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Abstract

In the last decade, most research in Machine Learning
contributed to the improvement of existing models, with
the aim of increasing the performance of neural networks
for the solution of a variety of different tasks. However,
such advancements often come at the cost of an increase
of model memory and computational requirements. This
represents a significant limitation for the deployability of
research output in realistic settings, where the cost, the
energy consumption, and the complexity of the framework
play a crucial role. To solve this issue, the designer should
search for models that maximise the performance while lim-
iting its footprint. Typical approaches to reach this goal
rely either on manual procedures, which cannot guaran-
tee the optimality of the final design, or upon Neural Ar-
chitecture Search algorithms to automatise the process, at
the expenses of extremely high computational time. This
paper provides a solution for the fast identification of a
neural network that maximises the model accuracy while
preserving size and computational constraints typical of
tiny devices. Our approach, named FreeREA, is a custom
cell-based evolution NAS algorithm that exploits an opti-
mised combination of training-free metrics to rank architec-
tures during the search, thus without need of model train-
ing. Our experiments, carried out on the common bench-
marks NAS-Bench-101 and NATS-Bench, demonstrate that
i) FreeREA is a fast, efficient, and effective search method
for models automatic design; ii) it outperforms State of
the Art training-based and training-free techniques in all
the datasets and benchmarks considered, and iii) it can
easily generalise to constrained scenarios, representing a
competitive solution for fast Neural Architecture Search in
generic constrained applications. The code is available at
https://github.com/NiccoloCavagnero/FreeREA.

1. Introduction

In recent years, we observed a dramatic expansion of the
impact of Machine Learning in several fields, such as ed-
ucation [23], industry [14], and healthcare [24]. However,
this groundbreaking technological advancement suffers of a
major flaw related to the significant impact on the energy
consumption and, therefore, to climate change. As an ex-
ample, a recent study demonstrated how the carbon foot-
print associated to a single training of common Natural Lan-
guage Processing models is more than twice the impact of a
standard American citizen’s daily life for one year [28, 3].
When Neural Architecture Search (NAS) algorithms are
used to search for the best model, this amount is increased
of a factor ten [28, 3]. These observations strongly call for a
reduction of the impact that Machine Learning models have
in terms of required resources. For this reason, it is likely
that current and future trends of research will encompass the
development of models that can run on very tiny devices.
This represents a significant paradigmatic shift for Machine
Learning research. Indeed, when the hardware resources
are limited, the designer should pay much more attention
on how these resources are used by the model. To do this,
Neural Architecture Search [9] appears to be the best option
to obtain models that can fully exploit the available budget,
with minimum waste of time for human experts.

However, standard NAS approaches are based on algo-
rithms that - during the search - need to train and test all
the candidates to assess their performance. Therefore, NAS
pipelines are usually very expensive in terms of computa-
tional time and resources, making them hardly exploitable
by standard Machine Learning users, with no access to
super-computing resources. As an additional drawback, it
is worth mentioning that the energy consumption of a stan-
dard training-based NAS algorithm would make the effort
of designing tiny models vain [28, 3].

For these reasons, an effective development of tiny neu-
ral networks on large scale requires the implementation of
efficient NAS algorithms that do not need train all the can-
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Figure 1: Average test accuracy vs time [s] on ImageNet16-
120 of NATS-Bench [5]. X-axis is in log-scale. Accuracy
and times for training-based methods are from the original
NATS-Bench paper [5]. Similar plots can be drawn for the
other datasets, and are here omitted for sake of space.

didates. To solve this problem, the research community has
recently been focusing on the adoption of proxies to score
the architectures at initialisation [21, 2, 1], thus avoiding
the heavy and slow training phase and achieving consistent
speedups even with limited hardware resources. However,
training-free NAS algorithms proposed so far are not com-
petitive with training-based approaches and typically also
do not consider the opportunity to include hardware-driven
constraints such as model footprint and FLOPs.

