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Abstract

Every day, humans perform many closely related ac-

tivities that involve subtle discriminative motions, such as

putting on a shirt vs. putting on a jacket, or shaking hands

vs. giving a high five. Activity recognition by ethical vi-

sual AI could provide insights into our patterns of daily life,

however existing activity recognition datasets do not cap-

ture the massive diversity of these human activities around

the world. To address this limitation, we introduce Col-

lector, a free mobile app to record video while simultane-

ously annotating objects and activities of consented sub-

jects. This new data collection platform was used to curate

the Consented Activities of People (CAP) dataset, the first

large-scale, fine-grained activity dataset of people world-

wide. The CAP dataset contains 1.45M video clips of 512

fine grained activity labels of daily life, collected by 780

subjects in 33 countries. We provide activity classification

and activity detection benchmarks for this dataset, and ana-

lyze baseline results to gain insight into how people around

with world perform common activities. The dataset, bench-

marks, evaluation tools, public leaderboards and mobile

apps are available for use at https://visym.github.io/cap.

1. Introduction

Large scale activity recognition has made remarkable
progress driven by the curation of large scale labeled video
datasets [40, 73, 33, 1, 2, 74, 45, 9, 21, 36, 59, 35, 13, 43].
Evaluation tasks in these datasets include activity classifi-
cation, activity and object detection and localization, action
prediction, episodic memory for object instance retrieval,
object interactions with hands/tools/people, speaker predic-
tion and scene diarization in long duration videos.

However, performance on these important tasks remains
limited by the scale, quality and applicability of data. While
there are many large-scale video datasets for pretraining ac-
tivity recognition such as Kinetics [41], AVA [28], Moments

Figure 1. The Diversity of Human Activities. Humans perform a
wide variety of closely related activities that involve subtle mo-
tions performed alone, while interacting with objects or with other
people. The CAP dataset was designed to explore the representa-
tion of these fine grained activities of daily life around the world.

in Time [59][60], ActivityNet [8], YouTube-8M [1], HVU
[19] and IG65M [24], these datasets are all scraped from so-
cial media platforms such as YouTube or Instagram. These
datasets are easy to collect, but suffer from terms of ser-
vice restrictions, non-consented subjects and link rot, mak-
ing reproducible research difficult. Furthermore, the labels
in these datasets sparsely sample fine-grained activities, and
instead represent activities that are interesting enough for
social media. Recent dataset collections efforts have transi-
tioned to actors performing scripted [35][65] or unscripted
[20] activities to introduce more diversity of the activities
that we all perform every day, however these datasets have
limited scale for supervised training.

In this paper, we introduce the Consented Activities of
People (CAP) dataset, a fine grained dataset of activities of
daily life for visual AI research. Humans perform a wide
variety of closely related activities that involve simple yet
subtle motions that we perform alone, interacting with ob-
jects or interacting with other people. For example, figures
1 and 2 show examples of activities that we may perform
every day: putting on a face mask, putting an object into a
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Figure 2. The Consented Activities of People Dataset, collected on-demand from consented subjects, recorded worldwide from third-person
viewpoints, of fine-grained activities of daily life and submitted from handheld and rigid mobile devices. Available at visym.com/cap.

backpack or hugging another person. The CAP dataset was
designed to explore the representation and recognition of
fine grained activities of daily life, using open data collected
on-demand from consented subjects and recorded world-
wide from third-person viewpoints. Specifically, the CAP
dataset contains:

• Common activities that we all perform each day, such
as dressing or grooming that are not typically captured
on video because they are rarely performed in front of a
camera or are too boring to share.

• Fine activities that are closely related and may be easily
confused, such as putting on socks vs. putting on shoes
or talking on a phone vs. smoothing your hair.

• Diverse activities that are different ways of performing
the same activity in the wild, such as activities viewed
from behind or interacting with different objects.

In order to collect a large-scale visual dataset of the di-
versity of human activities, we introduce the Collector plat-

form. Collector is a global platform for collecting consented
datasets of people for visual AI applications. Collector is
able to record, annotate and verify video datasets, collected
with geographically diversity of people around the world.

