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Abstract

Domain generalization (DG) aims to learn a model from
multiple training (i.e., source) domains that can generalize
well to the unseen test (i.e., target) data coming from a dif-
ferent distribution. Single domain generalization (Single-
DG) has recently emerged to tackle a more challenging, yet
realistic setting, where only one source domain is available
at training time. The existing Single-DG approaches typ-
ically are based on data augmentation strategies and aim
to expand the span of source data by augmenting out-of-
domain samples. Generally speaking, they aim to gener-
ate hard examples to confuse the classifier. While this may
make the classifier robust to small perturbation, the gen-
erated samples are typically not diverse enough to mimic
a large domain shift, resulting in sub-optimal generaliza-
tion performance. To alleviate this, we propose a center-
aware adversarial augmentation technique that expands the
source distribution by altering the source samples so as to
push them away from the class centers via a novel angular
center loss. We conduct extensive experiments to demon-
strate the effectiveness of our approach on several bench-
mark datasets for Single-DG and show that our method out-
performs the state-of-the-art in most cases.

1. Introduction
Most of the existing machine learning algorithms work

based on the assumption that the training and test data fol-
low similar distributions. In computer vision, this assump-
tion can be easily violated due to a change in style (e.g.,
illumination, background) of the images in the training and
test data. [18, 19, 5, 4] Such a phenomenon is termed as
domain shift and leads to severe performance degradation.
To address this problem, domain adaptation methods aim to
align the distributions of the labeled source data and the un-
labeled target data by learning a discriminative yet domain-
invariant representation. [2, 1, 17] Domain generalization
(DG) tackles the more challenging scenario where the tar-
get data is not available during training by seeking to learn
a model that can perform well on the data coming from un-

seen test domains.

In the standard setting, DG assumes the availability of
multiple source domains at training time. In real scenarios,
however, collecting and annotating data from different envi-
ronments is expensive and time-consuming, which hinders
the application of DG methods. Therefore, recent research
studies the more realistic DG setting where only one source
domain is available in the training stage. This is referred to
as single domain generalization (Single-DG).

Due to the lack of access to diverse source domains at
training time, most of the existing Single-DG methods aim
to address unseen domain shifts by generating data from fic-
titious yet challenging domains. One of the most effective
ways to do so is adversarial data augmentation [27, 24, 35].
In essence, it consists of generating hard examples by max-
imizing the classification error and the entropy of the pre-
dictions. While this creates hard samples, such samples do
not necessarily accurately mimic a domain shift; they can
rather be thought of as adversarial perturbations. For exam-
ple, in the context of digit recognition, adversarial augmen-
tation may try to confuse the classifier by augmenting a ‘0’
so that it looks like an ‘8’. While this will make the model
robust to such ‘hard’ examples, it will not reduce its vul-
nerability to large distribution shifts, such as that occurring
between real photographs and sketches. To address this, we
propose a Center-aware Adversarial Domain Augmentation
(CADA) approach. As illustrated in Figure 1, it generates
new, diverse data by modifying the source samples so as
to push them away from the class center, thus expanding
the source distribution. This is achieved via a novel angu-
lar center loss, which calculates the geodesic distance be-
tween the original and augmented samples in a latent space.
Motivated by the observation that maximizing the margin
between classes improves the robustness and generalization
power of a model [8, 30], we use our angular center loss
not only to expand the data distribution, but also to encour-
age the classes to be well separated. In other words, to
improve generalization, CADA iterates between generating
diverse data and enlarging the margin between the differ-
ent classes in an adversarial manner. We conduct exten-
sive experiments on benchmark object recognition datasets
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Figure 1: Overall framework of the proposed Center-aware Adversarial Domain Augmentation (CADA). It enhances the
generalization power of the task model in an adversarial min-max manner. Previous methods try to generate hard examples
to confuse classifier, which may not sufficiently expand the distribution of the source data but rather create samples close
to the decision boundary. By contrast, our method pushes the samples away from the class center to expand the source
distribution, thus increasing the chances of covering the span of target data. Furthermore, it maximizes the margin between
the classes by encouraging the samples to cluster around the class centers.

to demonstrate the effectiveness of our approach, and show
that our method outperforms the current state-of-the-arts in
most cases.