This paper bridges this gap and provides a custom con-
strained evolutionist method, named FreeREA, to exploit
an optimal combination of metrics that serve as proxy of
model accuracy. We demonstrate how the metrics we use
work as a valid replacement for model training, enabling
the possibility to identify automatically highly performing
models in just a few minutes of search. We tested our so-
lution on two popular benchmarks for NAS of tiny models,
and we demonstrated how our approach outperforms State
of the Art methods for the constraint-free case. We also per-
formed, for the first time for a training-free method, exper-
iments in a constrained scenario, setting a very competitive
baseline for future works.

In conclusion, this paper advances the State of the Art
with the following contributions:

1. an optimised combination of training-free metrics for
models ranking, that can completely substitute the
training phase in NAS algorithms;

2. an improved evolutionist search algorithm that fully
exploits the ranking strategy to identify very accurate
models in few minutes of search;

3. a number of experiments to demonstrate how training-
free methods can effectively replace training-based

NAS approaches, even in hardware-constrained sce-
narios.

2. Related Work
Neural Architecture Search was firstly introduced in

[37], where a Reinforcement Learning approach, REIN-
FORCE [33], with an LSTM [11] controller was employed
to generate high-performance neural networks. The whole
search exploited more than 800 GPUs for 28 days, for a to-
tal of 22400 GPU-hours, requiring the partial (35 epochs)
training of more than 12k different architectures. After this
groundbreaking work, the research community focused on
the development of more efficient methods [22, 6, 25, 17]
with the aim of mitigating the huge computational require-
ments of a NAS algorithm.

The first attempts in this direction focused on Parameter
Sharing [22, 6, 17], where newly found architectures inherit
their weights from previously discovered ones. While [22]
still adopts a Reinforcement Learning approach, two other
search paradigms emerged in NAS literature: differentiable
search and evolution. The first ones [17, 6] move from the
purpose to make the whole search differentiable so that it
can be optimised by gradient descent algorithms, leading
to significant speedups w.r.t. original methods [37]. On
the other hand, evolution-based strategies are very simple
to implement, and naturally allows parameter inheritance
from the parents, but suffered of lower performance [18,
26]. In REA [25], the authors implemented a regularised
Tournament Selection search algorithm, which proven to be
the first evolution-based NAS able to outperform human-
crafted architectures. Still, these methods were not able to
completely solve the core issue, and thousands of different
candidates still needed to be trained and evaluated.

For this reason, the research community has recently
focused on the adoption of metrics to score the different
architectures at initialisation, completely avoiding the
training and evaluation phases, which constitute the true
bottleneck in NAS algorithms. The first metric proposed
was Linear Regions (NASWOT) [21], which measures
the expressivity power of an architecture and allows the
search of competitive candidates in few seconds. However,
these networks were still less accurate than the ones found
by standard NAS algorithms. Therefore, the use of this
approach was limited to a mere initialisation for classic
search. Later, GA-NINASWOT [34] adopted Linear
Regions together with a genetic algorithm, while EPE-NAS
[20] proposed an improvement over the base metrics. Yet,
none of these demonstrated to be competitive with training-
based methods. Taking inspiration from NASWOT [21], in
[2] the authors combined a variation of Linear Regions with
the Neural Tangent Kernel (NTK) metric [12], to encode in
the search also the trainability of the candidates. Due to the
complexity of NTK computation, NASI [27] proposed an
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approximation of the metric obtaining significant speedups.
For a detailed analysis on these and other training-free
metrics, the interested reader can refer to [1].

3. Method

In this paper, we introduce FreeREA, an innovative NAS
method that leverages on training-free metrics to deliver
high performance architectures satisfying constraints on
FLOPs and number of parameters. Indeed, in previous
works the training-free phase could not compete with stan-
dard search approaches, and was therefore usually exploited
only to initialise the population of a classic NAS algorithm
[21]. In our implementation, instead, we show that a proper
selection of metrics, combined with an optimised evolution-
ist search, can yield accurate models with a significantly
lower search time (up to four orders of magnitude lower
than standard NAS).