The primary contributions of this work are:

• Collector platform. Section 3 describes the new plat-
form developed to collect ethical datasets of people.
This platform can be used by the research community
to collect new on-demand visual datasets as easily as
recording a video.

• Consented Activities of People (CAP) dataset. Sec-
tion 4 describes the collected dataset of fine-grained
activities of consented people worldwide. The dataset
contains annotated videos of fine-grained activities with
bounding box tracks and temporal localization.

• Benchmark suite. Section 5 describes the open bench-
marks and baselines on this dataset, along with results
and analysis in Section 6.

2. Related Work
The evolution of video datasets has progressed from a

small number of classes and actors in trimmed videos [69,
6] to large-scale web video on social media [40, 73, 33, 1, 2,
74, 45, 9, 21, 36, 59]. Keyword-based search from YouTube
or Instagram enabled weak labeling of videos with minimal
curation, creating datasets that recorded a large set of people
doing a small set of activities. The diversity and volume of
video available on social media lead to massive datasets for
pretraining. Recently, efforts have bootstrapped classifiers
to improve the scalability of their annotation and collection
efforts from noisy web video [78]. Furthermore, approaches
have attempted to directly mitigate the geographic biases of
web video by scraping from local versions of websites [64].

These large datasets are easy to curate, but the con-
tents have limited diversity, as the joint combination of
viewpoints (e.g. exocentric, egocentric) and activity la-
bels (e.g. dressing, eating) that are common in real scenes
are not as common on social media. Centralized collec-
tion of actors [14, 65, 34], as well as crowdsourced ap-
proaches [71][10][27][65][34] have been used to generate
datasets of labels and perspectives not densely sampled
in social video, but are limited in the diversity and scale
of training data. This style of dataset collection has spe-
cialized further into diagnostic datasets [37][76][25][3][22]
that attempt to answer a specific question about perfor-
mance bias, as well as fine-grained datasets which attempt
to densely sample the space of actions in a specific domain
[53, 61, 49, 49, 63, 68, 57, 38].

Table 1 shows a quantitative comparison of these related
datasets. This comparison table focuses on egocentric, ex-
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Dataset Year Domain Fine Classes Coarse Classes Annotation Clips Mean Clips/Class
ActivityNet (v3) [8] 2016 Social 200 73 T 23.1K 137
Charades [71][70] 2016 Exo|Ego - 157 T|N 68.5K -
Something-Som... [26] 2017 Ego - 174 T 220.8K 600
PKU-MMD [13] 2017 Exo|M - 51 T|J 21.5K -
Kinetics-700 [41] 2017 Social - 700 T 650K 700
Youtube-8M (Seg) [1] 2018 Social - 1000 T 237K 150
EPIC-Kitchens [16] 2018 Ego 97 13 T|N|C 90K -
HACS (clips) [78] 2019 Social - 200 T 1.55M 1100
MMAct [43] 2019 Exo|Ego|M - 37 S|T|J 40K -
LEMMA [35] 2020 Exo|Ego|M 863 24 S|T 11.8K -
AVA-Kinetics [48] 2020 Social - 60 S|T 230K 235
HVU (Actions) [19] 2020 Social - 739 T 479.5K 2112
Moments in Time [60] 2020 Social - 292 T 2.01M 6432
MEVA [14] 2021 Exo - 37 S|T|E|C 35K -
HOMAGE [65] 2021 Exo|Ego|M 453 70 S|T 24.6K -
Ego4D (MQ) [20] 2021 Ego - 110 S|T|N|G|C 22.2K -
CAP 2022 Exo 512 144 S|T|N|G|C 1.45M 2880 (4501, top-250)

Table 1. CAP dataset comparison. Domains are egocentric (ego) from a first person viewpoint such as a head or body mounted camera,
exocentric (exo) from a third-person viewpoint such as from a wall or building mounted camera, (social) videos scraped from online social
media sources and (M)ulti-modal domains such as RGB-D, NIR, multiple viewpoints or additional non-visual sensors. Annotation ground
truth considers combinations of: (T)emporal activity labels for start and end times, (S)patial object labels of bounding boxes around actors
or interacted objects, (E)xtrinsic camera poses with calibrated relative position and orientation, (G)eographic locations for each video,
(J)oint keypoints of human pose skeletons, (N)atural language captions or narrations and (C)onsented subjects for ethical video recording.

ocentric and social datasets for activity classification and
detection tasks, comparing the number of classes, clips and
mean clips per class. This shows that our Consented Activ-
ities of People (CAP) dataset is the largest consented activ-
ity dataset collected to date as measured by mean number
of training clips per class.

