given video is computed
as the sum of: (i) summation of the contrastive loss LC ,
computed over the temporal signal obtained from the ith

ROI and the temporal signals obtained from all other ROIs
j, such that i ̸= j, (ii) the SNR loss LSNR and (iii) the data

fidelity loss LDF . Mathematically, we express the loss for
the ith ROI, Li, as:

Li =
∑
j ̸=i

LC

(
T o
i , T

o
j , T

a
i , T

a
j

)
+ LSNR (T o

i )

+LDF (ho
i , hgt) (9)

Finally, the overall hybrid loss for the video is given by:

L =
∑

i∈{1,2,...,n}

Li (10)

where n is the total number of extracted ROIs.

4. Experimental results
4.1. Dataset and Metrics

We have evaluated our proposed method ALPINE on the
extensively utilized publicly available UBFC-rPPG [6] and
COHFACE [27] datasets. The UBFC-rPPG dataset com-
prises 42 face videos with corresponding ground truth phys-
iological signals recorded from 42 subjects. For compar-
ative analysis, we used the 67% and 33% of the datasets
as training, and testing subsets, respectively, similar to [6].
The videos are 2 minutes long with a frame rate of 30
fps. The COHFACE dataset comprises 160 face videos with
corresponding ground truth physiological signals recorded
from 40 subjects. The duration of videos is 1 minute long
with a frame rate of 20 fps. For comparative analysis, we
used 60% and 40% of the dataset as training and testing
subsets, respectively, similar to the testing protocol as used
by [27]. The ground truth of both datasets was acquired
using the pulse oximeter during the video recording. Simi-
lar to [3], we evaluate our results using mean absolute error
(MAE), standard deviation (SD), Pearson’s correlation co-
efficient (r), and root mean squared error (RMSE) between
the ground truth HR and estimated HR.

4.2. Implementation Details

All experiments were performed on the Intel Xeon Gold
(6132) processor. It consists of 192 GB RAM and an
NVIDIA V100 GPU server. The CrPPG-Net was trained
using the Adam optimizer, with a batch size of 4 and a learn-
ing rate of 0.0001, with a maximum number of epochs to
100. We extract 4-second non-overlapping video clips from
a given input video to perform the experiments.

4.3. Comparative Evaluation

In this subsection, we present a comparative analysis
of the various state-of-the-art methods and the proposed
method ALPINE. For a fair comparative analysis, we have
used similar testing protocols as used by [40, 27]. We have
presented the comparative analysis in Table 1. The table
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Table 1. Performance evaluation of our proposed method and state-of-the-art methods.

Methods UBFC-rPPG COHFACE
SD∗ MAE∗ RMSE∗ r SD∗ MAE∗ RMSE∗ r

Chrominance-rPPG [13] 5.50 4.70 6.61 0.67 10.63 7.80 12.45 0.26
AHRE [22] 4.95 4.20 5.78 0.61 6.38 5.72 11.52 0.31
Fusion-EL [23] 4.20 3.71 4.52 0.73 8.09 7.14 9.43 0.57
RAHR [26] 4.50 3.70 4.61 0.67 10.63 7.80 12.45 0.26
MOMBAT [25] 3.38 3.50 4.01 0.85 6.14 5.89 7.92 0.62
Physnet [46] 3.85 3.63 5.29 0.94 7.9 8.59 11.60 0.36
META-rPPG [31] 4.50 3.70 4.61 0.67 10.63 7.80 12.45 0.26
HR-CNN [40] 4.15 3.82 4.92 0.71 9.23 8.10 10.78 0.29
AND-rPPG [3] 3.21 2.67 4.07 0.96 4.53 3.82 5.10 0.79
CL-rPPG [18] 4.20 4.82 3.9 0.94 4.83 4.52 5.90 0.87
ALPINE 3.17 2.58 4.01 0.96 4.46 3.65 5.07 0.82

* values are in BPM.

demonstrates that the proposed method, ALPINE outper-
forms the existing methods. The methods Chrominance-
rPPG [13], and RAHR [26], fail to mitigate the facial
expression-based noises present in the temporal signals and
hence perform poorly compared to the proposed method.
Likewise, the efficacy of methods AHRE [22], Fusion-EL
[23], and MOMBAT [25] is also lower than the proposed
method because these methods utilize the blind source sep-
aration (BSS) techniques directly on the extracted temporal
signals. In contrast, ALPINE computes denoised temporal
signal from a trained network before applying BSS.

