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Abstract

Longform media such as movies have complex narra-
tive structures, with events spanning a rich variety of am-
bient visual scenes. Domain specific challenges associated
with visual scenes in movies include transitions, person cov-
erage, and a wide array of real-life and fictional scenar-
ios. Existing visual scene datasets in movies have limited
taxonomies and don’t consider the visual scene transition
within movie clips. In this work, we address the problem
of visual scene recognition in movies by first automatically
curating a new and extensive movie-centric taxonomy of
179 scene labels derived from movie scripts and auxiliary
web-based video datasets. Instead of manual annotations
which can be expensive, we use CLIP to weakly label 1.12
million shots from 32K movie clips based on our proposed
taxonomy. We provide baseline visual models trained on
the weakly labeled dataset called MovieCLIP and evaluate
them on an independent dataset verified by human raters.
We show that leveraging features from models pretrained on
MovieCLIP benefits downstream tasks such as multi-label
scene and genre classification of web videos and movie
trailers.

1. Introduction

Media, in its diverse forms and modalities, is used to cre-
ate and share narratives across domains including movies,
television shows, advertisements, games, news, and user
generated social stories. Movies represent a major form
of media content, with box office revenues estimated at
$4.48 billion across 329 movies released in 2021 [37], with
a global reach and societal influence. The computational
analysis of media content [49] especially movies presents
unique challenges due to their long-form narrative struc-
tures with character interactions often spanning diverse vi-
sual scenes and contexts. In cinematic terms, mis-en-scene

Figure 1. Overview diagram highlighting the challenges associ-
ated with visual scene recognition in movies (a) Domain mismatch
between Natural scene images,(Source: http://places2.
csail.mit.edu/explore.html) vs frames from Movies
for living room (b) Movie centric visual scene classes like prison,
control room etc that are absent from existing taxonomies (c)
Change in visual scene between shots in the same movie clip.

[4] refers to how the different elements of a film are de-
picted and arranged in front of camera. Key components of
mis-en-scene include the actors with their different styles,
visual scenes where the interactions take place, set design
including lighting and camera placement and the accompa-
nying costumes and makeup of the artists. The visual scene
is considered a crucial component since it sets the mood and
provides a background for the various actions performed by
the actors in the scene. Visual scenes in movies are often
tied to social settings like weddings, birthday parties and
workplace gatherings that provide information about char-
acter interactions.

Accurate recognition of visual scenes can help in uncov-
ering the bias involved in portrayal of under-represented
characters vis-a-vis different scenes e.g., fewer women
shown in office as compared to kitchen. For content tagging
tasks like genre classification, visual scenes provide context
information like battlefield portrayals in action/adventure
movies, space-shuttle in sci-fi movies or courtrooms in dra-
mas. However, there are certain inherent challenges in
visual scene recognition for movies that needs to be ad-
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dressed, as shown in Fig. 1:
Domain mismatch - scene images vs movie frames: Vi-
sual scenes depicted in movies are distinct compared to nat-
ural scenes due to increased focus on actors, multiple ac-
tivities and viewpoint variations like extreme closeup, wide
angle shots etc. An example is shown in Fig. 1 (a) for im-
ages from Places2 dataset [57] and movie frames from Con-
densed Movies dataset [1].
Lack of completeness in scene taxonomy: Movies depict
both real life and fictional scenarios that span a wide vari-
ety of visual scenes. As shown in Fig. 1(b), certain movie
centric visual scene classes like battlefield, control room,
prison, war room, funeral, casino are absent from existing
public scene taxonomies associated with natural scene im-
age and video datasets.
Lack of shot specific visual scene annotations: Existing
datasets like Condensed Movies [1] and VidSitu [46] pro-
vide a single visual scene label for the entire movie clip
(around 2 minutes long), obtained through descriptions pro-
vided as part of YouTube channel Fandango Movie clips 1.
In Fig. 1 (c), the provided description: Johnny Five (Tim
Blaney) searches for his humanity in the streets of New York.
mentions only the visual scene street, while the initial set
of events takes place inside church. Instead of considering
a single scene label for the entire movie clip, shot level vi-
sual scene annotation can help in tracking the scene change
from church to street.