2. Related Work
Domain generalization (DG) [22] uses multiple training

(i.e., source) domains to learn a model that can generalize
to the test (i.e., target) data coming from an unseen do-
main. Single domain generalization (Single-DG) has re-
cently emerged to tackle the more challenging, yet realistic
setting, where only one source domain is available at train-
ing stage, and the learnt model is tested on unseen target
domains. The existing Single-DG approaches typically ex-
ploit adversarial data augmentation.

In particular, DG approaches that are based on augmen-
tation and self-supervision have been shown to be success-
ful in the Single-DG setting. Among them, the Repre-
sentation Self-challenging (RSC) method [10, 28] penal-
izes the features that generate high gradients in backprop-
agation, so that all features can get involved in the classi-
fication task; JiGen [3] leverages self-supervised learning
strategy for data augmentation by splitting the image into
tiles, shuffling them, and training the model to perform the
main task (i.e., classification), and simultaneously predict
the order of the shuffled tiles; [6] introduces a novel nor-
malization layer that can adaptively re-scale the data dis-
tribution to improve the model generalization performance
across domains. While these methods achieve reasonable

performance in the Single-DG case, they were designed for
the standard DG scenario.

By contrast, several methods have been proposed specif-
ically to tackle the case of a single source domain. These
methods focus on expanding the source data by generat-
ing out-of-domain samples, aiming to cover the span of
the target data. In particular, ADA [27] is an adaptive
data augmentation method that appends adversarial exam-
ples to the source data at each iteration; M-ADA [24] fol-
lows the MAML-based meta-learning scheme and uses a
Wasserstein Auto-Encoder (WAE) to learn a robust model
by enlarging the source domain; ME-ADA [35] generates
samples which maximize the entropy of the classifier, and
exploits meta-learning to progressively augment the train-
ing domain with those samples; [32] augments the source
data by altering the texture and color of the model’s input
via a stack of randomly-initialized convolution layers; [29]
improves [32] by synthesizing images from more diverse
distributions that are complementary to the source one.

In essence, the aforementioned adversarial augmentation
methods for Single-DG try to generate hard examples to
confuse the classifier or maximise its entropy. This, how-
ever, may not expand the distribution of the source data in
the way a real domain shift would, as the resulting sample
tend to remain close to the decision boundaries. By contrast,
our approach more directly expands the source distribution
by generating samples that are away from the class center.
As will be shown by our experiments, this leads classifiers
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that generalize to an unseen target domain.

3. Methodology
In this section, we first define the problem and notation

used in this paper, and then provide a detailed discussion
of our CADA framework. The main goal of CADA is to
expand the source distribution by gradually pushing aug-
mented samples away from the corresponding class cen-
troids. Simultaneously, we aim to a learn latent represen-
tation that maximizes the margin between different classes,
thus enhancing the robustness and generalizability of the
model. To this end, we introduce an angular center loss that
measures the geodesic distance between each sample and
its corresponding class center in the latent space. CADA
then iterates between two tasks in an adversarial manner:
the auxiliary task of expanding the source distribution by
maximizing the angular center loss, and the main task of
creating compact clusters by minimizing the same loss.

3.1. Problem Definition

Let us assume that we have a source domain Ds =
{(x1, y1), ..., (xn, yn)}ni=1, with xi denoting the i-th exam-
ple samples from distribution Ps, and yi denoting the label
of i-th sample from label space y ∈ {1, ..., k}, where k is
the number of classes. The target domain Dt is composed
of data sampled from distribution Pt, which differs from Ps,
but has the same label space as the source domain.

Single-DG is defined as solving the supervised learning
problem of training a model on a single source domain so
that the model performs equally well on different unseen
target domains. Our model, denoted as f , consists of a fea-
ture extractor fe and a classifier fc, parameterized by θe and
θc, respectively.

