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Abstract

Blind deconvolution is an ill-posed problem arising in
various fields ranging from microscopy to astronomy. Its ill-
posed nature demands adequate priors and initialization to
arrive at a desirable solution. Recently, it has been shown
that deep networks can serve as an image generation prior
(DIP) during unsupervised blind deconvolution optimiza-
tion, however, DIP’s high frequency artifact suppression
ability is not explicitly exploited. We propose to use Wiener-
deconvolution to guide DIP during optimization in order
to better leverage DIP’s ability for blind image deconvolu-
tion. Wiener-deconvolution sharpens an image while intro-
ducing high-frequency artifacts, which are reproduced by
DIP with a delay compared to low-frequency features and
sharp edges, similar to what has been observed for noise.
We embed the computational process in a constrained opti-
mization problem together with an automatic kernel initial-
ization method and show that the proposed method yields
higher performance and stability across multiple datasets.

1. Introduction
Blurred images can occur due to a number of factors

ranging from camera motion to the optical set-up. In many
cases generating a blur image, IB , can be modeled as the
convolution of a sharp image, IS , with a kernel k as shown
in Eq. (1)

IS ∗ k + η = IB , (1)

where η is noise and * is convolution operator. If k is known
then a deconvolution can be performed to recover the origi-
nal sharp image and this is referred to as non-blind deconvo-
lution. However, often in practice k is not known and needs
to be estimated together with IS . The ill-posed nature of
this blind deconvolution problem requires strong priors on
the sharp image and/or kernel to avoid having estimates that
do satisfy Eq. (1), but are not the sharp version of the given
blurred image. One possible formulation of the optimiza-
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Figure 1: Motivating example showing that while the existing
methods produces artifact and blurry results especially around the
trees in the background, W-DIP produces the most similar result
to the ground truth image.

tion is Eq. (2).

min
IS ,k

∥IS ∗ k − IB∥2 +R(IS) +R(k) (2)

where R(IS) and R(k) are priors on the image and kernel,
respectively. A vast variety of priors have been suggested
to regularize the problem in Eq. (1) in such a way that a so-
lution in a space of interest is found [11, 5, 15, 36, 40, 22].
Common priors include a sparsity constraint on the image
gradients and a L2-norm on k to avoid the trivial solution.
On top or instead of these common priors, recent works sug-
gest more advanced terms such as dark channel prior [23]
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Figure 2: (Left) Visual motivation, best visible when zoomed in, where both a blurred image, top row, and an image that was deconvolved
with a standard Gaussian (not the ground truth kernel), bottom row, are reconstructed by DIP. It can be seen that the reconstruction of the
blurry image stays blurry, whereas for the deconvolved image high-frequency artifacts are removed leading to a sharper image. (Right) The
optimization for blind deblurring using DIP is shown without, Ren et al. [27], and with guidance, W-DIP. The deconvolved image used
as guidance is shown in the right most column. It can be seen that the guidance prevents a sub-optimal solution as the iteration number
increases. In addition, the guiding image’s quality improves along with that of the sharp image estimate.

or edge-based patch priors [30]. While these carefully con-
structed priors are powerful, they are still limited in fully
encapsulating the properties of sharp images.

Another approach that has become popular in recent
years is learning the mapping from a blurred image to its
sharp counter-part. If a large dataset with matching sharp
images and their respective blurred version are available in a
domain, a network can be trained to learn a successful map-
ping within the domain [12, 39, 31]. There are also methods
that combine the learned mappings with classical priors as
additional losses [38], or learn the priors and incorporate
them into classical blind deconvolution frameworks [17, 1].
However, the success of these approaches are often limited
to the domain of training images.

A recent interesting insight by Ulyanov et al. [32] shows
that neural network architectures have an intrinsic image
generation prior, referred to as “Deep Image Prior” (DIP),
that can be exploited for image restoration tasks. It was
shown that certain convolutional neural networks can re-
produce noise, high frequency parts of an image, with an
iteration lag compared to low frequency parts of the im-
age. In previous works, the suppression of high-frequency
artifacts by DIP has been used to improve the restoration
performance for inverse problems [19, 2].