3.1. Metrics

As anticipated in the previous section, training-free algo-
rithms heavily rely on metrics that serve as accurate proxy
of the model performance. Unfortunately, these do not ex-
actly correlate with the test accuracy, and therefore it is im-
portant to consider a combination of multiple metrics, pos-
sibly accounting for different properties such as trainability
and expressivity. With this aim, we performed preliminary
experiments on the NATS-Bench dataset to assess the relia-
bility of a selection of metrics as surrogate of the test accu-
racy. Details on the correlation of different metrics are given
in Tab. 1. This analysis demonstrates that the most perform-
ing metrics are a modified version of Synflow [30], which
we named LogSynflow, and the Linear Regions [21]. In
addition, we complemented these measures with the num-
ber of skipped layers to favour more trainable architectures.
To combine the different metrics, we sum the normalised
scores of the single metrics, which leads to better empiri-
cal results w.r.t. a standard cumulative ranking score [2].
The rationale behind this choice is that a model that is both
trainable and expressive is more likely to show high perfor-
mances [2]. In our implementation, the fitness function f
for a given model i can be expressed as:

fi =
LSi

max
j∈J

LSj
+

LRi

max
j∈J

LRj
+

Skipi
max
j∈J

Skipj (1)

where LS stands for LogSynflow, LR for Linear Regions,
Skip for Skipped Layers and J is the set of the explored
networks. An ablation study on the three terms compos-
ing the function can be found in Tab. 1 of the supplemen-
tary material. In addition, to increase the robustness of the
measure, we compute both Linear Regions and LogSynflow

three times, with different initialisation, and take the aver-
age over the three runs as the final metric. In the following
sections we discuss the implementation of the metrics we
considered in this work, while we refer the interested reader
also to [1] for further details.

3.1.1 Linear Regions

Linear Regions was introduced in [21] with the purpose of
measuring the expressiveness of an architecture at initiali-
sation. Indeed, when one training sample is forwarded into
a ReLU network, the activation values divide the tensors in
active (positive values), and inactive (negative values) re-
gions, generating binary masks. Given an input space of
fixed dimension, the number of continuous regions of the
input space that are mapped to different network activations
provides a measure of the model capabilities to discriminate
between different input values [21]. Indeed, when two dif-
ferent input items result in similar masks, the model cannot
easily distinguish between them. As a consequence, an ex-
pressive model is capable to map relatively close values in
input space to different activation tensors. To quantitatively
evaluate this measure, following the implementation of [21]
we build and forward a mini-batch of data composed of 64
samples into the network, and collect the resulting binary
masks. Then, we evaluate the differences in the activation
patterns via Hamming distance. Once a Kernel matrix KH

is built from the Hamming distances, the score s is com-
puted as:

s = log |det (KH)| (2)

The higher the score, the higher the expressiveness of the
network and its ability to distinguish the samples. As de-
picted in Fig. 2-A, models with high values of Linear Re-
gions score tend to present high test accuracy, as also con-
firmed by a positive correlation between the two entities
(see Tab. 1). Therefore, maximising the Linear Regions
score yields models that are more expressive and, likely, ca-
pable of higher test accuracy.

3.1.2 LogSynflow

Synflow was initially introduced in [30] as a pruning metric
for the selection of weights to be removed to compress an
architecture while maximally preserving the performances.
Its original implementation locally evaluated the relevance
of single weights, and was then extended by [1] to score a
whole architecture by summing up the contributions of the
single weights. Formally, the global metric can be defined
as the scalar product between the weight vector θ and the
gradient vector ∂R

∂θ :

S (Θ) = θ · ∂R
∂θ

(3)
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Table 1: Kendall and Spearman correlation between training-free metrics and the test accuracy, evaluated on the three datasets
of NATS-Bench [5]. Each metric has been computed three times with different initialisations and the average is taken as final
score.