3.2. Center-aware Domain Expansion

A natural strategy to mitigate the domain shift in a
Single-DG approach is to generate diverse data and incor-
porate it in the training process. Following this intuition,
CADA expands the distribution of the source domain by
augmenting and pushing the data away from the centers of
their corresponding classes. Specifically, we introduce an
angular center loss (AC) to compute the geodesic distance
between a sample and its corresponding class centroid in
the latent space.
To this end, we use the angular distance defined as

A(v1, v2) =
arccosD(v1, v2)

π
, (1)

where v1 and v2 are two vectors of the same length and

D(v1, v2) =
v1
∥v1∥2

· v2
∥v2∥2

=

∑n
i=1 piqi√∑n

i=1 p
2
i

√∑n
i=1 q

2
i

,

is the cosine similarity, with pi and qi, i = 1, 2, ..., n, the
elements in vectors v1 and v2, respectively.
Angular center loss: Inspired by [30], we initialize the
class centers C = {c1, c2, ..., ck} ∈ Rk×d by randomly
sampling k vectors of length d from a Gaussian distribution
N(0, 1). We compute the AC loss as the mean of the an-
gular cosine distance between the data and the class centers
they belong to. This is expressed as

Lac(X,Y,C) =
1

n

n∑
i=1

A(xi, C[yi]) . (2)

During training, the model learns to map the input to fea-
ture vectors with minimum angular cosine distance to the
corresponding class centers. The centers are iteratively up-
dated to fit the data using the AC loss.
Adversarial data augmentation: The generation process
is performed by iteratively updating each input sample and
pushing it away from the class centroid, thus aiming to
cover the span of the target data. Specifically, we copy the
input X as X

′
and regard the pixels in X

′
as trainable pa-

rameters. During the generation process, we freeze the class
centres and the parameters of fe and fc. We then maximize
the AC loss between X

′
and C to update the pixels in X

′

so that they move away from the corresponding class cen-
ters. This encourages X

′
to display novel characteristics

compared to X .
We also use X as an anchor and minimize the mean

squared error between X and X
′

to preserve the seman-
tic information in X . This yields a loss to update X defined
as

Lexp(X,X
′
, Y, C) =Lmse(X,X

′
)− Lac(X

′
, Y, C)

=||X −X
′
||22 −

1

N

N∑
i=1

A(xi, C[yi]) .

(3)

This process is repeated for a few iterations to get the
final augmented sample X

′

exp as

X
′

exp = argminX′Lexp(X,X
′
, Y, C) . (4)

3.3. Main Task Optimization

According to [33], a larger class margin improves the
out-of-distribution generalization power of a model. Al-
though optimizing the cross entropy loss can learn class-
separable features, it does not guarantee the margin to be
large[8]. Therefore, we further incorporate our AC loss as
a regularization term to the standard cross entropy loss to
form compact clusters in the latent space, so that the margin
between classes is enlarged. This gives us the final loss to

4159



update the network parameters θ = {θe, θc} and the class
centers C as

Lmain(X,Y,C) = Lce(X,Y ) + Lac(X,C) . (5)

3.4. Overall Objective Function

We adopt a two-step iterative training strategy to opti-
mize the augmented samples and the main task. During the
center-aware domain expansion step, CADA generates ad-
versarial samples in each class that are far from the cor-
responding class centers. This is achieved by solving the
optimization problem

min
X′

Lexp , (6)

for all the source samples.
During the main-task optimization step, the objective is

to learn discriminative representations with high intra-class
compactness to enlarge the margin among classes. This is
achieve via th optimization problem

min
θ,C

Lmain . (7)

Our learning process is summarized in Algorithm 1.

Algorithm 1 CADA

Input: Source domain dataset Ds = {(xi, yi)}ni=1; Pre-
trained task model θ; Number of training epochs E; List
of augmentation epochs Ea; Number of augmentation it-
erations Ta

Output: Learnt model parameters θ
Initialize class centres C from standard Gaussian distri-
bution
for e = 1,. . . ,E do

if e in Ea then
for (X,Y ) in Ds do
X

′ ←− X
for t = 1, . . . , Ta do

Compute Lexp(X,X ′, Y, C) by Eq.(3.2)
X

′ ←− X ′ −∇Lexp(X,X ′, Y, C)
end for
Ds = Ds

⋃
{(X ′

, Y )}
end for

end if
for (X,Y ) in Ds do

Compute Lmain(X,Y,C) by Eq.(3.3)
θ ←− θ −∇Lmain(X,Y,C)

end for
end for

4. Experiments

In this section, we compare our approach with the exist-
ing DG and Single-DG baselines on several benchmark sin-
gle domain generalization datasets. The models are trained
with the data coming from only one domain, and evaluated
on the remaining domains.