In our work, we consider shots within a given movie
clip as the fundamental units for visual scene analysis since
shots consist of consecutive set of frames related to the same
content, whose starting and ending points are triggered by
recording using a single camera [25]. Our contributions are
as follows:

• Movie-centric scene taxonomy: We develop a movie-
centric scene taxonomy by leveraging scene headers
(sluglines) from movie scripts and existing video datasets
with scene labels like HVU[13].

• Automatic shot tagging: We utilize our generated scene
taxonomy to automatically tag around 1.12M shots from
32K movie clips using CLIP [41] based on a frame-wise
aggregation scheme.

• Multi-label scene classification: We develop multi-label
scene classification baselines using the shot-level tagged
dataset called MovieCLIP and evaluate them on an in-
dependent shot level dataset curated by human experts.
The dataset and associated codebase can be accessed at
https://sail.usc.edu/mica/MovieCLIP/

• Downstream tasks: We further extract feature rep-
resentations from the baseline models pretrained on
MovieCLIP and explore their applicability in diverse
downstream tasks of multi-label scene and movie genre
1https://www.youtube.com/channel/UC3gNmTGu-TTbFPpfSs5kNkg

classification from web videos [13] and trailers [9], re-
spectively.

2. Related work
Image datasets for visual scene recognition: Image

datasets for scene classification like MIT Indoor67 [40] re-
lied on categorizing a finite set of (67) indoor scene classes.
A broad categorization into indoor, outdoor (natural) and
outdoor (man-made) groups for 130K images across 397
subcategories was introduced by the SUN dataset [56]. For
large scale scene recognition, the Places dataset [57] was
developed with 434 scene labels spanning 10 million im-
ages. The scene taxonomy considered in Places dataset was
derived from the SUN dataset, followed by careful merg-
ing of similar pairs. It should be noted that the curation of
large scale visual scene datasets like Places relied on crowd-
sourced manual annotations over multiple rounds.
Video datasets for visual scene recognition: While there
has been considerable progress in terms of action recogni-
tion capabilities from videos due to introduction of large
scale datasets like Kinetics [28], ActivityNet [16], AVA
[22], Something-Something [21], only few large scale
datasets like HVU [13] and Scenes, Objects and Actions
(SOA) [43] have focused on scene categorization with ac-
tions and associated objects. SOA was introduced as a
multi-task multi-label dataset of social-media videos across
49 scenes with objects and actions but the taxonomy cura-
tion involves free-form tagging by human annotators fol-
lowed by automatic cleanup. HVU [13], a recently released
public dataset of web videos with 248 scene labels, relied
on initial tag generation based on cloud APIs followed by
human verification.
Movie-centric visual scene recognition: In the domain
of scene recognition from movies, Hollywood scenes [36]
was first introduced with 10 scene classes extracted from
headers in movie scripts across 3669 movie clips. A so-
cially grounded approach was explored in Moviegraphs
[54] with emphasis on the underlying interactions (relation-
ships/situations) along with spatio-temporal localizations
and associated visual scenes (59 classes). For holistic movie
understanding tasks, the Movienet dataset[27] was intro-
duced with the largest movie-centric scene taxonomy con-
sisting of 90 place (visual scene) tags with segment wise hu-
man annotations of entire movies. Instead of entire movie
data, short movie clips sourced from YouTube channel of
Fandango Movie clips were used for text-video retrieval in
Condensed movies dataset [1], visual semantic role label-
ing [46] and pretraining object-centric transformers [53] for
long-term video understanding in LVU dataset [55]. While
there is no explicit visual scene labeling, the raw descrip-
tions available on Youtube with the movie clips have men-
tions of certain visual scene classes.
MovieCLIP, our curated dataset, is built on top of movie
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Dataset Domain #classes #samples Annotation Unit AV
Scene 15 [18] Natural 15 ∼6k Manual Image ✓