However the current adaption of DIP for blind deconvo-
lution does not explicitly leverage the ability of high fre-
quency artifact suppression. DIP was used in blind im-
age deconvolution by Ren et al. [27], by having a convolu-
tional neural network (CNN) that generate the estimate for
the sharp image, i.e., DIP, and a fully connected network
(FCN) that estimates the kernel. By jointly optimizing both
networks, impressive blind deconvolution results were ob-
tained. While authors noted basic regularization terms can
be added in the article, the best results are possibly obtained
using only the data-fitting term in Eq. (2) as this version was
released in the published code. The major drawback in us-
ing DIP only through a data-fitting term or by just adding
inappropriate regularization terms, is that DIP alone does
not produce a sharp image from a blurred image given as
input, as we demonstrate with an example on the left side
of Fig. 2. On the contrary, DIP fits faster to blurred images
compared to sharp images as shown in [9]. Therefore, DIP-
based blind deconvolution without a suitable prior suffers
from two major issues: (i) performance fluctuations across
multiple runs and initialization, (ii) sensitivity to critical
hyper-parameters that are difficult to predetermine, in par-
ticular the size of the kernel to be estimated as we further
elaborated in Tab. 2. Kotera et al. [9] proposed to improve
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upon [27] by initializing the kernel generator with a Gaus-
sian and using multi-scale processing, whereas Li et al. [16]
proposed an architecture change as well as sampling ap-
proach. However, both methods do not explicitly leverage
the strength of DIP in removing high frequency artifacts for
blind image deconvolution.

In this work we want to leverage the key abilities of DIP
by exploiting the ability of high-frequency artifact suppres-
sion for blind image deconvolution. To the left of Fig. 2
we show in the bottom row that high frequency artifacts
introduced by Wiener-deconvolution [34] are initially sup-
pressed by DIP. Thus the deconvolved image can serve as
a useful guidance for the image generator. The advantage
of obtaining a sharpened version of the blurry image with
Wiener-deconvolution, in contrast to other image sharpen-
ing methods such as unsharp masking [26], is that the sharp-
ening is linked to the kernel that generated the blurry image.
Contributions: Building on this insights, we propose
Wiener Guided Deep Image Prior (W-DIP), a blind decon-
volution method that utilizes Wiener deconvolution of the
blurry image to guide the image generator (DIP) through
a constraint optimization model. With the guidance, we
explicitly exploit the high frequency suppression ability of
DIP to improve both the stability and performance of blind
image deconvolution. To achieve this, we define an auxil-
iary kernel to apply Wiener-deconvolution to given blurry
image and enforce the deconvolved image to be similar to
the sharp image generated by the network. This constraint
allows the image generator network to have a realistic sharp
target image early on during optimisation. Additionally, the
auxiliary kernel is constrained to be similar to the gener-
ated kernel to enforce the generated kernel to deconvolve
the blurred image such that it is sharp. We solve the con-
strained optimization problem using Half Quadratic Split-
ting (HQS) method and optimize the network parameters
and the auxiliary kernel in alternating fashion.

In Fig. 1, we present a motivating visual example to show
the improved deblurring performance achieved by W-DIP
compared to the existing methods in the literature and to
the right of Fig. 2 the increased stability of the method is
visually shown.

Our contribution is thus two-fold:

• We show that by using Wiener-deconvolution during
optimization the high-frequency suppression ability of
DIP can be utilized to obtain a highly stable and accu-
rate blind image deblurring.

• We show that initialization of the auxiliary kernel is
crucial and propose an initialization strategy that can
be automatically adapted to any dataset.