For fair comparison with the existing approaches, in all
experiments, we use the same backbone network as em-
ployed by the baseline methods. We resize the input to
match the different backbones, and follow the same data
augmentation process as the state-of-the-art methods.
Evaluation metrics: We compute the mean accuracy on
each target domain. We also generate class activation maps
(CAM) [36] from the output of the last layer before the clas-
sifier to visually show our approach’s ability to localize the
discriminative regions of interest in the test images. To in-
dicate the models’ generalization performance, we display
the t-SNE[25] of the extractor’s output. We also use t-SNE
to show the difference between the original sample and the
updated sample to compare existing adversarial sample gen-
eralization methods with ours.

4.1. Datasets

Digits is a benchmark single domain generalization
dataset consists of MNIST[14], SVHN[23], MNIST-M[7],
USPS[11], and SYN[7]. Each domain contains 10 classes
of digits from 0 to 9. We train the model on the MNIST as
source domain and test it on the other domains. The images
are resized to 32 × 32 pixels, with grayscale images being
channel-wise duplicated in MNIST and USPS.
MNIST-C[21] is a benchmark Single-DG dataset [32]. Fol-
lowing the same setting of [32], we use MNIST as the
source domain and 16 corruption types in MNIST-C as
target domains. All images are resized to 32 × 32 with
grayscale images being channel-wise duplicated.
CIFAR-10-C [9] is commonly-used as a benchmark dataset
for Single-DG. The source data comes from the CIFAR-
10[13] training set [13], and the test data is from CIFAR-
10-C [9], consisting of 19 corruption types with five sever-
ity levels (5 indicating the most corrupted one), applied to
the CIFAR-10 test set [13]. As existing Single-DG base-
lines, for our target domain, we select 15 corruption types
with severity level 5, belonging to the four broad categories:
noise, blur, weather and digital.
CIFAR-100-C is composed of the same samples and cor-
ruption types as in CIFAR-10-C, categorised in 100 classes.
Following the same setting as in [35], we use CIFAR-
100 [13] as the source data for our target domain, we select
15 corruption types in all severity level.
PACS [16] is a DG benchmark dataset that contains 9,991
samples from seven classes in four domains (i.e., Art paint-
ing, Cartoon, Photo, and Sketch). We use one of these four
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domains as the source data and test the model on another do-
main, forming four different training and test domains pairs.
All the images are resized to 224× 224 and processed with
multiple data augmentation methods. They include crops
of random sizes and aspect ratios, random horizontal flips,
random colour jitter (0.4 brightness, 0.4 contrast, 0.4 sat-
uration and 0.4 hue), image grayscaling (0.1 probability),
and normalization using the ImageNet channel means and
standard deviations.