CIFAR10 CIFAR100 ImageNet16-120

Metric Kendall Spearman Kendall Spearman Kendall Spearman

NTK [12] -0.33 -0.49 -0.30 -0.45 -0.39 -0.56
Snip [15] 0.45 0.61 0.47 0.62 0.41 0.55

Fisher[31] 0.39 0.54 0.40 0.55 0.36 0.48
Grasp [32] 0.28 0.41 0.35 0.50 0.35 0.49

PathNorm [13] 0.41 0.59 0.42 0.60 0.45 0.63
LinearRegions [21] 0.61 0.79 0.62 0.81 0.60 0.78

Synflow [30] 0.57 0.77 0.56 0.76 0.56 0.75
LogSynflow (ours) 0.61 0.81 0.60 0.79 0.59 0.78

Figure 2: Relationship between test accuracy and the two
metrics considered in this work for all the models available
in NATS-Bench: Linear Regions in A, LogSynflow in B. Ac-
curacy is provided for the ImageNet16-120 dataset. Similar
plots can be drawn for the other datasets and are here omit-
ted for sake of space.

To compute the metric, first the network is initialised with
the absolute value of its original weights, so that θi ≥ 0.
Then an all-ones tensor is forwarded into the network, and
the output is backwarded to compute the gradients. It is
worth noticing that, to compute Synflow, Batch Normalisa-
tion layers must be suppressed since they interfere with the
gradient flow. However, this is likely to result in gradient
explosion, even in relatively small architectures. As a con-
sequence, the metric neglects the significance of the weight
values because the term associated to the gradients may
be several order of magnitudes higher than the correspond-
ing weight. To address this issue, we propose LogSynflow
which scales down the gradients with a logarithmic func-
tion before summing up the contributions of each network
weight:

S (Θ) = θ · log
(
∂R
∂θ

+ 1

)
(4)

To verify that our modification provides a more expressive
metric, we computed the numerical values of Synflow and
LogSynflow over both the benchmark datasets we consid-
ered [36, 5] and calculated the correlation of the result with

Table 2: Kendall and Spearman correlation between the
Synflow/LogSynflow and the test accuracy, evaluated on
NAS-Bench-101 [36]. Numerical values suggest that
LogSynflow is consistently a more accurate proxy of the test
accuracy w.r.t. the original definition.

Metric Kendall Spearman

Synflow [30] 0.25 0.37
LogSynflow (ours) 0.31 0.45

the test accuracy (see Tab. 1 and 2). We observed that our
implementation consistently increases the correlation with
the test accuracy w.r.t. the standard implementation and,
hereinafter we will therefore employ LogSynflow in place
of the original definition. Furthermore, the positive correla-
tion between test accuracy and LogSynflow score, also evi-
dent from Fig. 2-B, suggests that searching for high values
of LogSynflow scores provides architectures that are likely
more accurate in test.

3.1.3 # Skipped Layers

In recent literature for training-free NAS, Neural Tangent
Kernel (NTK) [12] is usually employed as a proxy for the
trainability of models [2, 4]. However, NTK computation
is consistently heavier than other training-free metrics [12]
and is characterised by a low correlation with the test accu-
racy (see Tab. 1). In order to favour more trainable archi-
tectures, we instead adopted as score the number of skipped
layers divided by the total number of skip connections in
a cell, i.e. s = #Skipped Layers

#Skip Connections . Indeed, since their intro-
duction in [10], which laid the foundation of modern Deep
Learning, all the State of the Art networks (e.g. EfficientNet
[29], ResNeXt [35], ViT [8], and ConvNext [19] among the
others) present skip connections around convolutional cells
in their architecture. These have proven to be crucial for
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the training of really deep networks and single skip con-
nection around the cell effectively mitigates the vanishing
of the gradients and allows the information to be backprop-
agated more easily through the network. The rationale be-
hind this metric is to favour such configuration by encourag-
ing few connections with a large number of skipped layers,
i.e. long range connections within a cell. Indeed, the maxi-
mum possible value is achieved when there is a single skip
connection from input node to output node.

