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Abstract

Image noise is ubiquitous in photography. However, im-
age noise is not compressible nor desirable, thus attempting
to convey the noise in compressed image bitstreams yields
sub-par results in both rate and distortion. We propose to
explicitly learn the image denoising task when training a
codec. Therefore, we leverage the Natural Image Noise
Dataset, which offers a wide variety of scenes captured with
various ISO numbers, leading to different noise levels, in-
cluding insignificant ones. Given this training set, we su-
pervise the codec with noisy-clean image pairs, and show
that a single model trained based on a mixture of images
with variable noise levels appears to yield best-in-class re-
sults with both noisy and clean images, achieving better
rate-distortion than a compression-only model or even than
a pair of denoising-then-compression models with almost
one order of magnitude fewer GMac operations.

1. Introduction
Image sensors capture noise along with useful image

information. This noise increases with the camera’s ISO
sensitivity setting, but noise is virtually always present to
some extent and it is both incompressible and undesirable.
Lossy image compressors inherently perform some image
denoising because removing random noise is often the most
effective way to reduce entropy in a signal, but without
proper training (or algorithm design) the resulting image
size is still inflated and the results look sub-par, as shown
in Figure 1 (and also attested by Figure S1 in Supplemen-
tary Material, and by our experiments in Figure 3a). This
increase in bitrate is readily observable in both conventional
and learned codecs. A learned lossy image compression
scheme is trained by forwarding the image through an au-
toencoder (AE) and backpropagating from the loss, whose
components are the bitrate and the distortion [5]. The bitrate
is computed from an optimized, i.e. trained, cumulative dis-
tribution function, and the distortion quantifies the difference
between the output of the autoencoder and the input image,

typically by computing the mean square error (MSE).
Any image compression scheme can attain better rate-

distortion by having the noise removed first. An image
denoiser can typically be trained to reconstruct clean images
from noisy inputs, using a dataset of paired images where
static scenes are captured using a progressively faster shutter
speed [8].

In this work, we consider joint compression and denois-
ing. Adding a denoising functionality essentially comes
down to feeding the network with a potentially noisy image
and comparing its output with a clean image that may have
a better quality than what was initially input to the network.
The goal is to generate an image that is of higher quality than
the one used as input, while decreasing the necessary bitrate
close to that of a clean image. Meanwhile, there is no added
complexity because the inference process and the network
architecture remain unchanged. The network is trained with
both noisy images and some clean images as input such that
it removes noise while retaining the ability to compress clean
input images efficiently.

Our experiments analyzes the impact of image noise on
the rate-distortion of different standard and learned compres-
sion methods, the benefit of performing denoising prior to
compression, and denoising while compressing. Our original
supervision strategy, introduced to promote the reconstruc-
tion of clean images when the learned codec is fed with
noisy ones, appears to be effective. The resulting joint de-
noising and compression models perform properly on clean
images as well as noisy ones, effectively replacing a standard
compression models for general-purpose image compres-
sion and substantially improving the rate-distortion on noisy
images. As illustrated in the second line of Figure 1 (com-
parison between second and third columns), it is shown to
significantly improve rate-distortion performance (using non-
noisy images as ground-truth) compared to relying on the
implicit noise removal induced by the conventional adoption
of a perception-based loss function during training. It also
reaches slightly better rate-distortion than a computationally
heavy two-step procedure, involving one AE for denoising,
followed by another AE-based network for compression.
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Figure 1: Visualization of a clean (top) and noisy (bottom) test image from NIND [8]. From left to right: (i) ground-truth/noisy
input, (ii) compression autoencoder trained with standard supervision [9], relying on the adoption of a perception-based loss
function to mitigate the impact of noise, (iii) our proposed joint denoising and compression model trained with Natural Image
Noise Removal supervision using both clean and low noise images (“JDC-Cn.8”).

This paper is organized as follows: Section 2 summarizes
the work on which this paper builds. The main concepts
behind our joint denoising and compression supervision are
introduced in Section 3. The implementation details are
given in Section 4 followed by the results, and Section 5
summarizes the impact of the present work.

2. Background

Learned Lossy Image Compression is typically based
on the seminal work of Johannes Ballé et al. [5]; a convo-
lutional autoencoder [17] with generalized divisive normal-
ization (GDN) [4], and an entropy model which is jointly
optimized to capture the latent distribution. This model has
been extended with a parametrized hyperprior [6] or with a
competition between multiple priors [9], which allows for
manipulating an image-dependent latent distribution. Our
experiments build onto the initial architecture from [5] com-
pleted with multiple sets of latent distributions learned in
[9].