ALPINE also outperform the deep learning-based meth-
ods such as PhysNet [46], HR-CNN [40], and AND-rPPG
[3], as these methods fail to rectify erroneous HR. Simi-
larly, the performance of META-rPPG [31] as it uses the
LSTM network, which fails to preserve long-term informa-
tion [1, 20]. In contrast, our proposed method is based on
TCN to effectively models and preserves long-term infor-
mation. Furthermore, our proposed method outperforms
CL-rPPG [18] because CL-rPPG provides importance to
certain facial regions to compute the pulse signal. More-
over, it utilizes augmented signal from a facial ROI for
learning the correlations corresponding to the pulse signal.
Such a technique fails when the ROI is affected by local
noise due to facial deformations, resulting in the inability of
the network to differentiate between pulse signal and noise
characteristics. The proposed method effectively mitigates
such facial deformations by using multiple facial regions to
compute the temporal signals.

4.4. Ablation study

This subsection thoroughly analyzes the importance of
multiple ROIs, CrPPG-Net, color channels, and loss func-
tions in the proposed method. We modify or change a sub-
part of the proposed method to perform these experiments
and report the results of the ablation study in Table 2. To

Table 2. Ablation study of our proposed method. All the values
are in BPM.

UBFC-rPPG COHFACE
SD∗ MAE∗ RMSE∗ SD∗ MAE∗ RMSE∗

ALPINE 3.17 2.58 4.01 4.46 3.65 5.07
CO 4.64 4.05 5.86 6.21 5.29 6.92
CA 5.05 4.29 6.12 7.18 5.45 7.11
CL 4.50 3.92 5.53 6.05 5.09 6.77
SNR 4.75 4.17 5.94 6.40 6.92 7.13
DF 5.08 4.32 5.97 7.25 7.19 7.27
SNR + CL 3.26 2.64 4.23 4.55 3.79 5.17
SNR + DF 3.40 2.82 4.49 4.47 3.82 5.37
DF + CL 3.45 2.90 4.53 4.51 3.94 5.45
RGB 9.94 9.20 12.01 12.28 11.68 13.72
Two-ROIs 8.34 8.00 10.11 10.92 9.23 9.73
Three-ROIs 5.29 4.08 6.32 7.12 6.15 7.68
LSTM-exp 8.32 7.72 9.38 11.05 10.05 11.29

understand the importance of multiple ROIs, we conducted
the experiments Two-ROIs and Three-ROIs. In Two-ROIs,
left and right cheek are considered ROIs. Likewise, the left
and right cheeks, along with the nose region, are consid-
ered ROIs in Three-ROIs. Table 2 demonstrates that the
proposed method outperforms both these experiments. The
reason is that if a large number of ROI are appropriately
selected, the facial deformation reduces, thereby increas-
ing performance. Kindly note that if the selected facial re-
gion contains facial deformation, the temporal signal will
be spurious, leading to incorrect HR predictions. Increas-
ing the number of facial regions and selecting the regions
appropriately can mitigate this issue. Hence, we have ex-
cluded the facial regions in the experimentation containing
frequent motion variations or skin hidden behind the hairs,
like the eyes region, lips region, and chin region [3]. The
eyes and lip regions are easily affected by deformations, and
chin region skin is not visible in subjects with a beard. Ad-
ditionally, we performed the experiment RGB by replacing
green color in ALPINE with the RGB colors. The results
show that our ALPINE outperform RGB because the green
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Figure 3. Performance of ALPINE for different time duration clips.