3.2. Search Algorithm

To search for the optimal model, we exploited an evolu-
tion approach. In particular, an improved Tournament Se-
lection with Ageing (REA) [25] was implemented. Tour-
nament Selection is initialised with a random population of
size N . Each individual is characterised by a genotype that
encodes the structure of the network. For each iteration,
a subset of the surviving population of size n is randomly
sampled, and the best individual in the sample is selected
as parent for reproduction. The exemplar is then mutated to
generate a child which is included into the existing popu-
lation. Classic Tournament Selection keeps the population
size constant by discarding the less fitting individuals, while
REA [25] removes the oldest model, thus biasing the tour-
nament in favour of younger exemplars and therefore en-
hancing the exploration of the search space. With the aim of
further improving the search capability of REA, we imple-
mented a variation of the original algorithm which samples
two parents at each step. The two parents are independently
mutated to generate two children, while a third child is gen-
erated through a crossover operation. Crossover is imple-
mented by uniformly sampling a gene from one of the par-
ents. This increases the exploration capability of the search
algorithm since, while mutation is inherently local, the com-
bination of two different genotypes can lead to more var-
ied individuals which significantly differ from their parents
[18]. We empirically prove the effectiveness of this strat-
egy w.r.t. the base algorithm in the following experiments.
To maintain the population size constant, after killing the
oldest individual we only keep the top N ones. All gene
choices in both mutation and crossover are uniformly sam-
pled.

Constrained search is performed by imposing limits to
the FLOPs and to the Number of Parameters for the mod-
els considered during the search, because these are not de-
pendent on the specific deployment architecture. In case of
constraints, only feasible individuals are added to the pop-
ulation and we keep generating offspring until a feasible
child is discovered. In all the experiments of this work, N
and n are set to 25 and 5 respectively, if not explicitly re-
ported differently. The results for other values of N and n
are reported in Tab. 2 of the supplementary material.

4. Benchmarks
To help the comparison between our method and State

of the Art approaches, and to speed-up the experiments,
we leverage on two different benchmarks that include pre-
trained models. This enables an easy test of the search al-
gorithms without the need of consistent computational re-
sources, and eliminates the intrinsic variability due to dif-
ferent training pipelines, thus increasing the reproducibility
of results.

4.1. NAS-Bench-101

NAS-Bench-101 [36] is the first public dataset built for
this purpose. It contains 423k unique convolutional archi-
tectures trained and evaluated on CIFAR10. Each network
is characterised by a cell, which is repeated with interleaved
downsampling operators to form the full structure. Cells are
represented by a Direct Acyclic Graph (DAG), with each
node corresponding to an operation. There are three pos-
sible operators, 1x1 convolution, 3x3 convolution and 3x3
max pooling. The number of nodes in a cell is at most seven
and the number of edges is at most nine.

4.2. NATS-Bench

NATS-Bench [5] is an extension of NAS-Bench-201 [7]
containing architectures trained and evaluated on three dif-
ferent Computer Vision datasets, CIFAR10, CIFAR100 and
ImageNet16-120 (listed from the simplest to the more com-
plex). These are complemented with additional information
such as FLOPs and latency, which is particularly relevant
for constrained scenarios. However, the number of archi-
tectures in this benchmark is limited to 15625, with about
6k unique cells. The possible operators are 1x1 convolution,
3x3 convolution, 3x3 average pooling, skip connection and
zeroise. In this case, edges in the DAG represent the oper-
ators, while each node stands for the sum of all the feature
maps transformed by the edges pointing to the node. The
number of edges is six, while the number of nodes is set to
four.

5. Experiments
Given the lack of experiments testing the efficiency of

existing constrained NAS algorithms on the benchmarks
mentioned above, we evaluate, as a first step, FreeREA
against State of the Art training-based and training-free
techniques, without imposing any constraint on both NAS-
Bench-101 and NATS-Bench. Then, to also prove its effec-
tiveness in a constrained scenario, we directly compare the
architectures discovered by our approach on NATS-Bench
against the optimal architectures within the imposed limits.
We stop FreeREA after 45 seconds of execution time on
NATS-Bench and 12 minutes on NAS-Bench-101. All ex-
periments were performed on a single RTX 3080 GPU. The
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Figure 3: Mean and standard deviation of test accuracy
achieved on the ImageNet16-120 dataset of NATS-Bench
[5]. Orange shaded area collects training-based methods,
while green shaded area collects training-free methods.
Similar plots can be drawn for the other datasets, and are
here omitted for sake of space.

results for training-based approaches on NATS-Bench are
extracted from the original NATS-Bench paper [5], while
the ones for training-free methods are taken from the re-
spective papers.