MITIndoor67 [40] Natural 67 15620 Manual Image ✓

SUN397 [56] Natural 397 130,519 Manual Image ✓

Places [57] Natural 434 10m Manual Image ✓

Hollywood Scenes [36] Movies 10 3669 Automatic Video clip (36.1s) ✓

Moviegraphs [54] Movies 59 7637 Manual Video clip (44.28 s) ✗

SOA [43] Web-Videos 49 562K Semi-automatic Video clip (10 s) ✗

Movienet [27] Movies 90 42K Manual Scene segment (2 min) ✗

HVU [13] Web-Videos 248 251k Semi-automatic Video clip (10 s) ✓

Condensed Movies [1] Movies NA 33k Automatic Video clip ( 2 min) ✓

VidSitu [46] Movies ∼50 14k Manual Video clip (10 s) ✓

LVU [55] Movies 6 723 Automatic Video clip (1 ∼ 3 min) ✓

MovieCLIP Movies 179 1.12m Automatic Shot (3.54s) ✓

Table 1. Comparison of MovieCLIP with other available image and video datasets with visual scene classes. Natural: Images of natural
scenes.Web-Videos: videos obtained from internet sources like YouTube. AV: whether publicly available or not. Avg or duration span of
video data sources are provided with the respective units. NA: Number of scene classes explicitly not mentioned with the dataset.

clips available as a part of Condensed Movies dataset [1]. A
comparative overview of MovieCLIP and other image and
video datasets with visual scene labels is shown in Table 1.
In comparison with previous video-centric works, our tax-
onomy generation relies on domain-centric data sources like
movie scripts and auxiliary world knowledge from web-
video based sources like HVU with minimal human-in-the
loop supervision for taxonomy refinement.
Knowledge transfer from pretrained vision language
models: Vision language(V-L) based pretraining methods
involve learning transferable visual representations based
on various pretext tasks associated with image and text
pairs. Examples of pretext tasks in V-L domain include pre-
diction of masked words in captions based on visual cues in
ICMLM [47], pretraining image encoders based on bicap-
tioning objective in VirTex [12] and contrastive alignment
of image-caption pairs in CLIP [41]. Leveraging features
from CLIP’s visual and text encoders have improved exist-
ing vision-language tasks [48] and enabled open-vocabulary
object detection [23], and language driven semantic seg-
mentation [32]. In our work, we use the pretrained visual
and text encoders of CLIP and utilize it as a noisy annotator
by tagging movie shots based on our curated visual scene
taxonomy.

3. Taxonomy curation for movie scenes
In this section we outline the process involved in curating

a visual scene taxonomy based on the domain information
present in movie scripts and the pre-existing scene informa-
tion present in auxiliary video datasets.

3.1. Sources of visual scene information

Movie scripts have been used as external sources for
describing and annotating videos through script and sub-
title alignment methods in [10], [15], [31], [45]. Movie
scripts contain sluglines that provide information about vi-
sual scene, time of the day, and whether the action takes

place in indoor or outdoor settings. Sample example of
a slugline with visual scene as river is : EXT. GOTHAM
RIVER - DAY. We parse 156k sluglines from a in-house set
of 1434 movie scripts. For each slugline, we automatically
extract entities after the “EXT.”(exterior) or “INT.”(interior)
tags like Hospital room, River, War room etc. Using
this procedure, we extract 173 unique visual scene labels.
Since our taxonomy generation process is motivated by vi-
sual scenes in movies with sluglines from scripts as seed
sources along with auxiliary sources. Since the set of la-
bels from movie scripts is not exhaustive, we also consider
auxiliary sources especially web video datasets with visual
scene labels like HVU [13]. We consider HVU as source
of additional labels since the taxonomy (248 visual scene
classes) is semi-automatically curated for short-trimmed
videos, having similar nature to movie shots. We don’t con-
sider Places2 [57] dataset since the taxonomy is primarily
curated for natural scenes, which are distinct from movie-
centric visual scenes.

3.2. Visual scene taxonomy curation

In order to develop a comprehensive taxonomy of vi-
sual scenes in movies, we develop an automatic way of
merging taxonomies from movie sluglines and the auxil-
iary dataset i.e., HVU with minimal human-in-the-loop for
post-processing. The broad steps involved in the taxonomy
generation are listed as below:

Label space preprocessing: For simplicity, we consider
the set of unique labels from movie sluglines (MS) to be
denoted as LMS and its cardinality as NMS . Similarly we
denote NHV U to be the cardinality of the set LHV U , i.e., the
set of unique labels from the HVU dataset. For our case,
we have NMS = 173 and NHV U = 248. We extract the
intersecting set of labels between LMS and LHV U , denoted
by the set Lcom . The number of common labels between
HVU and movie slugline based taxonomy is Ncom = 68.
We remove the common set of labels Lcom from both the
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label spaces of movie sluglines and HVU. This gives us a
non-intersecting set of labels in movie sluglines and HVU
denoted by LMS \ LCom and LHV U \ LCom respectively.
We combine the sets of labels i.e. LMS \LCom and LHV U \
LCom to obtain a larger set of labels called LNC , where NC
refers to not common.