3. Collector Platform

Collector is a new platform for visual dataset curation
that was designed to address the limits of current collection
strategies. The traditional approach to construction of vi-
sual dataset of people is to: (i) Set up camera networks to
record videos and imagery, (ii) Gather a set of subjects who
have consented to have their personally identifiable infor-
mation (PII) recorded and shared for an authorized purpose
and duration, (iii) Record videos of these IRB approved
consented subjects only, and no one else, (iv) Send videos
to an annotation team to manually search videos for ground
truth labels, (v) Send the annotations to a verification team
to enforce quality. This approach is slow end expensive.

There is a need for a new dataset collection approach that
is on-demand, worldwide and cost-efficient. On-demand
approaches enable an agile, adaptive collection of instances
that are engineered to introduce diversity of labels or at-
tributes such as pose, illumination or object interaction and
mitigate biases. Furthermore, access to data sources from
many countries and cultures avoids an imbalance of data
from a specific region of the world and its implicit biases.

Finally, the approach needs to be relatively cost-efficient to
collect large-scale training data.

Collector is a global platform for collecting large scale
consented video datasets of people for visual AI applica-
tions. Collector is able to record, annotate and verify cus-
tom video datasets of rarely occurring activities for training
visual AI systems. The Collector platform provides:

• On-demand collection of rarely occurring activities
from thousands of collectors worldwide.

• Simultaneous video recording, annotation and verifica-
tion into a single unified platform.

• Touchscreen UI for live annotation of bounding boxes,
activity clips and object categories.

• Specification of required collection attributes such as
pose, illumination, location or object interactions.

• IRB approved informed consent for ethical dataset con-
struction with in-app face anonymization.

Figure 3 shows an overview of the collector workflow.
Collectors are invited onto the platform, and they download
the collector mobile app to their device. Collectors are pre-
sented collections which are video collection tasks grouped
by required objects (e.g. a car, another person) or locations
(e.g. parking lot, dining room). Each collection specifies
the requirements of the submitted video, which include re-
quired activities, objects, location, illumination conditions,
actor pose and camera viewpoint. Once a collector chooses
a collection to record, they get consent from their subject,
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Figure 3. The Collector platform curates visual datasets of people by enabling thousands of collectors worldwide to record and submit
videos using a mobile app. This workflow shows the mobile interface for collecting on-demand video datasets of people.

including a video recording to ensure that the person con-
senting is the person being recorded. Next, the collector
watches an example video which shows a gold standard ex-
emplar of the collection. We use visual exemplars to bypass
language issues and communicate an idea of what the col-
lection should look like. Finally, the collector records and
annotates the video live using touch gestures on their de-
vice, optionally corrects errors using an in-app annotation
editor and submits the annotated collection for review.

The Collector mobile app has been downloaded by thou-
sands of freelance collectors worldwide, and is freely avail-
able in the iOS and Android app stores. Appendix A pro-
vides more information on mobile app for recording and an-
notation (§A.1), campaign dashboard for global coordina-
tion (§A.2) and human review for annotation quality (§A.3).

4. Consented Activities of People Dataset
The Consented Activities of People (CAP) dataset is a

fine grained visual dataset of the activities of daily life, cu-
rated using the Collector platform. Humans perform a wide
variety of closely related activities every day that are sub-
tle, localized and socially informative. The CAP dataset
was designed to explore the problem of representation of
simple, fine-grained activities and provide a benchmark to
characterize performance for classification and detection of
these closely related activities.

How do we define the set of labels in a dataset of fine-
grained activities? What exactly is a fine-grained activity?
The discussion of this question in appendix B.3 suggests
that a fine-grained activity is defined relative to other activ-
ities and should specify the following:

• Who? Fine-grained activity labels should be performed
by the same noun (e.g. Person).