5.1. Unconstrained Scenario

As a first analysis, we considered the NATS-Bench
benchmark. As reported in Tab. 3 and depicted in Fig. 3,
our experiments verified that among the State of the Art
approaches REA [25] is the algorithm that discovers the
best architectures. Our solution, however, is able to out-
perform the previous best result for all the datasets con-
sidered in the benchmark, with a gain that increases with
the complexity of the task. More specifically, we obtained
that FreeREA yields a model with 94.36% of test accu-
racy for CIFAR10, 73.51% on CIFAR100 and 46.34% for
ImageNet16-120, only 0.01%, and 0.97% less than the op-
timum for CIFAR10 and ImageNet16-120, while we hit the
optimum in CIFAR100.

Notably, the performance demonstrated by our approach
significantly outperforms all the methods (training-based
and training-free) considered in this paper, which is espe-
cially surprising considering the comparison with training-
based approaches. Indeed, while these provide a solution
in a (capped) time of 2e4, 4e4 and 1.2e5 seconds, FreeREA
iterates for approximately 45 seconds. It is also relevant
to notice that our approach is characterised by a signifi-
cantly smaller variation across different runs (see Tab. 3
and Fig. 3). Indeed, the largest variance of the test ac-
curacy we observed (for the CIFAR100 case) is as low as
0.05, while REA shows significantly higher values (0.31 for
CIFAR-10, 0.84 for CIFAR100 and 0.80 for ImageNet16-
120). Similar considerations can be made for all the other
methods and are here omitted to improve readability of the

manuscript. This suggests that our convergence to the opti-
mal model is affected by a smaller uncertainty w.r.t. all the
other approaches, thus ideally vouching for a lower number
of search runs to obtain the final model.

It is worth remarking that, while for training-free meth-
ods this potentially represents a gain in the order of min-
utes, for training-based approaches the amount is of sev-
eral hours or even days. We argue that the increase of aver-
age test accuracy and the reduction of variance are a conse-
quence of both the optimal combination of metrics we con-
sidered, and of the modifications to the search algorithm we
implemented. To verify this claim, we performed experi-
ments in which we used the vanilla REA search algorithm
and ranked the models considering our metrics rather than
through the validation accuracy after training. We named
this implementation FreeREA−. Interestingly, the results
achieved with FreeREA− (see Tab. 3) are pretty similar
to FreeREA, albeit characterised by a larger variability in
certain conditions. Such similarity vouches for the effec-
tiveness of the metrics selected, while it does not provide
evidence on the role played by the search algorithm. It is
reasonable to expect that this is due to the relative small
dimension of the benchmark, while differences should be
more evident for benchmarks of higher complexity (such as
NAS-Bench-101).

In Fig. 1 we summarise the average test accuracy
achieved by our approach and all the competitors versus
the execution time. Our findings demonstrate that FreeREA
represents the best trade-off between computation time and
performance. Of note, all the training-based methods, re-
ported on the right of the plot, are limited by the same search
time (see Tab. 3). To verify the performances of our method
on a more challenging scenario, we also tested FreeREA on
the more complex search space of NAS-Bench-101 against
the other training-free methods and the best-in-class for the
training-based (i.e. REA). In this experiment, we selected
as population and tournament size for REA 50 and 5 respec-
tively. These values are decreased w.r.t. the original imple-
mentation provided in NAS-Bench-101 [36] because we al-
low ≈ 24 hours of search, and only the initialisation of 100
candidates requires ≈ 18 hours. We adopted the same con-
figuration for FreeREA− for comparison purposes, while
the population size is instead kept as default equal to 25 for
FreeREA. Numerical results, collected in Tab. 4, demon-
strate how FreeREA still outperforms all the competitors
while searching for approximately twelve minutes.