LNC = (LMS \ LCom) ∪ (LHV U \ LCom) (1)

Merging with common label space: In this step, we
find labels in LNC that are semantically close to the labels
in Lcom. We extract dense 384D label representations using
the MiniLM-L6-v2 sentence transformers model [44] for la-
bels in LNC and Lcom. For each label in LNC we compute
cosine similarities with set of labels in Lcom based on label
representations. We merge those labels from LNC with the
similar labels in Lcom, whose top-1 cosine similarity val-
ues are greater than 0.6. We update the set of labels LNC

to LN by removing the merged labels. Examples of such
merging with respective cosine similarities and sources are
as follows:

• dune{LNC} → desert{Lcom}(0.66)
• tennis camp{LNC} → tennis court{Lcom}(0.62)
• restroom{LNC} → bathroom{Lcom}(0.80)
• rural area{LNC} → village{Lcom}(0.64)
• boardwalk{LNC} → walkway{Lcom}(0.67)
• television room{LNC} → living room{Lcom}(0.67)
• glacial lake{LNC} → lake{Lcom}(0.73)

Figure 2. The share of different sources (HVU, Movie Sluglines,
Common labels and Human expert) in curating the label taxon-
omy. Example labels from different sources are shown in boxes
with the pie chart.

Human-in-the-loop taxonomy refinement: A human
expert inspects the labels in LN and removes both generic
scene labels such as body of water, coastal and oceanic
landforms, horizon, landscape, underground as well as
highly specific scenes such as coral reef, white house, piste,
badlands etc. We use label representations from the pre-
vious step to exploit semantic similarity between the labels
remaining in LN . For each relevant label in LN , a threshold

of 0.7 on top-1 similarity score is used to filter out similar la-
bels. While comparing two similar labels, the human expert
relies on wiki definitions to merge the more specific label
into the generic one. For example, by definition bazaar is a
special form of market selling local items (as per wiki) and
therefore merged with the market. Other examples include:

• {stream, riverbed, creek, river} → river

• {hill,mountain,mountain pass,mountain range}
→ mountain

• {road, road highway, lane} → road

• {port,marina dock, harbor} → harbor

This results in a set of labels called Lmerge from LN . Fur-
ther, The human expert is exposed to randomly sampled
1000 shots from movie clips in Condensed Movies [1] and
reviews the current set of labels in the set Lmerge ∪ Lcom.
Based on the video content, a set of scene labels (Lhuman)
that are missing from the current set is added by human ex-
pert. Thus the final set of 179 visual scene labels is obtained
as follows:

Lfinal = Lcom ∪ Lmerge ∪ Lhuman (2)

Label source distribution: As shown in Fig. 2, the largest
share is from movie sluglines (39%).Only 9% of the to-
tal labels is provided through feedback from human expert.
Instead of manually binning classes into broad categories
like indoor, outdoor or man-made, we discover groupings
among classes through Affinity propagation clustering [20]
(based on label representations from sentence transform-
ers). Certain clusters of visual scene labels are listed below,
where all the sport locations, water bodies and performing
arts locations are grouped together.

• sport locations: Basketball court, Race track, Tennis
court, Batting cage, Golf course

• water bodies: River, Pool, Waterfall, Hot spring, Pond,
Swamp, Lake

• performing arts locations: Stage, Conference Room,
Theater, Auditorium, Ballroom

• Natural landforms: Mountain, Desert, Valley

A detailed list of the clusters discovered among the visual
scene classes is shown in Supplementary.

4. MovieCLIP dataset

We use the curated taxonomy described in Section 3 to
develop a labeled dataset of movie shots called MovieCLIP.
We outline the process of shot detection and automatic la-
beling using CLIP [41] in the following sections:
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Figure 3. Overview schematic of the prompt based visual scene labeling of movie shot using CLIP’s visual and text encoders. S is the
similarity matrix where entry Slt refers to similarity values between textual embedding el and visual embedding vt.