4.2. Implementation Details

Below, we provide the experimental settings and imple-
mentation details for each benchmark dataset.
Digits. We use the ConvNet architecture of [15] (conv-
pool-conv-pool-fc-fc-softmax) with ReLU following each
convolution. We apply the random convolutions of [32] to
augment the training data. The ADAM optimizer is used
to train the model with a learning rate set to 1e-4, and a
batch size of 32. The learning rate for updating the cen-
ters is 0.5, using the SGD optimizer. We generate domain
adversarial samples every iteration with the SGD optimizer
and a learning rate of 1. The generation process takes 10
iterations to finish. MNIST-C. We use the same data aug-
mentation and training setting as for Digits. The model is
trained on MNIST only and tested on MNIST-C.
CIFAR-10-C. We use a WideResNet [34] with 16 layers
and a depth of 4 as backbone. Inspired by [6], the batch
normalization layers are replaced with instance normaliza-
tion layers in each residual block of the backbone. We train
the backbone and classifier using the ADAM optimizer. The
learning rate is set to 1e-3 and is adjusted between 0 and 1e-
3 with a cosine annealing scheduler after each epoch. The
centers are updated with the SGD optimizer, with a learning
rate of 0.5. We generate domain adversarial samples in each
iteration every 5 epochs, and the learning rate is set to 1.0.
CIFAR-100-C. We use WideResNet[34] with 40 layers and
a depth of 2 as the backbone. The batch normalization lay-
ers in each residual block of the backbone are replaced with
instance normalization layer. SGD with learning rate of 1e-
2 is used to train the extractor and classifier. A cosine an-
nealing scheduler is also applied to adjust the learning rate
between 0 and the initial learning rate. The centers are up-
dated with the SGD optimizer with a learning rate of 0.5.
The domain adversarial sample generation is conducted in
each iteration every 5 epochs with a learning rate set to 0.5.
PACS. Following the existing baselines, we use a pre-
trained ResNet18 as backbone. We use ADAM as the opti-
mizer with an initial learning rate of 1e-5, betas of 0.9 and
0.999, and a cosine annealing schedule to adjust the learn-
ing rate in range 0 to the initial learning rate periodically
during training. We update the centers with an SGD opti-
mizer, with a learning rate of 5e-3. We generate domain
adversarial samples in each iteration every 5 epochs, with

Table 1: Classification accuracy (%) on Digits. The bold
numbers indicate the best performance in each column.

SVHN MNIST-M SYN USPS Avg.

ERM[12] 27.83 52.72 39.65 76.94 49.29
CCSA[20] 25.89 49.29 37.31 83.72 49.05
d-SNE[31] 26.22 50.98 37.83 93.16 52.05
JiGen[3] 33.80 57.80 43.79 77.15 53.14
ADA[27] 35.51 60.41 45.32 77.26 54.62
M-ADA[24] 42.55 67.94 48.95 78.53 59.49
ME-ADA[35] 42.56 63.27 50.39 81.04 59.32
RSDA[26] 47.4 81.5 62.0 83.1 68.5
L2D[29] 62.86 87.30 63.72 83.97 74.46
RSDA+ASR[6] 52.8 80.8 64.5 82.4 70.1
RC[32] 62.07 87.89 63.90 84.39 74.56
Ours 67.27 78.66 79.34 96.96 80.56

the learning rate set to 0.5. The training batch size is 16.
The model is trained on each of the domains separately and
evaluated and averaged on all the others.

4.3. Experimental Results

Results on Digits: Table 1 shows the results on the Dig-
its benchmark dataset. We compare our method with the
following baselines: (1) ERM, the baseline using the cross-
entropy loss for training; (2) CCSA[20], improving gener-
alization via latent features regularization; (3) d-SNE[31],
using stochastic neighborhood embedding techniques and
a modified-Hausdorff distance for both domain adaptation
and domain generalization; (4) JiGen[3], improving gener-
alization by self-supervision and teaching the model to pre-
dict the tile order of the partitioned image as an auxiliary
task; (5) ADA[27], using an adaptive data augmentation
method by appending adversarial examples to the source
data at each iteration.; (6) M-ADA[24], improving ADA
with Wasserstein auto-encoder and meta-learning schema;
(7) ME-ADA[35], improving ADA by generating adversar-
ial examples that can maximize the prediction entropy as
an extra constraint in the loss function; (8) RSDA[26], de-
signing a data augmentation method based on image trans-
formations that the current model is the most vulnerable
to; (9) L2D[29], augmenting the data with modified ran-
dom convolution and adjusting the mutual information be-
tween sample pairs based on the class information; and (10)
ASR[6], a novel normalization method using adaptive batch
normalization to fit data statistics from different domains.

Our method outperforms both the baselines and the
SOTA methods on average. In particular, in comparison
to the existing adversarial sample generalization methods
ADA, M-ADA, and ME-ADA, our method improves the
performance by a large margin on all domains. Moreover,
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Table 2: Single domain generalization accuracy (%). The
model is trained on MNIST and tested on the 16 corruption
types in MNIST-C.