Interestingly, there is an appreciable difference between
FreeREA and FreeREA− in terms of average test accu-
racy, which supports our claim that the search algorithm of
our implementation is more efficient than the vanilla REA.
Indeed, the modifications we introduced, discussed in the
previous section, play a fundamental role in giving better
exploration capabilities to the search algorithm. In other
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Table 3: Test accuracy and time [s] on NATS-Bench. Results for training-based methods are taken from [5].

CIFAR10 CIFAR100 ImageNet16-120

Algorithm Accuracy Time Accuracy Time Accuracy Time

Training-based

REA [25] 94.02± 0.31 2e4 72.23± 0.84 4e4 45.77± 0.80 1.2e5
REINFORCE [37] 93.90± 0.26 2e4 71.86± 0.89 4e4 45.64± 0.78 1.2e5
RSPS [16] 91.05± 0.66 2e4 68.27± 0.72 4e4 40.69± 0.36 1.2e5
DARTS (1) [17] 59.84± 7.84 2e4 61.26± 4.43 4e4 37.88± 2.91 1.2e5
DARTS (2) [17] 65.38± 7.84 2e4 60.49± 4.95 4e4 36.79± 7.59 1.2e5
GDAS [6] 93.23± 0.58 2e4 68.17± 2.50 4e4 39.40± 0.00 1.2e5
ENAS [22] 93.76± 0.00 2e4 70.67± 0.62 4e4 41.44± 0.00 1.2e5

Training-free

NASWOT (1000) [21] 93.10± 0.31 248 69.10± 1.61 248 45.08± 1.55 248
TENAS [2] 93.9± 0.47 1558 71.24± 0.56 1558 42.38± 0.46 1558
NASI [27] 93.55± 0.10 120 71.20± 0.14 120 44.84± 1.41 120
GA-NINASWOT [34] 93.70± 0.63 206 71.57± 1.37 206 45.18± 2.05 206
EPE-NAS [20] 91.31± 1.69 104 69.58± 0.83 104 41.84± 2.06 104
FreeREA− (ours) 94.30± 0.02 45 73.30.± 0.31 45 46.34 ± 0.00 45
FreeREA (ours) 94.36 ± 0.00 45 73.51 ± 0.05 45 46.34 ± 0.00 45

Optimum

- 94.37 - 73.51 - 47.31 -

Table 4: Test accuracy and time [s] of training-free methods
and REA on NAS-Bench-101 [36].

Algorithm Accuracy Time

Training-based

REA [25] 93.39± 0.09 86752

Training-free

NASWOT [21] 92.23± 8.90 114

FreeREA− (ours) 93.13± 1.16 723

FreeREA (ours) 93.80 ± 0.02 724

Optimum

94.31 -

words, by mutating two parents we better inspect the neigh-
bourhood of highly performing models, while by means of
crossover we also explore more distant regions of the search
space. As a consequence, we expect that the difference in
terms of test accuracy between FreeREA and FreeREA−

increases with the complexity of the search space and the
exploration time. To prove this, we collected the average
test accuracy and its variance for FreeREA, FreeREA− and
REA versus the computation time (see Fig. 4). It is also
interesting to observe that FreeREA shows a larger variabil-
ity in the first iterations (i.e. between 101 and 102 s), while

the output shows a significantly smaller uncertainty towards
the end of the search. This behaviour is not matched by
FreeREA− and REA, and is a consequence of the modifica-
tions made to the search algorithm, which suggests that our
implementation not only provides higher exploration capa-
bilities, but also lower search uncertainty.

5.2. Constrained Scenario

As we discussed extensively in the introduction, it is our
opinion that future trends of ML research will devote an
increasing effort towards the development of architectures
that can fit on constrained devices. In this scenario, albeit
the role of models optimisation is fundamental to maximise
the exploitation of the available hardware, we believe that
there should not be explicit modifications to the search al-
gorithm that depend on the target hardware. For this reason,
we tested our approach in a constrained scenario without
explicitly accounting for the target constraints, besides the
introduction of limits to the exploration phase.