Image Noise occurs as the sensitivity of an image sensor

is increased to make up for non-ideal lighting conditions.
When insufficient light is provided or the dynamic range
is too wide, the ISO and/or shutter speed settings are in-
creased accordingly. Pixels take on random, less accurate
values, and fewer detail is visible as a result. Different image
restoration techniques have been developed to tackle image
denoising, including Wavelet [22, 13] and non-local means
based methods [11], BM3D [15], and recent deep-learning
based methods [8, 14, 18, 12]. Image noise does not reflect
the physical components of the observed scene. It is a con-
sequence of the imperfect acquisition process, and thereby
should be ignored when possible. Hence, targeting the re-
construction of a denoised image is the proper way to
proceed to get a faithful representation of reality (even if
it implies to not perfectly render the captured signal).

The Natural Image Noise Dataset (NIND) [8] and
Smartphone Image Denoising Dataset (SIDD) [3] provide
sets of clean–noisy image pairs which are appropriate to
train a denoising neural network. NIND is made of multiple
pictures of many static scenes captured on a tripod to ensure
spatial consistency; the clean ground-truth images are taken
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in ideal conditions with a camera’s base ISO sensitivity to
capture as much light as is necessary and to obtain the best
possible quality, and matching versions of the same scene are
captured with a variety of increasing shutter speed and ISO
settings, which result in increased noise and lower image
quality. These noisy images are typically fed as the input of
the denoising neural network while training it to reconstruct
the scene as if it were taken in ideal conditions.

Denoising and Compression have been studied as a com-
bined problem in the wavelet domain [13, 10], and more re-
cently the idea of learning denoising and compression jointly
with neural networks was approached by Testolina et al. [23]
in the context of the JPEG AI codec. The decoder in [23] is
extended such that it consists of twice as many layers, and
Poissonian-Gaussian noise is applied to the input training
data. This approach delegates the denoising task to the de-
coder, in line with the JPEG AI requirements of using a uni-
versal encoder and specialized decoders. However, as shown
in our experimental section, this architecture results in no
appreciable bitrate reduction because it is only the encoder
that can ensure that incompressible noise does not reach the
bitstream. Moreover, training a denoiser with synthetic noise
tends to produce a poor model on real data [8, 20]. Testolina
et al. introduce a promising joint denoising and compression
(JDC) scheme but the resulting rate-distortion of their model
falls short of that obtained using our proposed supervision
based on pairwise naturally noisy / clean images.

3. Jointly Learned Denoising and Compression
An effective denoising network can be trained to recon-

struct clean images given noisy images as input, using a
dataset of paired noisy–clean images such as NIND [8] and
SIDD [3]. We propose to adopt a similar principle to train
an autoencoder originally designed for image compression.

A joint denoising and compression autoencoder [9] is
trained to generate a clean image from either a matching
noisy image in a paired dataset or from the same clean im-
age. The aim is to obtain a decoded image whose quality is
potentially higher than that of the input image, while sav-
ing the space that would otherwise be wasted in encoding
noise. Different methods are proposed to train such a joint de-
noising and compression model using Natural Image Noise
Removal (NINR) supervision. They are described in Section
3.1 and Figure 2 illustrates the general training process.

3.1. Our Proposed NIN Supervision Strategies

Four different strategies are envisioned and compared to
implement our novel Natural Image Noise Removal (NINR)
supervision paradigm. They are listed in Table 1 and de-
scribed below.

Noisy Pairs (JDC-N) The simplest joint denoising and
compression implementation consists of training with all
noisy–clean image pairs available in the dataset(s).

Clean and Noisy Pairs (JDC-CN) This method consid-
ers some clean–clean image pairs, in addition to the noisy–
clean image pairs, to ensure that the network’s performance
does not degrade when the input images contain no unwanted
noise. The dataset of clean images can be selected as a set
of images which has been assessed and promoted by human
reviewers, such as the Wikimedia Commons Featured Pic-
tures [1], then further refined by eliminating images whose
metadata indicates a high ISO value in order to ensure the
absence of noise.

Clean and Low-noise Pairs (JDC-Cn) To specialize the
model to the most frequent input image noise levels, we
have also considered placing a threshold on the training data
noise level. Our experiments reveal that it is beneficial to
filter out the most noisy input training images because the
overall rate-distortion degrades when the network is trained
to perform more extreme denoising. Such extreme denois-
ing would require added complexity on the encoder and,
although possible, extreme denoising is outside the scope of
a combined denoiser whose aim is to improve rate-distortion
by removing noise that is inherently present in most pho-
tographs rather than learning to see in the dark, as proposed
in [14]. The paired image noise dataset is analyzed prior to
training such that the multi-scale structural similarity (MS-
SSIM) [24] score between each noisy crop and its clean
ground-truth is stored in a file, and the training dataset can
be initialized such that all training crops exceed a set quality
threshold. The effect of different noise thresholds is analyzed
in the ablation study.