We investigate our contributions by comparing our per-
formance to that of state-of-the-art blind deconvolution al-
gorithms on five different datasets: Levin [14], Sun [30],

Lai [13], synthetic microscopy[28] as well as a dataset that
contains real-life blurry images without a known kernel
[13]. In addition, we perform an ablation study to inves-
tigate the contribution of each element in our framework.

2. Method
2.1. Background

The first use of DIP for blind image deconvolution was
proposed by Ren et al. [27] and achieved state of-the-art
performance. It consists of a CNN fθ for generating the
estimate of the sharp image and FCN gϕ for generating the
estimate of the kernel. The optimization problem for the
network parameters θ and ϕ is defined as

min
θ,ϕ

∥fθ(zI) ∗ gϕ(zk)− IB∥2 + TV (fθ(zI)) (3)

in [27] where zI and zk are random vectors sampled from
U(0, 1). However, in the published code it has been sug-
gested to remove the TV term and switch from the MSE
loss to the structural similarity index measure (SSIM) after
1k iterations which is also confirmed by Kotera et al. [9].

2.2. Proposed method

A visualization of the proposed method can be seen in
Fig. 3a. As motivated in Sec. 1, we constrain the sharp
image estimate generated by fθ with the deconvolved im-
age obtained after Wiener-deconvolution. The constraint is
given in Eq. (4)

min
θ,ϕ

∥fθ(zI) ∗ gϕ(zk)− IB∥2

subject to ∥fθ(zI)−W (IB , gϕ(zk))∥2 = 0
(4)

where W (IB , k) = F−1{ |F{k}|2
|F{k}|2+C ∗ F{IB}

F{k} }, F is Fourier
transform, and C is a constant.

To allow a flexible kernel initialization we re-write Eq.
(4) by introducing an auxiliary kernel k with size n×n and
using HQS method as follows:

min
θ,ϕ,k

∥fθ(zI) ∗ gϕ(zk)− IB∥2

subject to ∥fθ(zI)−W (IB , k)∥2 = 0

k = gϕ(zk)

(5)

We convert the constrained optimization problem using the
unconstrained one using the method of Lagrange multipli-
ers

min
θ,ϕ,k

∥fθ(zI) ∗ gϕ(zk)− IB∥2 + α∥fθ(zI)−W (IB , k)∥2

+ β
n∑

i=1

n∑
j=1

(gϕ(zk)i,j − ki,j)
2
+ λ∥k∥2.

(6)
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Figure 3: a.) Outline of the proposed method W-DIP. The generative network fθ generates estimate of sharp image while gϕ generates
kernel estimate. Additionally, an auxiliary kernel, k, and blur image are passed through Wiener deconvolution to enforce kernel to generate
sharp images. The red variables are optimised to minimize Eq. (6). In b.) the performance of DIP blind deconvolution with (W-DIP)
and without Wiener-deconvolution guidance is shown for three runs each on the Levin et al. [14] dataset. It can be seen that Wiener-
deconvolution guidance stabilizes performance.

where α and β are penalty weights. Note that, in addition
to the constraints in Eq. (5), we add regularization on k
with weight λ. Also, note that we use sum of squared error,
not mean square error (MSE) when including the second
constraint in Eq. (5) to Eq. (6) since the kernel cost is size
dependent, i.e. it tends to be lower for larger kernel sizes
and higher for the smaller ones since kernels sum up to 1.

Finally, we optimize the network parameters (θ, ϕ) and
the auxiliary variable k in an alternating fashion as sug-
gested by HQS to minimize the loss function in Eq. (6),
while keeping α, β and λ fixed. The parameters (θ, ϕ) are
updated by keeping k fixed and vice versa:

min
θ,ϕ

∥fθ(zI) ∗ gϕ(zk)− IB∥2 + α∥fθ(zI)−W (IB , k)∥2

+ β
n∑

i=1

n∑
i=1

(gϕ(zk)i,j − ki,j)
2

(7)

min
k

α∥fθ(zI)−W (IB , k)∥2

+ β
n∑

i=1

n∑
i=1

(gϕ(zk)i,j − ki,j)
2 + λ∥k∥2

(8)

Note that since the kernel size estimate is normally larger
than the actual kernel to avoid restricting the kernel to an in-
sufficient size, k and gϕ(zk) could represent the same ker-
nel, but a shifted version to each other. Although both ker-
nel estimates are desirable and satisfy the first and the sec-
ond terms in Eq. (6), the kernel matching term weighted by
β produces large loss due to the translation between the ker-
nels. To circumvent this we align the kernels before com-
puting the kernel matching term. The process is described
in more detail in the supplementary.