• What? Fine-grained activity labels should include sim-
ple verbs that can be performed in a few seconds along
with other “closely related” verbs.

• With? Fine-grained activity labels should include ob-
ject interactions that induce a visually distinct motion.

• How? Fine-grained activities should include visually
grounded styles as within class variation.

Label expansion. In order to downselect labels that sat-
isfy these criteria, we perform a new strategy called label

expansion. Label expansion starts from the source labels
in AVA [28], Charades [71], Moments in Time [59][60],
Kinetics-700 [41], Something-Something [26] and MEVA
[14]. We augment this set with the Activities of Daily Liv-
ing [62][47]. Next, we remove activities that are complex,
non-visually grounded, non-person centered, not commonly
performed around the house, or require skilled execution.
The remaining verbs are label expansion candidates.

We perform label expansion by selecting one or more
closely related verbs and nouns for each label candidate that
satisfy the CAP design goals. We are all experts when it
comes to understanding the subtle discrimination between
gestures, social interactions or simple activities that we per-
form every day. Therefore, the collector team leveraged
their social expertise to manually perform label expansion
for each candidate label. For example, closely related verbs
person puts on socks to person puts on shoes or closely re-
lated object interactions with different appearances person

puts on shoes to person puts on hat.
The result of the label expansion is is shown in figures 4

and appendix B.22. Appendix figure B.22 shows a circular
tree plot of the hierarchical organization of the fine-grained
labels grouped by “Noun Verb” structure, such as person
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Figure 4. CAP label distribution. (left) Instance histogram for fine-grained categories, colored by person-only, person-person or person-
object interactions showing the most and least common labels by frequency, (right) Fine-grained histogram for each coarse-grained category
to show the number of fine-grained categories in each hierarchical grouping. Figure B.22 shows the full hierarchical label set.

dresses or person gestures into a two level, tree structured
hierarchy.

Collection Campaign. The CAP campaign was set up to
run on the Collector platform during the period of Apr 2020
to Dec 2021. The CAP dataset was collected in two stages,
Apr 2020 - Mar 2021 which focused on collection of MEVA
activity classes [14] and July - Dec 2021 which focused on
the remaining CAP activity classes. The campaign specifi-
cation includes 842 unique collection types, each specifies
one of 512 activity labels and 157 object types. In total,
288/842 collection types were specified so that the subject
is facing away from the camera to increase diversity, 87/842
collections were specified to be collected to support tempo-
ral activity detection and 38/842 collection types were phys-
ically stabilized. The overall collection statistics are shown
in figure 2, such that 905,369 clips are for activity classi-
fication (AC) train/val, 132,271 clips for AC sequestered
test and 416,900 clips for activity detection (AD). Figure 4
shows the overall label frequency. Note that this histogram
is unbalanced due to frequent organic activities, such as per-

son sits down which often precedes object interactions.
The appendix discusses the key challenges (§B.3),

dataset design goals (§B.2), collection methodology (§B.4),
distribution format (§B.5) and visualizations (Figure B.19,
B.21) for curating a large scale dataset of daily activities.

5. Benchmark Suite
Performance benchmarking is the specification of an

evaluation methodology, task, dataset and a baseline sys-
tem design to evaluate system performance. Typical bench-
marking considers test data that is in-domain, meaning it

is collected and annotated exactly as it will be used in
practice. However, consider the challenge of benchmark-
ing fine-grained activity recognition in third-person security
video. We may collect many hours of video from many se-
curity cameras, without ever collecting an organic instance
of a fine-grained target label like person puts down back-

pack. If our goal is to benchmark performance for rarely
occurring activities, then how do we benchmark in practice
when the labels to evaluate almost never occur?

We address this key challenge by introducing domain ad-

jacent benchmarking. In this strategy, we collect test sets
that are from the required viewpoint, but with actors per-
forming the test activities in short bursts. This provides per-
formance evaluation of a target domain (e.g. third person,
long duration videos, organic activities) in a closely related
adjacent domain (e.g. third person, short duration videos,
actors). The test data in the adjacent domain can be col-
lected and distributed ethically, and performance evaluation
on the domain adjacent data is used as a surrogate for the
target domain. Further discussion of the implicit biases in
this strategy is provided in appendix B.7.