4.1. Shot detection from movie clips

Since a shot represents a continuous set of frames with
minimal change in the visual scene, we consider movie
shots for our subsequent analysis. Associating visual scene
labels to shots can help in identifying cases where vi-
sual scene recognition is difficult like closeup or extreme
closeup scenarios, even within the same movie scene. A sin-
gular movie scene involves changes in camera viewpoints
across consecutive shots, thus making it difficult for CLIP
to associate labels with high confidence for the entire movie
scene. For shot detection, we use PySceneDetect2 to seg-
ment the movie clips in Condensed Movies with default pa-
rameters and content-aware detection mode. The overall
statistics of the shot extraction process is shown in Table 2:

# movies Years # clips # shots Avg shots/clip Avg Duration
3574 1930-2019 32484 1124638 34.66 3.54s

Table 2. Statistics of movie shots in MovieCLIP dataset.

4.2. CLIP based visual scene labeling of movie shots

In this section, we describe how CLIP [41] can be
used to associate visual scene labels with individual movie
shots. Since CLIP has been trained in a contrastive manner
for alignment, it can be used to develop zero-shot classi-
fiers for different tasks including scene recognition ([56]),
fine grained classification ([38], [5], [30]), facial emotion
recognition ([2]), object ([11],[17]) and action classification
([7],[50]). Due to prohibitively large size of MovieCLIP (in
terms of hours) for human annotation, we leverage CLIP’s
zero-shot capabilities to tag the shots with scene labels.

Based on prompt engineering designs considered by
GPT3 [6], addition of contextual phrases like “a type of
pet” or “a type of food” in the prompts provides additional

2https://pyscenedetect.readthedocs.io/en/latest/

information for CLIP for zero shot classification. In a sim-
ilar vein, we consider the visual scene specific prompt: “A
photo of a {label}, a type of background location” to
tag individual frames in video clips with labels from our
scene taxonomy. If a shot contains T frames, we utilize
CLIP’s visual encoder to extract frame-wise visual embed-
dings vt(t = 1, ..., T ). For each of the individual scene
labels in our taxonomy, we utilize CLIP’s text encoder to
extract embeddings el(l = 1, 2, ..., L) for the background
specific prompts We use the label-wise (prompt-specific)
text and frame-wise visual embeddings to obtain a simi-
larity score matrix S, whose entries Slt are computed as
follows:

Slt =
eTl vt

∥el∥2∥vt∥2
(3)

We compute an aggregate shot specific score for individ-
ual scene labels by temporal average pooling over the sim-
ilarity matrix Slt, since the visual content within a shot re-
mains fairly unchanged. The computation of shot specific
score called CLIPSceneScorel for lth visual scene la-
bel is shown in Eq. 4. Overall workflow of the process is
illustrated in Fig 3.

CLIPSceneScorel =

∑T
t=0(Slt)

T
(4)

4.3. Analysis of the CLIP labeling

Qualitative analysis: As shown in Fig 4a, CLIP per-
forms well when distinctive elements of visual scene are
present like background objects in indoor locations (living
room) or appearance based cues (green color background
for forests). For example in 4a, the presence of airplane
windows indicate that the associated visual scene label with
the given movie shot is cockpit. However, for shots involv-
ing blurry motion or absence of background information
due to close up of the involved characters, CLIP’s confi-
dence in associating visual scene labels is low (Fig 4b).
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(a)

Downtown Cockpit

StadiumFoundry

(b)
Figure 4. (a) Sample frames from the movie shots labeled by
CLIP with high confidence (CLIPSceneScore ≥ 0.6 and La-
bels shown in yellow) (b) Sample frames from the movie shots
tagged by CLIP with low confidence (Labels shown in yellow).

Figure 5. Genre wise distribution of different scene labels. For
each genre, the top-5 scene labels are shown in terms of number
of occurrences in the top-1 label provided by CLIP [41] for shots
in MovieCLIP dataset. Threshold for confidence score of top-1
label = 0.4