2.3. Kernel Initialization

The initialization of kernel k is an important parame-
ter, since the starting point of an ill-posed optimization task
often restrict the solution space. In the case that no prior
knowledge of k is available it might be useful to obtain an
estimate from the given blurry image IB . We propose to
achieve this by looking at the power spectral density (PSD)
of IB . The more centrally concentrated the PSD is, the
larger the blur kernel may have been according to the con-
volution theorem. If no prior information is available on the
shape of the k, we initialize it with a Gaussian and deter-
mine the variance of the Gaussian by looking at the PSD of
an image as shown in Eqs. (9).

Q∑
i=1

Q∑
j=1

|F(y)|2i,j = T, Gy = F−1[N (0, Q2)] (9)

σk =
1

N

N∑
i=1

σ(Gi)

ksizei
, ky = N (0, σk × ksizey ) (10)

For each image we calculate the PSD and compute the
distance from the center, Q, where a certain threshold, T ,
of the mass of the PSD is contained. We then construct
a Gaussian in the Fourier Domain with the calculated dis-
tance as variance and apply an inverse Fourier transform to
the constructed Gaussian. This results in an image-specific
Gy that is the size of the image y. To facilitate optimization,
by reducing the dimension of the kernel, Gy is cropped to
the estimate of the kernel size, however the size of Gy will
stay the same in the Fourier domain. To reduce the influence
of image specific features an average variance σk over the
dataset consisting of N images is calculated and in addition
the variance is normalized by the kernel size estimate ksizei
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for the respective image as is shown in Eq. (10). The ini-
tial ky is then constructed by scaling σk by the kernel size
estimate as shown in Eq. (10).

3. Experimental Results
Datasets: We evaluate W-DIP on four widely used natu-

ral image datasets and a synthetic microscopy image dataset
that we created. Levin et al. [14] introduced a dataset with
4 sharp images that was each convolved with 8 different
kernels leading to 32 blurred images. Sun et al. [30] used
the same blur kernels, but extended the sharp images from
4 to 80 leading to a total of 640 images. The images are
also greyscale as in Levin et al. [14] but they are signifi-
cantly larger. Lai et al. [13] consists of five different image
categories, namely: manmade, saturated, text, people and
natural. Each category contains five large sharp colour im-
ages corresponding to the category name and was blurred
with large kernels ranging from 31× 31 to 75× 75 in size.
This leads to a total of 100 blurred images. In addition, we
qualitatively evaluate on real-world blurry images provided
by Lai et al. [13], where the blurring process is unknown.
Lastly, we introduce a dataset of synthetic microscopy im-
ages that was blurred with synthetic kernels. Four sharp
synthetic images were taken from simulation of Schneider
et al. [28] and cropped to 255 × 255. They were blurred
with one kernel from Levin et al. [14] and three other ker-
nels, that can be found in the supplementary. The kernels
are of similar size and shape of the point spread functions
expected in two-photon microscopy [3]. In total this leads
to 16 blurred images.