5.1. Evaluation Tasks
Activity Classification (AC). The Activity Classification
(AC) task is to assign one or more activity class labels and
confidence scores to each video clip from a set of prede-
fined classes. The metric for AC performance is Mean Av-
erage Precision (mAP), top-1 and top-5 classification per-
formance averaged over all classes.

The AC task is separated into two domains, AC (Hand-
held) and AC (Stabilized). AC (Handheld) is constructed
using videos collected from handheld cameras, and AC

3312



Experiment mAP Top-1 Top-5 mAP Top-1 Top-5 mAP (.2) mAP (.5) mAP (.8) mAP (.2) mAP (.5) mAP (.8)

Handheld (Fine) 0.453 0.435 0.690 0.421 0.395 0.638 0.171 0.064 0.003 0.182 0.073 0.007
Stabilized (Fine) 0.341 0.302 0.555 0.448 0.423 0.674 0.113 0.044 0.002 0.193 0.079 0.005
Handheld (Coarse) 0.483 0.534 0.783 0.421 0.491 0.731 0.182 0.075 0.004 0.200 0.081 0.003
Stabilized (Coarse) 0.362 0.387 0.683 0.465 0.515 0.754 0.136 0.054 0.003 0.225 0.090 0.004
Handheld (Coarsened) 0.470 0.518 0.781 0.413 0.474 0.724 0.177 0.069 0.003 0.184 0.071 0.003
Stabilized (Coarsened) 0.345 0.370 0.662 0.451 0.499 0.755 0.112 0.043 0.002 0.195 0.076 0.003

Activity Classification 
(Handheld)

Activity Classification 
(Stabilized)

Activity Detection                
(Handheld)

Activity Detection                       
(Rigid)

Figure 5. CAP Benchmark Evaluation. This result shows the performance of six experimental systems (rows) on four evaluation tasks
(columns). The experimental systems differ in the training set, such that Handheld|Stabilized refers to the handheld or background sta-
bilized video data and Fine|Coarse|Coarsened refers the training set labels (e.g. Fine labels, Coarse labels, or Coarsened labels trained
on fine labels, then transformed to coarse labels at test time). The evaluation tasks are Activity Classification|Activity Detection (§5.1)
evaluated on Handheld|Stabilized|Rigid video subsets (e.g. handheld, software background stabilized or rigidly mounted video).

(Stabilized) is constructed by performing software back-
ground stabilization on AC (Handheld) videos. Appendix
B.5 discusses this background stabilization algorithm with
examples shown in figure B.18. The stabilization is used as
a post-processing step to evaluate the domain mismatch of
stabilized videos to rigidly mounted cameras.

Figures B.17 and B.18 show examples from the train-
ing set for the activity classification task. The videos show
untrimmed clips which include repetitions of an activity
performed multiple times in a row by a subject. The ob-
jective of the activity classification task is to specify a label
for a three second trimmed clip containing one activity.

Temporal Activity Detection (AD). The Temporal Activity
Detection (AD) task is to detect and temporally localize all
activity instances in untrimmed video. The metric for AD
performance is Mean Average Precision (mAP) at a fixed
temporal intersection over union (IoU) of 0.2, 0.5 and 0.8.

The AD Task is separated into two collection domains,
AD (Handheld) and AD (Rigid). AD (Handheld) is con-
structed from handheld cameras, and AD (Rigid) is con-
structed from rigidly mounted, unmoving cameras. This
separation is designed to evaluate a system trained with soft-
ware stabilization, and tested on rigid cameras.

Appendix figure B.21 shows eight sample videos in the
activity detection task. This visualization shows seven
frames extracted from a video on each row. Each video is
from a specific collection scenario, as described in section
B.4. Each scenario has a subject performing between 7 and
11 activities in a sequence that is chosen by the subject.