Building Pairs from a Universal Denoiser (JDC-UD)
A fourth training method consists of running a pre-trained
blind denoising model [21, 8] on all the training data to
generate the ground-truth images, and computing the training
loss between the input images and the denoised images.
This method effectively performs knowledge distillation [16]
from a powerful universal denoising network to the joint
denoising and compression network. All input images are
considered noisy and the training dataset is virtually limitless
because the ground-truth images are generated (in advance),
thus entire image datasets are used without filtering.

4. Experiments

4.1. Practical Implementation Details

These experiments are based on the PyTorch im-
plementation of the autoencoder base codec introduced
in [9]. Source code is provided as Supplementary
Material and available on https://github.com/
trougnouf/compression. The training loss of
the compression autoencoder is computed as Loss =
bitrate(x̂) + λ × MSE(x̂, x), where x̂ is the decoded im-
age and x is the clean ground-truth which, as explained in
Section 3, may differ from the input image, and λ balances
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Figure 2: Denoising and compression joint training: the distortion loss is computed between the reconstructed image x̂ and a
clean image x. The input image y may be noisy. The network [9] is made of four (transposed) convolutions with stride of 2 and
kernel size of 5, each followed by a GDN activation [4] except for the last (transposed) convolution. (Best viewed in color.)

Table 1: Data pairs considered in this paper to train a joint denoising and compression model. JDC-Cn is also referred to with
its training noise threshold (e.g. JDC-Cn.8 is trained with MS-SSIM ≥ 0.8, see the text for details).

Method Training input Expected output
JDC-N Noisy image from clean–noisy paired dataset [8] Clean ground-truth

JDC-CN
Noisy image from clean–noisy paired dataset,
clean image from high quality dataset [1]

Clean ground-truth,
clean input

JDC-Cn
Weakly noisy image from clean–noisy paired dataset,
clean image from a high quality dataset

Clean ground-truth,
clean input

JDC-UD Arbitrary input image [1, 8] Provided by a universal denoiser
Testolina [23] Clean image from high quality dataset + artificial noise Clean input

the rate/distortion trade-off of the model. The combined
denoising and compression autoencoder [9] is trained with
batches of four noisy images from NIND [8] and one clean
image from the Wikimedia Commons Featured Pictures [1]
dataset whose ISO value does not exceed 200, with a crop
size of 256 as is typically done in the learned compression
literature [9, 5, 6]. The pre-trained “universal denoiser”
used to train the JDC-UD model is the U-Net-like blind de-
noising model published with NIND, which was updated
such that its training includes clean–clean image pairs. The

CLIC professional test set [2] is used to assess the models
on other clean images.

The JDC model defined in Testolina et al. (2021) [23]
is trained entirely as described with Poissonian-Gaussian
artificial noise [19] (with noise parameters a = 0.22, b =
0.042), the encoder from Balle et al. (2018) [6], and their
proposed decoder which has twice as many layers as the one
recommended by Ballé et al. An additional JDC-Cn model
is trained with the larger decoder proposed by Testolina et
al. in order to assess their proposed network architecture

2443



separately from the training method.
Most models are trained for six million steps with λ =

4096 to yield the highest bitrate, then the λ value is halved
and training continues for three million steps for each λ
value all the way down to λ = 256, like in [9]. Both the
JDC-Cn.8-Tdec method that is matched with the decoder
defined by Testolina et al. and the JDC-N model trained with
only noisy–clean image pairs have had an additional model
trained with λ = 8192 in order to reach the other methods’
highest bitrate. Likewise, the whole method defined by
Testolina et al. [23] was trained with up to λ = 16384.

The standard codecs comparisons are made by encoding
images using GraphicsMagick 1.3.37 (JPEG), the JPEG XL
encoder v0.6.1, and the BPG Image Encoder version 0.9.8.
The “standard autoencoder” is that defined [9].

4.2. Results

4.2.1 On the Importance of Denoising.

The first experiment measures the impact of denoising prior
to compression with different compression methods. Fig-
ure 3a plots the rate-distortion curves obtained without spe-
cific denoising of the input images, for a variety of codecs.
We observe that for all codecs compression is an effective
denoising method at the lowest bitrate. However, at reason-
able bitrates, all conventional codecs (learned or not) tend to
reproduce the noise. This is in contrast with our proposed

joint denoising and compression paradigm, which continu-
ously increases quality when the bitrate increases.Denoising
before compression might be considered to solve the quality
issue when using conventional codecs. As shown in Fig-
ure 3b, this bridges (most of) the quality gap compared to
our proposed JDC method, but at the cost of a significantly
increased complexity (see Section 4.2.3).