Implementation Details: The proposed method is im-
plemented in PyTorch [24]. We used Adam [7] for both
optimization steps in alternating optimization each with dif-
ferent learning rates and schedulers. For the first optimiza-
tion step in Eq. (7), we set the initial learning rate to 1e−4

and decreased it by multiplying with 0.5 at the iterations
2K, 3K, and 4K following the implementation by Ren et
al. [27]. In the second optimization step in Eq. (8), we
used a slightly lower learning rate and a scheduler that de-
pends on the kernel size n. The reason is that initial esti-
mates of the sharp image generated by fθ are worse than
that obtained by Wiener-deconvolution since networks are
randomly initialized and are given noise as input, thus θ and
ϕ should rather adapt to k and W (IB , k). As the estimate
from the first optimization gets more reliable, the adapta-
tion speed of k is increased by increasing its learning rate.
The larger the estimated kernel size n and thus blur of the
image, the longer it takes Eq. (7) to arrive at a reliable so-
lution, thus we include n as a parameter for learning rate
adaptation. We start the second optimization step with the
initial learning rate 1e−6, increase it by a factor of 10 af-
ter 70 × (n/10)th iteration and two more times after the
next two 50 × (n/10)th iterations. The training took place

on the in-house GPU cluster mainly consisting of GeForce
GTX TITAN X with 12GB memory.

For all evaluations we ran the optimization for 5k itera-
tions, except for the microscopy images where 2k iterations
was sufficient to reach peak performance. Furthermore,
we set the weight parameters to: α = 1e−3, β = 1e−4,
λ = 1e−3. These parameters were kept constant across all
experiments unless otherwise stated and were determined
by optimizing performance on four of Levin et al. [14] im-
ages. We set C in Wiener-deconvolution to a fixed value
of 0.025 in all experiments. In addition, for all experiments
of Ren et al. [27] and W-DIP, except on the Sun et al. [30]
dataset due to its large size, the experiments were run three
times to account for stochasticity. Mean values across the
three runs are reported. We do not perform non-blind de-
convolution for Ren et al. [27] and W-DIP as it has been
shown that the generated image by the convolutional neural
network is comparable to that of the non-blind deconvolved
version [27]. We do not present any comparison to Kotera
et al. [9] because the code is not publicly available and the
evaluation metrics used in the paper are different than the
ones that are commonly used in the literature.

Evaluation Metrics: To evaluate the performance of the
deconvolution algorithms we make use of the peak signal-
to-noise ratio (PSNR) and structural similarity index me-
assure (SSIM) between the estimated sharp image and the
ground truth. For the Levin et al. [14] dataset we also in-
clude the Error Ratio (E-Ratio) metric [15]. In addition,
for the microscopy images the vessel structures are of inter-
est from a biological point of view. The structure of these
vessels can be obtained by segmentation with Otsu thresh-
olding [21] after a preprocessing step where extreme pixel
values were removed. The overlap of the segmentation of
the ground truth and estimated sharp image was then quan-
tified with the Dice coefficient [29].

3.1. Framework Investigation

3.1.1 Ablation Study

To ensure that each component of the proposed frame-
work is necessary we conduct an ablation study, where the
weights for α, β and λ are set to zero individually. In ad-
dition, we set the initialization of k to uniform to evaluate
the importance of its initialization. We perform the ablation
study on a natural image dataset [14] as well as on the con-
structed microscopy dataset [28] as can be seen in Tab. 1.

It can be seen that the strongest loss in performance in
both datasets occurs when the weight α, which controls the
contribution of the image matching term, is set to zero. This
drop empirically demonstrates the importance of the guid-
ance of the Wiener-deconvolution in the proposed method.
The performance loss is less pronounced when β, which
controls the contribution of the kernel matching term, is set
to zero. Even though it is subtle, the drop is observed for all
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Blurred Image Michaeli et al. [20] Perrone et al. [25] Pan-DCP et al. [23]

Ground Truth Xu et al. [36] Ren et al. [27] W-DIP

Figure 4: Visual results from the Lai et al. [13] dataset to compare W-DIP with five baselines. The results of W-DIP is sharper compared
to other methods which is especially visible around the rocks.

the metrics, suggesting that this term also plays an impor-
tant role in the method. For both microscopy and natural
images, we see that the influence of the L2-norm on k in
the second optimization step is minimal, nevertheless we in-
clude the regularization to ensure that the trivial delta func-
tion as kernel is avoided. Lastly, we also compare Uniform
initialization of k (k0 = Uni) with the proposed initializa-
tion and observe that the proposed initialization improves
performance in all metrics.