5.2. Baseline system
The baseline system for activity detection is based on

activity classification of tracked cuboids [39]. The system
operates by performing SORT tracking [5] of people and
vehicles, using a framewise YOLO-v5 [67] object detector
on 5Hz videos followed by spatiotemporal IoU track asso-
ciation. For each track above a minimum length (> 1s) and

Ablation Experiment mAP Top-1 Top-5 mAP Top-1 Top-5
No video augmentation 0.450 0.424 0.676 -0.004 -0.011 -0.014
Low collection diversity 0.451 0.416 0.668 -0.002 -0.019 -0.022
Top-100 collectors only 0.471 0.445 0.688 0.018 0.010 -0.002

AC (Δ Baseline)AC (Handheld)

Figure 6. CAP Ablation Study. We retrained the baseline system
removing video augmentation, removing the “from behind” col-
lection diversity or removing all but the top-100 collectors, then
compared the relative performance to the baseline.

minimum confidence (> 0.2), define an activity cuboid pro-
posal as the spatiotemporal sequence of bounding boxes for
the object instance. The cuboid is split into three second
proposals, with overlap (4 frames), with replicated bound-
ary conditions for short tracks, dilated by a constant fac-
tor (1.2), cropped to maximum square shape preserving
the centroid and resized to 16x4x224x224 (frames, chan-
nels,height, width). The cuboid is converted into a RGBA
representation, with an alpha channel (A) encoding a binary
mask for the tracked bounding box within the cuboid. Fi-
nally, we classify each cuboid proposal using a 3D-Resnet-
50 [32] with softmax classification followed by a non-
maximum suppression at temporal IoU � 0.5.

Baseline training is performed using uniform random
weight initialization, cross-entropy focal loss [51], on 8
GPUs with minibatch size 256, ADAM optimization [42]
and inverse class frequency instance weighting on CAP
dataset until validation loss saturates. Data augmentation
includes spatial mirroring and random clips by shifting ±3
frames. The baseline system is GPU optimized, real-time,
python only and available at github.com/visym/heyvi.

6. Performance Evaluation
In this section, we describe the benchmark results on

the CAP dataset, and results on the Activities in Extended
Video (ActEV) Sequestered Data Leaderboard (SDL) [14].
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Figure 7. CAP Benchmark Evaluation Plots. (left) Activity Classification (Stabilized) performance per class, sorted in decreasing order by
mean AP, colored by person, person/object or person/person interactions, showing top-40 classes (zoom into PDF for rest), (right) Activity
Detection (Handheld) performance showing the mean precision recall at ground truth assignment IoU=0.2, 0.5 or 0.8, with 1� error bars.
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Figure 8. Confusion graph for activity classification showing edges
connecting commonly confused fine-grained activity labels.

6.1. Benchmark Results

The experimental system runs the baseline with the fol-
lowing six combinations: Handheld, Stabilized or Rigid
videos with Fine, Coarse or Coarsened label sets. Hand-

held refers to videos recorded directly from handheld mo-
bile devices, Stabilized are the handheld videos with soft-
ware background stabilization, and Rigid are test subset col-
lected using rigidly mounted cameras. The baseline system
is trained using either handheld or background stabilized
videos, with Fine labels (e.g. figure B.22 outer), Coarse
labels (e.g. figure B.22 inner), or Coarsened labels which

is trained using fine labels, then mapped via lookup to the
coarse label at test time. The benchmark datasets are the
AC or AD sequestered test sets, subdivided into AC (Hand-
held), AC (Stabilized) and AD (Rigid) video subsets.

Figure 5 provides a benchmark evaluation on the activity
classification and activity detection tasks. Results in fig-
ure 5 show: (i) background stabilization training helps for
AD (Rigid), (ii) stabilized vs. handheld training exhibits
a domain bias, (iii) AC (Handheld) performance is slightly
better than AC (Stabilized) due to minor stabilization arti-
facts, (iv) AD is significantly more difficult than AC and (v)
coarse labels are better than coarsened.

Figure 7 (left) shows activities on the AC (Stabilized)
task ranked by mean AP per class and colored by object
interaction type. This provides a deeper insight into the
classes that are the highest and lowest performing. Results
show that the best performing classes still leverage scene
context (e.g. crates dog, loads dishwasher) and worst per-
forming classes (mAP=0) and are poorly represented using
the baseline system (e.g. puts up smoke detector). Figure
7 (right) shows an aggregate result on the AD (Handheld)
task, which demonstrates that fine-grained activity detection
at precise temporal localization (IoU=0.8) is challenging.