4.2.2 Our Joint Denoising and Compression Scheme

Figure 3 also introduces the proposed joint denoising and
compression models, JDC-CN (no noise threshold) and JDC-
Cn.8 (training noise limited to MS-SSIM ≥ 0.8). These
models are trained like the dedicated denoising model in that
the input training batch is made of four noisy images and
one clean image, and the model is tasked with reconstructing
the clean ground-truths. This single JDC model generally
achieves better rate-distortion than a duo of denoising then
compression neural networks (except at high bitrate), while
using significantly less computational overhead.

The best results shown are obtained with the “JDC-Cn.8”
model which is trained with paired images whose input noise
is limited to MS-SSIM ≥ 0.8 as well as with unpaired clean
images to promote generalization. T is the method trained
with artificial noise described by Testolina et al. [23], which
performs worse than a duo of models as is also shown in
their results.
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(a) Compression when taking the original (and thus noisy) image
as input.
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(b) Applying CNN-based denoising before compression
(except for our JDC which inputs the originally captured image).

Figure 3: Lossy compression of noisy (MS-SSIM ∈ [0.7, 1.0)) test images from NIND [8] with respect to their matching
clean ground-truth.
(a) Original (noisy) images are provided as input. Standard methods (JPEG, JPEG XL, BPG, and a standard compression
autoencoder [9]) perform some implicit denoising at low bitrates, but image quality degrades as the bitrate increases since the
noisy signal is reconstructed.
(b) A universal denoiser is applied before presenting the image to the standard method. This greatly improves rate-distortion
but adds of an order of magnitude of complexity. Our joint denoising and compression (JDC) autoencoder with Natural Image
Noise Removal supervision allows noise-free reconstruction without prior denoising.
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4.2.3 Computational Complexity

Computational cost is measured in terms of billion multiply-
accumulate operations (GMac) and runtime on an AMD
Threadripper 3960X CPU. The dedicated denoising U-
Net performs 812 billion multiply-accumulate operations
(GMac) per megapixel (MP) in 65.8 sec./MP, whereas

the JDC model’s compression encoder performs 92.8
GMAC/MP [9] in 2.9 sec./MP. The dual model approach
(denoising then compression) thus performs a total of 904.8
GMac/MP, whereas a single joint denoising and compression
model operates with 10.3% of that computational complex-
ity.
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Figure 4: MS-SSIM rate-distortion curve of different compression methods on (a) high quality images from the CLIC pro test
set [2] and (b) nearly noiseless test images from NIND [8].
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(b) Test images with MS-SSIM ∈ [0.5, 1.0), MS-SSIMµ = 0.84

Figure 5: Lossy compression of noisy test images from NIND [8] with different joint denoising and compression methods
including JDC-Cn trained with different MS-SSIM thresholds, JDC-CN trained with no such threshold, JDC-N trained with no
clean images, JDC-UD trained with knowledge distillation from a universal denoiser, and JDC-Cn.8 trained with the larger
decoder defined by Testolina et al. [23]. (a) The JDC-Cn methods tend to perform well, especially when the quality threshold
is set between 0.6 and 0.8, but the rate-distortion worsens when the training quality threshold increases to 0.9 (i.e. little noise
is seen by the model during training). The JDC-UD model yields similarly lower performance, and so does the larger decoder
despite using the same training scheme as JDC-Cn.8. (b) The noise level is more extreme than what is likely to occur in
photographs. This further shows that compressing with more noise than is ever seen during training (e.g. JDC-Cn.9) yields
worse rate-distortion. The model trained without clean image pairs (JDC-N) does not perform as well even when the test
images are noisier.
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Figure 6: Visualization of a clean (top) and noisy (bottom) test image from NIND [8] encoded with a target bitrate of 0.13
bpp using different trained compression autoencoders. From left to right: ground-truth/noisy input, standard autoencoder [9],
autoencoder from Testolina et al. (2021) [23] (trained on artificial noise; increasing bitrate did not yield quality improvements
on the ground-truth), joint model trained with knowledge distillation from a universal denoiser (JDC-UD), and joint model
trained with both clean and low noise images (JDC-Cn.8). Images are best visualized after zooming in on a screen.