3.1.2 Robustness Study

To investigate if the Wiener guidance can increase the sta-
bility of blind deconvolution while using DIP we conducted
two experiments. In the first experiment we ran both Ren et
al. [27] and our method for three runs each on the Levin et
al. [14] dataset, utilizing different random seeds in each run.
The performance fluctuations for both methods can be seen
in Fig. 3b. It can be seen that the performance fluctuation
is considerably less for our method compared to not using
Wiener guidance as was done in Ren et al. [27]. This is also
reflected in the average variance of the PSNR over the three
runs. Whereas Ren et al. [27] has a PSNR variance of 7.18
our method has a variance of 2.71.

In a second experiment we simulated a realistic scenario
where the estimated kernel size used in the optimization

Method PSNR SSIM DICE%

W-DIP 33.58±2.7 0.9288± 3.9e−4 -
α = 0 32.74±8.7 0.9086±4.1e−3 -
β = 0 33.44±4.4 0.9265±1.6e−3 -
λ = 0 33.55±2.6 0.9298±3.6e−4 -
k0 = Uni 32.99±9.3 0.9137±4.9e−3 -

W-DIP 20.80±7.9 0.3977±2.8e−2 76.1±7.7
α = 0 18.97±18 0.3502±3.6e−2 65.9±12
β = 0 20.5±9.7 0.3833±2.9e−2 74.97±9.2
λ = 0 20.71±9.0 0.3972±2.8e−2 75.86±8.2
k0 = Uni 20.39±9.6 0.3867±3.2e−2 72.16±9.4

Table 1: Ablation study of the proposed framework on Levin et
al. [14], top section, and microscopy dataset, bottom section. To
evaluate the contribution of each component in our framework we
investigate the change in performance when the component is left
out, by setting the respective weight to zero. The variance is re-
ported to the right of the mean.

is considerably larger than the actual kernel. A tight fit-
ting box around the four kernels of the microscopy dataset
would be 13 × 13, 35 × 35, 21 × 21 and 27 × 27. Here,
we extended these kernels with zero padding to 15 × 15,
41 × 41, 31 × 31 and 37 × 37, respectively. In Tab. 2 the
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performances for Ren et al. [27], W-DIP and W-DIP fine-
tuned on the microscopy dataset are shown. Fine-tuning
was done by optimizing the weight (α, β, λ) of our method
on two of the blurry microscopy images and we obtained
the weights α = 1e−2, β = 1e−1, λ = 1e−2. It can be
seen when the kernel size estimate is “good”, referring to
the first set of smaller kernel sizes, that DIP without Wiener
guidance performs well, however if the kernel size estimate
is too large, “bad”, a performance decrease is observed. For
our method the performance decrease in the case of an inac-
curate kernel size estimate is significantly less. In addition,
fine-tuning the weights (α, β, λ) on two of the blurry im-
ages, can further improve the results.

Method Size Estimate PSNR SSIM DICE%

Ren et al. [27] Bad ksizey 19.19 0.354 67.5
Good ksizey 21.21 0.4143 83.27
Difference -2.02 -0.0603 -15.77

W-DIP Bad ksizey 20.8 0.3977 76.1
Good ksizey 21.69 0.4141 82.9
Difference -0.886 -0.0164 -6.8

W-DIP FT Bad ksizey 21.84 0.407 82.9
Good ksizey 22.12 0.4194 84.55
Difference -0.278 -0.0124 -1.65

Table 2: The performance of DIP deblurring without Wiener-
deconvolution guidance, Ren et al. [27], our method and our
method fine-tuned (W-DIP FT) on the microscopy dataset are
shown for different kernel size estimates. “Good” and “Bad” indi-
cates an accurate and too large kernel size estimate, respectively.