ERM[12] ADA[27] ME-ADA[35] RC[32] Ours

88.2 92.58 94.53 91.62 93.33

Table 3: Single domain generalization accuracy (%). The
models are trained on CIFAR-10 and tested on CIFAR-10-
C, with corruption severity level of 5. We report the average
accuracy for the 4 broad categories of corruption: Weather,
Blur, Noise, and Digital. The best performances are high-
lighted in bold.

Weather Blur Noise Digits Avg.

ERM[12] 67.28 56.73 30.02 62.30 54.08
CCSA[20] 67.66 57.81 28.73 61.96 54.04
d-SNE[31] 67.90 56.59 33.97 61.83 55.07
RSC[10] 63.96 61.41 40.48 58.31 58.76
ADA[27] 72.67 67.04 39.97 66.62 61.58
M-ADA[24] 75.54 63.76 54.21 65.10 64.65
ME-ADA[35] 74.44 71.37 66.47 70.83 70.77
L2D[29] 75.98 69.16 73.29 72.02 72.61
RC+BN[32] 74.39 79.79 76.04 75.0 76.37
RC+IN[32] 78.76 80.75 81.95 82.85 81.29
ERM+ASR[6] - - - - 72.9
ADA+ASR[6] - - - - 78.4
Ours 79.93 83.77 84.84 84.84 83.57

our method performs better than random convolution based
methods, L2D and RC, on the SVHN, SYN, and USPS tar-
get domains.
Results on MNIST-C: We compare our method with the
ERM baseline as well as the SOTA Single-DG meth-
ods, including ADA [27], ME-ADA [35], and random
convolution[32]. The results in Table 2 show that our
method outperforms the ERM baseline as well as the SOTA
methods on this dataset.
Results on CIFAR-10-C: In Table 3, we report the results
on the 15 corruption types of Level 5 severity on CIFAR-
10-C dataset. The table shows the average accuracy for the
4 broad categories of corruption: Weather, Blur, Noise, and
Digital and the average accuracy over all corruptions. As
can be seen from the results, our method outperforms exist-
ing methods, with large margin in the blur, noise, and digits
corruption categories. This confirms our model’s robustness
against perturbations added to the input. Our method also
outperforms the SOTA ASR method by large 5% margin.
Results on CIFAR-100-C: In Table 4, we report the aver-
age accuracy on 4 main corruption categories and the over-
all accuracy on all 15 corruptions on CIFAR-10-C dataset.

Table 4: Single domain generalization accuracy (%) on
CIFAR-100. Th best performances are highlighted in
bold. The models are trained on CIFAR-100 and tested on
CIFAR-100-C, with corruption severity levels of 1 to 5. We
report the average accuracy for the 4 broad categories of
corruption: Weather, Blur, Noise, and Digital.

Weather Blur Noise Digits Avg.

ERM[12] 24.67 45.75 55.0 56.0 46.78
ADA[27] 33.0 51.75 55.33 58.2 50.97
ME-ADA[35] 52.67 53.0 52.33 56.2 53.93
RC[32] 56.99 57.17 57.88 57.48 57.38
Ours 59.81 59.28 60.19 59.66 59.96

Table 5: Single domain generalization accuracies on PACS.
The models are trained on one domain and tested on the
other domains.

Artpaint Cartoon Sketch Photo Avg.

ERM[12] 70.9 76.5 53.1 42.2 60.7
RSC[10] 73.4 75.9 56.2 41.6 61.8
ADA[27] 71.56 76.84 52.36 43.66 61.11
ME-ADA[35] 71.52 76.83 46.22 46.32 60.22
RC[32] 73.68 74.88 55.42 46.77 62.69
RSC+ASR[6] 76.7 79.3 61.6 54.6 68.1
Ours 76.33 79.08 61.59 56.65 68.41

Our approach outperforms the SOTA methods ADA [27],
ME-ADA [35], and RC [32] on all corruption types.
Results on PACS:. In Table 5, we demonstrate our results
on PACS dataset, where we use one domain for training and
the rest three for testing. The reported numbers are the aver-
age accuracy across the test domains. Our method achieves
very similar results to the SOTA on all target domains, with
slightly better results on the Photo domain.