Genre-wise association: We consider those shots whose
top-1 CLIPSceneScore values are greater than or equal
to 0.4 and show the top-5 scene labels in terms of occur-
rences for certain genres like western, sport, war and musi-
cal. From Fig 5, we can see that relevant scenes are asso-
ciated with genres through CLIP’s labeling scheme. Some
notable examples include {shooting range, desert} for west-
ern, {locker room, boxing ring} for sport, {ballroom,
stage} for musical and {cockpit, battlefield} for war.
Reliablity estimation: In order to estimate reliability of
the top-k labels provided by CLIP for movie shots, we con-
duct a verification task on Amazon Mechanical Turk. We
provided a pool of annotators with a subset of 2393 movie
shots from VidSitu [46] dataset, along with top-5 scene la-
bels. Out of the provided top-5 scene labels, the annotators
were asked to select all the labels that apply for the given

Figure 6. Distribution of shot scale predictions among the shots
having no agreements between human annotators and CLIP’s la-
beling scheme. ECS: Extreme Close-up shot, CS: Close-up shot,
MS: Medium shot, LS: Long shot, FS: Full shot

movie shot. We find 48.4% and 80% agreements among
annotators in marking the top-1 and top-5 CLIP labels as
relevant. After the human verification experiment is com-
plete, we discard the shot samples with no agreements and
obtain an evaluation data of 1883 shot samples.
Shot-type association: We consider the shots discarded in
the reliability estimation phase to analyze distribution with
various shot scale types. Based on the shot scale labels
available as part of MovieShots dataset [42], we train a 2-
layer LSTM (hidden dim= 512) [26] network using frame
wise features from a pretrained ViT-B/16 [14] (extracted at
4 fps). The distribution of shot-wise predictions from the
trained LSTM model is shown in Fig 6. We can see that
80% of shots having no agreements with human annotations
belong to the shot categories having moderate (MS) to very
high person closeup (ECS).

5. Experiments and Results

5.1. Experimental Setup

For training and validation purposes, we retain those shot
samples whose top-1 CLIPSceneScore is greater than
or equal to 0.4 (approx 75 percentile), resulting in a clean
subset. After top-1 filtering, we also consider labels from
top-k (k = 2 to 5) whose CLIPSceneScore is greater than
0.1 to associate multiple labels per sample. This results in
a set of 107k samples with train, val and test split of 73.8k,
23.2k and 10.3k having non-intersecting set of ids with the
human-verified evaluation set. Approximately 38.4% of the
dataset is multi-label, covering 150 scene classes out of 179
in the curated scene taxonomy. All the related experiments
were conducted using the Pytorch[39] framework using 4
T4 NVIDIA GPUs. For training the respective models, we
use binary cross entropy loss function. For evaluation, we
use mean average precision (mAP) and Pearson correlation
(averaged across samples) as metrics.
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5.2. Visual scene recognition - Movies

Frame wise aggregation models: For frame wise ag-
gregation, we extract dense embeddings from individual
shots at 4fps. We use two sets of embeddings: 512 dim em-
bedding from Resnet18 [24] pretrained on Places2 dataset
and 768 dim embedding from ViT-B/16 [14] model pre-
trained on Imagenet [11]. Following feature extraction, we
perform temporal aggregation using LSTM [26] with 2 lay-
ers and hidden dimension of 512.
3D Convolutional network models: We use I3D[8],
R(2+1)D [52], Slowfast [19] as baseline 3D convolutional
models in multi-label setup. I3D[8] and Slowfast[19] mod-
els have a Resnet50[24] backbone whereas R(2+1)D [52]
has a Resnet34[24] backbone. All the models are initialized
from Kinetics400 [28] pretrained weights. For finetuning
I3D[8] and Slowfast[19], we use SGD with learning rates
in {0.1, 1e − 3} and weight decay of 1e-4. For R(2+1)D
[52] we use Adam [29] with learning rate 1e-4. Batch sizes
for the models are varied between 16 and 32.
Video Transformer models: For video transformer mod-
els, we consider the base TimeSformer model [3] that con-
siders 8 frames (224 x 224) as inputs. For finetuning TimeS-
former [3] model, we use SGD with learning rate 5e-3
and weight decay of 1e-4 and batch size of 8. For bet-
ter speed-accuracy tradeoff we use the Video Swin Trans-
former model [34], [33] called Swin-B with clip size of
32 frames (224 x 224) as inputs. For finetuning we use
AdamW [35] optimizer with learning rate 1e-4 and Cosine
Annealing with batch size of 32. More details of the hy-
perparameter settings for above mentioned models are in-
cluded in Supplementary. Based on the results in Table 3,
we can see that 2 layer LSTM models trained using fea-
tures from Imagenet-21K pretrained ViT-B/16 perform bet-
ter compared to features extracted using Resnet-18 model
pretrained on Places2 dataset. This shows that features
from Places2 pretrained models might not be optimal for
scene recognition in the movie domain. In terms of end-
to-end models, video transformers including TimeSformer
and Swin-B models outperform 3D convolutional models.
Swin-B model performs better than other models by ob-
taining an average correlation of 0.497 and mean average
precision of 44.4.
5.3. Downstream tasks