color channel provides the strongest PPG signal [25, 43].
To understand the importance of each component of the

proposed hybrid loss function, we perform different experi-
ments by modifying the hybrid loss of the proposed method.
To analyze the importance of each loss, we perform the ex-
periments CO, CA, SNR, DF, and CL by using Lo

C loss,
La

C loss, LSNR loss, LDF loss, and LC loss respectively.
The results are reported in Table 2. Kindly note that out
of all these settings, CL provides us with the best results.
This behaviour can be attributed to the fact that LC loss
forces the network to increase the similarity of both the
original and augmented signals. In contrast, the Lo

C and
La

C work solely on the original and augmented signals, re-
spectively. Whereas LSNR and LDF loss work only on
the original signals and do not take the augmented sig-
nals into consideration. Furthermore, to better understand
the behaviour of the losses, we performed the experiments
SNR+CL, SNR+DF, and DF+CL by taking combinations
of two losses at the same time. The experiment SNR+CL
is formed by utilizing LSNR and LC losses. Likewise,
SNR+DF utilizes the LSNR and LDF losses, and DF+CL
utilizes the LDF and LC losses. The table indicates that
when we used contrastive and MSNR loss simultaneously,
the performance is improved because both the losses mit-
igate the facial deformation-based noises from the tempo-
ral signals by learning and mitigating the similarity fea-
tures and noises from the temporal signals. It is observed
from the table that these experiments do not perform better
than the proposed method because our proposed hybrid loss
learns the relationship between the temporal signals of dif-
ferent regions, minimizes the noise and forces the network
to predict signals similar to the ground truth. Furthermore,
the experiment LSTM-exp is performed by replacing the
CrPPG-Net in the proposed method with LSTM network.
It indicates that TCN can model long sequences of tempo-
ral information better than the sequential networks [1].

In the proposed method, the clip size is set to 4 seconds.
For rigorous analysis, we evaluate the performance of the
proposed method for different time duration clips, and the
corresponding results are shown in Figure 3. The figure

depicts that if we decrease the clip duration, the proposed
method’s performance reduces due to the reduction of rPPG
information in short-duration clips. In contrast, if we in-
crease the clip duration from 4 to 6 seconds, performance
increases because long-duration clips provide more rPPG
information. However, if clip duration increases by more
than 6 seconds, performance decreases because it reduces
the number of clips used to train the network. Nevertheless,
we have selected the 4-second duration clips for our experi-
mentation because it is a widely-accepted practice [39, 29].

Our novel hybrid contrastive loss LC(·) automatically
learns the similarity between temporal signals extracted
from different facial regions for denoising the temporal sig-
nals. It improves the performance and enables the proposed
method to outperform state-of-the-art methods, but unfortu-
nately, it is incompetent in several cases. While investigat-
ing the failure cases, we observe that our method provides
the incorrect HR when the input clip contains significant
deformations in all ROIs. In such cases, our method also
learns noises along with pulse signals.

5. Conclusion

Conventional rPPG methods cannot handle facial
deformation-based noises, and deep learning-based rPPG
methods require large-scale labelled data to train the net-
work. The proposed method, ALPINE, has mitigated these
limitations by utilizing CL. The CL has equipped our novel
network to learn the similarity between the temporal signals
of multiple ROIs without employing the labelled data. Such
learning has facilitated the denoising of temporal signals
and introduced diversity in the data samples for better net-
work generalization. Our network has been trained by com-
bining multiple loss functions, which used the contrastive
loss to compute the similarity between the temporal signals,
SNR loss and data fidelity loss. The experiments conducted
on the publically available UBFC-rPPG and COHFACE
datasets, revealed that the proposed method outperforms the
state-of-the-art methods. Further, it has demonstrated that
our novel network can mitigate the issue of facial deforma-
tions, and the network could be trained using small-scale
labelled data. Also, it indicates that the performance can be
improved when SNR and data fidelity losses are combined
with our proposed contrastive loss. In future work, we will
explore the possibility of utilizing transformer-based net-
works in unsupervised settings for rPPG computation.
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