4.3.1 Ablation Study

Effect of the Angular Center Loss: As discussed in the
method section, to compute the distance of the samples
from the class centers, instead of using the Euclidean dis-
tance as in [30], we propose to use an angular distance. In
Table 6, we validate this choice by comparing the results
obtained by using the center loss versus the angular center
loss on 3 datasets, Digits, CIFAR-10-C, and CIFAR-100-
C. We use the same training settings as described in the
implementation details. The results show that the angular
center loss outperforms the center loss by 1-2% on Digits
and CIFAR-10-C, and by 5% on CIFAR-100-C, evidencing
that the margin of improvement increases as the number of
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Table 6: Comparison between center loss and our angular
center loss.

Digits CIFAR-10-C CIFAR-100-C

Center Loss[30] 78.22 83.07 56.92
AC Loss 80.56 84.28 62.15

Table 7: Results on CIFAR-10-C with augmenting the
training data by sampling around the decision boundary
with different variances. The backbone is our modified
WideResNet(16-4) described in the implementation details.

s 0.1 0.25 0.5 1. 5. 10. Ours

79.74 80.3 80.17 80.16 79.33 77.81 80.56

classes in the target domain grows.

4.3.2 Visualization

Class Activation Maps: Figure 2 shows the class activa-
tion maps for our method and the state-of-the-art adversarial
generation-based method ME-ADA[35]. Both methods are
trained on CIFAR-10 dataset and tested on 15 corrupted ver-
sions of the same input. The images show that our method
focuses on smaller regions than ME-ADA, depicting the rel-
evant semantic information.
t-SNE visualizations of the extracted features from the test
dataset of CIFAR-10-C are shown in Figure 3. The test
dataset is composed of 1000x15 data points randomly sam-
pled from each of 15 corruptions. The results show that our
approach achieved more compact clusters with larger mar-
gins between the classes compared to ME-ADA.
Analysis of the Generated Samples: We use t-SNE [25] to
visually analyze the distributions of the generated samples
in Figure 4(a)-(c). The light blue points show the distribu-
tions of two classes. We use ME-ADA and our method to
update all the samples from the same class. The updated
samples are shown in orange. Figure 4(a) shows that some
of the generated samples with ME-ADA shift dramatically
and cluster together into other surrounding classes (see the
small orange clusters around the blue points). We regard
ME-ADA as too aggressive as it may not preserve the dis-
criminative information of the samples during the update
stage. By contrast, our method tends to relocate the sam-
ples at the boundary between the classes, and can thus be
considered as a better way to expand the knowledge space
progressively.
Decision Boundary Sampling: We compare our approach
to manual augmentation of the training space by generat-
ing samples at the boundary between classes, as shown in
Figure 4-c. We use the same classes as in the previous visu-

alization and compute the decision boundary by taking the
classifier’s element-wise means of class-relative weights.
Then, we sample features from N(0, 1) and transform them
with the computed means and different variances. Table7
shows that the effect of different variances is inconsistent
and performs worse than our proposed method.

5. Conclusion
We have introduced an approach to improve a model’s

generalization and robustness by augmenting the training
data with class-aware adversarial samples. We have hy-
pothesized that the generalizability of a model can be re-
lated to its robustness to perturbed samples located close to
the decision boundary of the classes yet far from the class
centers. Motivated by this, in contrast to existing domain
adversarial augmentation methods that generate adversar-
ial samples by maximizing the softmax classification error,
we have proposed an angular center loss to help generating
adversarial samples close to the corresponding class bound-
ary. We consider this as a more direct way of expanding
the source data distribution with diverse samples. The ad-
versarial data augmentation process is performed simulta-
neously with class-margin maximization to also encourage
intra-class compactness. We have conducted extensive ex-
periments to demonstrate the effectiveness of our approach
on several benchmark datasets.
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