5.3.1 Visual scene recognition - web videos:

We also explore knowledge transfer from models finetuned
on MovieCLIP by evaluating performance on downstream
multi-label scene classification with HVU dataset [13]. For
training and evaluation, we use 251k and 16k videos with
248 scene labels. We extract 1024 dim features from the
best performing Swin-B model in Table 3. We train 3 layer
fully connected models on the respective features with the
following configuration:

Frame wise aggregation
Model Features mAP Correlation

LSTM (512, 2 layers) Places2 (4 fps) 24.15 0.29
LSTM (512, 2 layers) ViT-B/16 (4 fps) 43.10 0.42

3D convolutional networks
Model Features mAP Correlation

SlowFast (R50) [19] NA 25.80 0.402
R(2+1)D (R34) [52] NA 26.73 0.40

I3D (R50) [8] NA 13.33 0.26
Video Transformers

TimeSformer [3] NA 36.87 0.46
Swin-B [34] NA 44.4 0.497

Table 3. Mean average precision (mAP) and average Spearman
correlation of different models on human verified evaluation set
(N=1883 shots). NA: End-to-end models used instead of features.
For 3D conv models, the backbone network is mentioned inside
brackets.

Mscene: INP[1024] → FC[4096],DO(0.2) → FC[4096]
→ FC[248]
From Table 4, we can see that Mscene exhibits better per-
formance when compared to existing end-to-end models
trained on HVU.

Model mAP
3D-ResNet [13] 50.6
3D-STCNet [13] 51.9

HATNet [13] 55.8
Mscene 55.92

Table 4. Mean average precision of different models on HVU
dataset for multi label scene classification (248 classes). Back-
bone for end to end models: 3D Resnet18.

5.3.2 Multi label genre classification - Movie trailers:

As an additional downstream task, we consider multi-label
genre classification of movie trailers in the Moviescope
dataset [9]. Out of the original set of 4927 trailers, we could
access 3900 videos from YouTube. Based on the provided
splits, we use 2948, 410 and 542 videos for training, valida-
tion and testing purposes, respectively. We use the 1024
dim features extracted from the best performing Swin-B
model in Table 3. We train 3 layer fully connected models
on the respective features with the following configuration:
Mtrailer: INP[1024] → FC[512],DO(0.2) → FC[512] →
FC[13]
Even when the number of trailer videos used is a subset
of the original split, Mtrailer exhibits similar genre wise
trends as other models. From Table 5, we can see that
Mtrailer shows better performance in Animation and Com-
edy as compared to genres like Biography and Mystery.
When compared with fstTConv in Table 5, our fully con-
nected model Mtrailer performs slightly worse due to non-
availability of entire training data.
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Model Overall Ac Ani Bio Com Cri Drm Fmy Fntsy Hrrr Myst Rom ScF Thrl
Mtrailer 56.14 62.97 86.51 14.4 80.77 49.58 79.58 74.55 49.59 50.62 26.83 45.05 47.99 61.36
C3D [51] 53.4 63.8 91.3 16.2 82.3 45.1 71.6 65.3 54.8 50.8 28.2 38.3 21.8 64.8
I3D [8] 38.8 37.2 51.8 9.2 72.6 33.9 67.6 43.6 39 22.8 21.3 34.3 22.6 48.3

LSTM [9] 48.4 47.5 86.8 12 79.2 33 72 64.5 54.4 22.7 24.7 40.4 36.5 54.8
Bi-LSTM [9] 47.4 49.9 86.3 8.2 77.6 29.9 70.8 65.4 55.3 22.3 21.7 41.6 35.9 51.2

fstVid [9] 56.5 61.4 94.8 23.9 81.5 41.7 77 67 62.6 36.1 30.4 48.4 48.2 62
fstTConv [9] 58.9 64.7 95.7 21.2 83.5 49.1 78.9 68.6 68.9 42.7 29.2 46.8 51 64.8

Table 5. Mean average precision of different models for multi-label genre classification (13 class) on Moviescope dataset. Except Mtrailer

comparison results are reported from [9]. Abbreviations: Ac: Action, Ani: Animation, Bio: Biography, Com: Comedy, Cri: Crime, Drm:
Drama, Fmy: Family, Fntsy: Fantasy, Hrrr: Horror, Myst: Mystery, Rom: Romantic, ScF: SciFi, Thrl: Thriller, fstVid: fastVideo,
fstTConv: fastVideo + Temporal Conv.