3.2. Quantitative and Qualitative Results

3.2.1 Levin et al. [14] Dataset

We evaluate our algorithm on the Levin et al. [14] dataset
and compare it against other state-of-the-art unsupervised
blind deconvolution methods [11, 5, 15, 36, 30, 40, 23, 37,
4, 27]. The results can be seen in Tab. 3. Yang and Ji [37]
did not report their average E-Ratio thus this metric is miss-
ing.

Compared to other blind deconvolution methods W-DIP
outperforms the baselines both in PSNR and especially with
regard to Error Ratio. Since the second optimization step
only requires optimization over a small parameter space,
the computational cost is only marginally larger than that of
Ren et al. [27] and still lower than other methods [23, 37].
The lower SSIM score compared with other baselines such
as Pan et al. [23] can be explained by the SSIM metric that
favors over-smoothed images as can be seen in the supple-
mentary. Whereas the strong smoothing might be beneficial
for small images, we see in the Lai et al. [13] dataset that
it is not beneficial for more challenging datasets, where we

Method PSNR SSIM E-Ratio Time

k known 35.42 0.9576 1.000 -
Cho&Lee [5]* 30.29 0.8973 1.860 1.395
Levin et al. [15]* 30.90 0.9173 1.759 78.26
Krishnan et al. [11]* 29.87 0.8680 2.549 8.940
Xu et al. [36]* 31.27 0.9148 1.608 1.184
Zuo et al. [40]* 32.42 0.9353 1.334 11.00
Pan et al. [23]* 32.88 0.9386 1.232 295.2
Sun et al. [30]* 33.10 0.9385 1.363 191.0
Chen et al. [4]* 31.73 0.9236 1.407 65.20
Yang&Ji [37]* 32.04 0.912 - 354.0
Ren et al. [27] 33.01 0.9134 1.207 220.0

W-DIP 33.50 0.9270 1.087 280.6

Table 3: Quantative evaluation on Levin et al. [14] dataset,
while comparing to other state-of-the art blind deconvolution ap-
proaches. The asterisk next to a method indicates that non-blind
deconvolution [15] was performed with the found kernel.

outperform all baselines also with regard to the SSIM met-
ric.

3.2.2 Lai et al. [13] Dataset

Whereas the Levin et al. [14] dataset is limited to 32 im-
ages and relatively small kernels ranging from 13 × 13 to
27 × 27 as well as small greyscale images, 255 × 255, the
Lai et al. [13] dataset contains large kernels and large colour
images. To deal with colour images we utilize the same ap-
proach as Ren et al. [27] by splitting the images into the
YCbCr channels respectively and only optimize for the Y
channel. In addition, the dataset is split into distinct im-
age categories, which we also inspect individually as can be
seen in Tab. 4. We compare against other state-of-the-art
blind deconvolution baselines [5, 35, 36, 20, 25, 22, 23, 37,
6, 27] .

Whereas other baselines such as Yang and Ji [37] per-
form exceptionally well for a specific category, such as
“Natural” in this case, but show a weaker performance in
another category for example “Saturated”, our method pro-
duce state-of-the art results in every category and thus also
leads to the best average performance when compared over
all image categories. One example image can be seen in
Fig. 4. The figure shows that our method creates the least
amount of artifacts for the given image.

3.2.3 Sun et al. [30]

We also perform experiments on a large dataset by Sun et
al. [30] containing 640 large images. The results shows that
W-DIP is more stable, by producing a lower variance across
all images, while also achieving a higher mean PSNR and
SSIM as shown in Tab. 5. A qualitative comparison can be
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Blurred Image Michaeli [20] Pan-DCP [23] Ren [27] W-DIP

Figure 5: Real-world blur example from the Lai et al. [13] dataset comparing our method with three baselines.