6.2. Benchmark Analysis

Figure 6 shows the results of an ablation study to un-
derstand the effect of three training set configurations on
baseline performance. In all experiments, we renormal-
ized the inverse class frequency weighting for the revised
trainset, retrained the baseline system, then used the re-
vised valset for model selection. First, we removed only
the video augmentation (e.g. collectors performing activi-
ties multiple times), preserving all other data augmentation.
Results show that relative baseline performance is lower,
which demonstrates that video augmentation helps. Next,
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we removed only the “from behind” collections introduced
for diversity. Relative performance for this trainset is lower,
which shows that collection diversity helps. Finally, we
kept only the videos from the top-100 collectors, compris-
ing 65% of training set. Relative performance for top-100
trainset is higher, which suggests that for fine-grained ac-
tivities (and our baseline system), it is better to have each
collector perform many fine-grained activities.

Figure 8 shows a confusion graph of the AC task. This
visualization shows a 2-d graph embedding constructed by
transforming a confusion matrix to a graph adjacency ma-
trix such that nodes are fine grained activity labels, node
colors are coarse grained labels, and edge thickness cor-
responds to commonly confused fine-grained activities. A
larger version is shown in appendix figure B.20.

Analysis of the confusion graph provides four insights.
First, casual pairs (e.g. open and close) are commonly con-
fused, since causal pairs often co-occur in a short temporal
sequence. Second, we observe approximately one fourth
of labels are not significantly confused, as shown by dis-
connected nodes. Third, there are small connected com-
ponents with long range connections for common activities
performed in sequence, such as interacting with drawers and
cabinets in a kitchen. Finally, the three nodes that are most
confused are person trips on object on floor, person enters

car and person opens facility door, which suggests that im-
provement on these high degree labels should be prioritized.

6.3. ActEV SDL

The ActEV SDL is a sequestered data leaderboard for ac-
tivity detection in long duration security videos. The ActEV
SDL is labeled using the MEVA label set [14], which in-
clude 37 simple activities in security video. The MEVA
labels are a subset of the CAP labels with five additional
labels for vehicles turning, stopping and starting. We split
the CAP dataset into a CAP-MEVA subset containing only
the MEVA labels, which contains 405,781 background sta-
bilized clips, split into 370K/35K train/val set. CAP-MEVA
was used to re-train the baseline system, and compared re-
sults to training using MEVA only, which contained 35,022
training clips, as of when this analysis was performed.

Figure 9 shows an evaluation result on this dataset. The
performance metric is mean probability of missed detec-
tion over activity classes vs. time based false alarm rate
(TFA). We trained the baseline system using the MEVA
dataset only or the union of CAP-MEVA and MEVA. We
made four submissions to the ActEV SDL that differed only
by the training set and validation set assumptions. Results
show a 32% improvement at a fixed TFA=0.2 due only to
training with the CAP-MEVA data, when controlling for the
training hyperparameters and system configuration. Both
green (MEVA + CAP-MEVA training) and red (MEVA only
training) were trained from scratch rather than fine-tuned

32% performance 
improvement using CAP 
(stabilized) training data

MEVA only training

CAP only training

CAP + MEVA Training, 
MEVA validation

CAP + MEVA Training, 
CAP + MEVA validation

Figure 9. ActEV SDL Evaluation. (red) Trained with MEVA data
only, (purple) trained with the union of MEVA and a CAP subset
containing MEVA labels. Comparing the red/purple curves shows
a 32% improvement using CAP data for identical systems.

starting from a pretrained model. All training data is back-
ground stabilized. This result shows that when controlling
all other hyperparameters, the CAP dataset improves se-
questered temporal AD performance in long duration video.
This provides an independent validation of the CAP data for
activity detection on static, long duration security video.

7. Conclusions
In this paper, we introduced the Consented Activities of

People dataset, the largest fine grained activity dataset of
people ever collected. Our benchmark provides a standard-
ized evaluation of this new problem, with analysis to high-
light the unique challenges of representing fine-grained ac-
tivities. Finally, we believe that the Collector platform may
be useful for the research community to address the never-
ending demand for more ethical visual data.
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