It is worth reporting that the introduction of those con-
straints is not straightforward, and good performances of
the method in an unconstrained scenario do not necessarily
correspond to analogous results in the constrained case. In-
deed, FreeREA heavily relies on metrics that serve as proxy
of the test accuracy, but the correlation between the two in
the whole search space may be different than the correlation
in a constrained one. Therefore, an efficient training-free
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Figure 4: REA, FreeREA− and FreeREA trajectories on
NAS-Bench-101 [36]. Standard deviations are scaled down
by a factor 10 for visualisation purposes. X-axis is in
log-scale. Note that FreeREA shows a larger variability
in the first iterations (i.e. between 101 and 102 s), and
a lower uncertainty towards the end of the search. REA
and FreeREA−, instead, present similar variances in all the
phases of the search.

Table 5: Test accuracy of FreeREA on NATS-Bench in con-
strained scenarios. Regret is the difference between opti-
mum and average test accuracy. The algorithm was stopped
after 45 seconds.

FLOPs Params Accuracy Optimum Regret

CIFAR10

1e8 8e5 94.12± 0.01 94.31 0.19
7e7 5e5 93.02± 0.13 93.75 0.73
4e7 3e5 91.30± 0.00 91.32 0.02

CIFAR100

1e8 8e5 72.08± 0.01 72.43 0.35
7e7 5e5 71.07± 0.00 71.63 0.54
4e7 3e5 68.39± 0.00 68.48 0.09

ImageNet16-120

1e8 8e5 46.08± 0.08 46.85 0.77
7e7 5e5 45.35± 0.04 45.95 0.65
4e7 3e5 40.73± 0.00 41.00 0.27

NAS algorithm should be able to search for a good model
with and without limits imposed by the target hardware, ide-
ally with no change to the metrics and the search algorithm
used. Since, to the best of our knowledge, there are no
experimental results in constrained scenarios for the con-
sidered benchmarks, to verify whether our implementation
represents a good solution also in this case, we considered

three different thresholds for model FLOPs and number of
parameters, namely (1e8, 8e5), (7e7, 5e5), and (4e7, 3e5),
which stand for three levels of hardware constraints. We
then tested FreeREA on the three datasets of NATS-Bench
for all the constraints.

In absence of other competitors, in Tab. 5 we compare
the results of our search with the best model available in the
dataset that fits the constraints, which clearly represents an
upper-bound for our problem. Interestingly, on the CIFAR
datasets the average margin of improvement left (regret) is
0.32%, while on the more challenging ImageNet16-120, we
under-perform the optimal model of 0.56% on average.

It is worth remarking that such results are coherent with
the unconstrained scenario, where for the more challenging
ImageNet16-120 the difference between the test accuracy of
our best candidate and the optimal model is on average ap-
proximately 0.97%. Therefore, this suggests that our com-
bination of metrics serves as a good surrogate of the test ac-
curacy even when very hard constraints are imposed to the
search, and that these results may serve as a strong baseline
for future research on this topic.

6. Conclusions

In this paper, we presented FreeREA, a new fast, efficient
and accurate training-free NAS for tiny models. Moving
from State of the Art results, we selected a suitable com-
bination of training-free metrics that serve as an accurate
proxy of the model test accuracy, and we used this index
to rank different networks during the search. The latter is
implemented following an evolution-based policy, yielding
very competitive results in a fraction of the time required
by competitor approaches. We tested our method on two
different benchmarks, NATS-Bench [5] (with three datasets
and ≈ 15k available models as search space), and NAS-
Bench-101 [36] (with one dataset and ≈ 500k available
models as search space). Interestingly, our results demon-
strate that FreeREA not only is able to effectively perform
Neural Architecture Search without training any candidate,
but it also is the first training-free method which competes
and outperforms State of the Art training-based methods,
resulting in the current most efficient and accurate NAS al-
gorithm on the considered benchmarks. Such advancement
comes also with the relevant benefit that our search time is
as low as twelve minutes in the worst case, i.e. up to four
order of magnitude lower than State of the Art algorithms
[25]. Additional experiments on constrained settings sug-
gest that FreeREA can deliver accurate models even when
the target hardware imposes limits to the search space that
exclude some of the models. Motivated by these results, our
future efforts will be devoted towards the generalisation of
our method to other search spaces, and considering more
challenging tasks.
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