4.2.4 Handling Clean Images

JDC-C models are trained with both noisy–clean and clean-
clean paired images in order to better generalize and maintain
good rate-distortion on clean images. Figure 4a and Figure 7
show the behavior of different JDC training strategies when
compressing clean images. JDC models trained with some
clean input images or with the JDC-UD knowledge distil-
lation technique yield a rate-distortion similar to the model
trained for compression only, even when no minimum train-
ing noise threshold is set, thus incorporating clean images in
the training data (JDC-CN) reinstates a good rate-distortion.
Limiting the input noise to MS-SSIM ≥ 0.8 (JDC-Cn.8)
further improves rate-distortion such that it is slightly better
with a JDC model than a standard model at low bitrates,
and slightly worse at high bitrates due to the perception-
distortion tradeoff [7] where only reconstruction fidelity mat-
ters. The JDC-N model trained with only noisy–clean image
pairs performs significantly worse on clean images, and the
model trained with artificial noise (“T ”) performs worst.

Figure 4b shows a common use-case where the amount

of noise is low (MS-SSIM ∈ [0.95, 1)). Prior denoising
still improves rate-distortion, and joint denoising and com-
pression methods yield the most significant rate-distortion
benefits. All compression methods benefit from prior or joint
denoising even when the level of noise is minor. Traditional
compression schemes benefit the most from prior denoising,
and joint denoising outperforms prior denoising in learned
methods.

4.2.5 Ablation Study

The effect of different training noise thresholds is analyzed
when compressing noisy images. In Figure Figure 5a the test
noise is limited to MS-SSIM ∈ [0.7, 1) which is qualitatively
fairly noisy, as shown in Figure 1. None of the methods
perform significantly better or worse than the denoise and
compress duo of models. It is worth noting that the three
worst JDC training schemes are the knowledge distillation
JDC-UD model, the model trained with a quality threshold
of MS-SSIM ≥ 0.9, and the decoder defined by Testolina
et al. which contains twice as many layers. The JDC-Cn
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models trained with an MS-SSIM threshold of 0.6 and 0.8
yield the best rate-distortion. A visualization of the different
denoising and compression methods at low bitrates is shown
as Figure 6.

In Figure 5b, the testing noise is increased to MS-SSIM ∈
[0.5, 1), showing how the models behave under extreme
input noise. The results are largely the same; the model
trained with MS-SSIM ≥ 0.9 struggles even more due to
the increased noise and its performance is close to that of
the JDC-UD method, the model trained with MS-SSIM ≥
0.8 does not perform as well whereas the model trained
with MS-SSIM ≥ 0.6 is still competitive, and it remains
beneficial to train with clean image pairs as well.

5. Conclusion
Denoising images improves rate-distortion whenever

there is noise present, regardless of the compression method.
Denoising can be performed prior to compression using a
dedicated denoiser (as is typically done in professional im-
age development workflow) with no adaptation to the com-
pression scheme. A joint model that is trained to perform
denoising and compression simultaneously yields further
improvements in rate-distortion.As a result, a joint denoising
and compression model performs 8.9 times fewer GMAC
operations than a U-Net denoiser followed by a compression
encoder. Since the JDC model only differs from standard
learned compression models by the adopted supervision strat-

egy, it can be implemented using any of the compression
architectures available in the literature (such as [5, 6, 9]). Our
proposed Natural Image Noise Removal supervision strategy
thus provides a fundamental and generic contribution that
is expected to become popular in future works related to
learned compression.

In practice, joint denoising and compression models may
be trained using a dataset of noisy–clean image pairs with
natural noise, such as NIND [8] and SIDD [3]. Performance
is improved by setting a quality threshold on the training
images, such as MS-SSIM ≥ 0.8 or MS-SSIM ≥ 0.6 de-
pending on the maximum expected noise. The rate-distortion
curve is preserved on clean images and improved in any case
by incorporating clean-clean image pairs in the training data.

An alternative method consists of performing knowledge
distillation [16] by using the output of a dedicated denoiser
as ground-truth images during training. This has the benefit
of allowing a virtually limitless training dataset because
a paired dataset is no longer required, but it requires pre-
processing of the training images and results in a slightly
worse rate-distortion.
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Figure 7: Visualization of a clean test image compressed using different methods with a target bitrate of 0.23 bpp. Standard
methods (JPEG, JPEG XL, BPG) tend to produce block artifacts. The method defined by Testolina et al. [23] produces
oversmoothed results on clean images. Training with only noisy images can produce the same level of quality at the cost of
increased bitrate. Other methods—training with only clean images, training with both clean and noisy images, and knowledge
distillation from a powerful denoiser—perform well on clean images. The input image has been processed in the darktable
software with (among other methods) non-local means [11] profiled denoising.
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