5.3.3 Impact of MovieCLIP pretraining:

HVU Moviescope
Model mAP Model mAP
Mscene 55.92 Mtrailer 56.14

Mscene(Kin) 56.05 Mtrailer(Kin) 53.29
Late Fusion 57.73 Late Fusion 56.29

Table 6. Impact of MovieCLIP pretrained features vs Kinet-
ics pretrained features for Mscene (HVU) and Mtrailer (Movi-
escope). Results reported are mean average precision (mAP) val-
ues. Model(Kin): Model with Kinetics400 pretrained features,
where Model ∈ {Mscene,Mtrailer}

.

We consider the impact of MovieCLIP based pretraining
by fixing the fully connected architectures Mscene, Mtrailer

and varying the input features. In the without MovieCLIP
(Kin) pretraining setting, we extract 1024 dim features
from Swin-B model pretrained on Kinetics400 for HVU and
Moviescope datasets.

From Table 6, we can see that the performance of
Mscene with MovieCLIP pretrained features is compara-
ble to Mscene(Kin), even when the domain of Kinet-
ics400 [28] is matched to HVU. Further, late fusion of
prediction logits of Mscene and Mscene(Kin) with equal
weights improves the mAP to 57.73 for HVU, thus indi-
cating capture of complementary information, when trained
with movie data. We include a class wise analysis of
HVU dataset in Supplementary (Figure 11) to showcase the
classes where MovieCLIP pretrained features improve upon
Kinetics400 pretrained features. In case of Moviescope,
Mtrailer results in improved performance (56.14) as com-
pared to Mtrailer(Kin) (53.29), due to domain similarity
with MovieCLIP dataset.

6. Ethical implications
Visual scene recognition capabilities can help in un-

covering biases associated with the portrayal of under-

represented and marginalized characters in various settings.
For example, women are portrayed more in indoor scenes
like kitchen, living room, hospital as compared to scenes
like factory, laboratory or battlefield. Further, characters
from marginalized demographic groups are often depicted
in the background w.r.t common visual scenes, thus hav-
ing considerable less share of speaking time. Apart from
portrayal of characters, the usage of large scale pretrained
models like CLIP [41] can help diagnose the inherent biases
associated with its predictions since it is trained on free-
form data curated from web. The proposed scheme of uti-
lizing CLIP for weakly tagging datasets can reduce the costs
associated with large-scale human expert driven annotation
process.

7. Conclusion
In this work, we introduce a rich movie-centric tax-

onomy of visual scene labels, automatically curated from
movie scripts and HVU [13], with minimal human-in-the
loop intervention. Further, we utilize CLIP’s [41] zero-
shot capabilities to weakly label movie shots based on
our curated taxonomy in a scalable manner. We develop
baseline end-to-end models on the weakly labelled dataset
called MovieCLIP and evaluate on an independent human-
verified dataset with scene labels. We explore the utility of
MovieCLIP dataset as a pretraining source by evaluating on
two downstream tasks of multi-label scene and genre clas-
sification of web videos [13] and movie trailers [9]. Future
directions include modeling of temporal transitions of vi-
sual scenes across shots, multimodal association between
audio events and visual scenes and multi-task modeling of
visual scenes and related attributes like actions, time of day
and settings (interior and exterior).
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[37] José Gabriel Navarro. Film industry in the u.s. - statistics &
facts. https://www.statista.com/topics/964/
film/#dossierKeyfigures, 2021.

[38] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar.
Cats and dogs. In IEEE Conference on Computer Vision and
Pattern Recognition, 2012.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, et al. Py-
torch: An imperative style, high-performance deep learn-
ing library. In H. Wallach, H. Larochelle, A. Beygelzimer,
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