Method Manmade Saturated Text People Natural Average

Cho&Lee [5]* 16.35/0.3890 14.05/0.4927 14.87/0.4429 19.90/0.5560 20.14/0.5198 17.06/0.4801
Xu&Jia [35]* 19.23/0.6540 14.79/0.5632 18.56/0.7171 25.32/0.8517 23.03/0.7542 20.18/0.7080
Xu et al. [36]* 17.99/0.5986 14.53/0.5383 17.64/0.6677 14.40/0.8133 21.58/0.6788 19.23/0.6593
Michaeli et al. [36]* 17.43/0.4189 14.14/0.4914 16.23/0.4686 23.35/0.6999 20.70/0.5116 18.37/0.5181
Perrone et al. [25]* 17.41/0.550 14.24/0.5107 16.94/0.592 22.77/0.7347 21.04/0.676 18.48/0.6130
Pan-DCP et al. [23]* 18.59/0.5942 16.52/0.6322 17.42/0.6193 24.03/0.7719 22.60/0.6984 19.89/0.6656
Pan-L0 et al. [22]* 16.92/0.5316 14.62/0.5451 16.87/0.6030 23.36/0.7822 20.92/0.6622 18.54/0.6248
Yang&Ji [37]* 19.99/0.599 17.04/0.605 20.35/0.762 27.22/0.861 24.33/0.692 21.79/0.704
Kaufman&Fattal [6] 18.94/0.517 15.18/0.599 17.85/0.717 27.05/0.833 22.05/0.586 20.22/0.650
Ren et al. [27] 19.39/0.6660 18.55/0.7066 23.21/0.7754 27.49/0.8172 21.81/0.6585 22.09/0.7247

W-DIP 19.51/0.6653 18.66/0.7217 22.48/0.7832 28.35/0.8586 23.47/0.7562 22.49/0.7570

Table 4: Quantitative evaluation on Lai et al. [13] dataset. Performance of the algorithms are shown per image category with the PSNR
value left and SSIM value right of the slash, respectively. The asterisk next to a method indicates that non-blind deconvolution [10, 33]
was performed with the found kernel. Bold and underlined metrics are the best and second best result, respectively.

found in the supplementary. Liu et al. [18] did not report
their variance nor SSIM, thus these metrics are missing.

Method PSNR SSIM

Liu et al. [18] 28.5 -
Ren et al. [27] 28.8±7.4 0.7383±8.6e−3

W-DIP 29.07±6.7 0.7465±6.3e−3

Table 5: Mean PSNR and SSIM values with their respective vari-
ance on the Sun et al. [30] dataset.

3.2.4 Real-World Images With Unknown Blur

For real-world application the blurring operation is often
not known. More complex blurring operations such as non-
uniform blurring can occur [8]. To investigate the perfor-
mance of W-DIP on these challenging images we compare
the performance with baselines [20, 23, 27] in Fig. 5. It can
be seen that our result is close to that of Ren et al. [27],
while outperforming other baselines on this image. More
qualitative comparisons can be found in the supplementary.
In addition, we investigated to what extent specifically non-
uniform blurring can be addressed with our method. Initial

experiments show that our method can also potentially han-
dle small spatial varying blur and is shown in the supple-
mentary.

4. Conclusion and Limitations

In this paper, we proposed an unsupervised blind image
deconvolution method by guiding optimization of DIP with
Wiener-deconvolution to obtain more stable and enhanced
deblurring performance. We performed experiments on five
different datasets and ablation studies have been used to val-
idate the proposed components of our framework. The re-
sults show that W-DIP improves existing methods in terms
of both image quality and training stability. Despite the fact
that we achieve significant improvement in terms of stabil-
ity, the computational time is high and could potentially be
addressed by hardware improvements as well as future re-
search into sophisticated training paradigms for networks.
Furthermore, in this work we did not quantitatively investi-
gate the performance on non-uniform blurred images. This
could be a possible challenge for the current method, since
uniform blurring operations are used in the data-fitting term
and for deconvolution. Future work could try and extend
the approach to different blur operations.
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