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Abstract

Domain generalization (DG) has been a hot topic in im-
age recognition, with a goal to train a general model that
can perform well on unseen domains. Recently, federated
learning (FL), an emerging machine learning paradigm to
train a global model from multiple decentralized clients
without compromising data privacy, has brought new chal-
lenges and possibilities to DG. In the FL scenario, many
existing state-of-the-art (SOTA) DG methods become in-
effective because they require the centralization of data
from different domains during training. In this paper, we
propose a novel domain generalization method for image
recognition under federated learning through cross-client
style transfer (CCST) without exchanging data samples.
Our CCST method can lead to more uniform distributions
of source clients, and make each local model learn to
fit the image styles of all the clients to avoid the differ-
ent model biases. Two types of style (single image style
and overall domain style) with corresponding mechanisms
are proposed to be chosen according to different scenar-
ios. Our style representation is exceptionally lightweight
and can hardly be used to reconstruct the dataset. The
level of diversity is also flexible to be controlled with a
hyper-parameter. Our method outperforms recent SOTA
DG methods on two DG benchmarks (PACS, OfficeHome)
and a large-scale medical image dataset (Camelyon17) in
the FL setting. Last but not least, our method is orthogo-
nal to many classic DG methods, achieving additive perfor-
mance by combined utilization. Our code is available at:
https://chenjunming.ml/proj/CCST.

1. Introduction
Federated learning (FL) aims to train a machine learning

model on multiple decentralized local clients without ex-
plicitly exchanging data samples. This emerging technique
has triggered increasing research interest in recent years,

*Joint first authors.

owing to its significant applications in many real-world sce-
narios such as finance, healthcare, and edge computing [22].
The paradigm works in a way that each local client (e.g.,
hospital) learns from their local data and only aggregates
the model parameters at a specific frequency on the central
server to yield a global model.

One of the biggest challenges in FL is tackling the non-
identically and independently distributed (non-IID) data
across different clients. Although much progress has been
made on addressing non-IID issues in FL [29, 28], most of
them only focus on improving the performance of internal
clients. Few papers focus on domain generalization in FL,
which is a crucial scenario considering the model general-
ization ability on a new client with unseen data distribution.
For example, it is important that a federated trained dis-
ease diagnose model by multiple hospitals can be directly
utilized by other new hospitals with a high accuracy, espe-
cially when they have few annotated data to train a good
model. DG aims to improve the test performance on un-
seen target domains with the model trained on multi-source
data. A prior work FedDG [33] proposes to exchange the
amplitude information in frequency domain cross clients
and utilize episodic learning to improve the performance
further. However, they are specific to medical image seg-
mentation tasks and consider the distribution shift across
medical imaging protocols, which remains unexplored for
larger domain gaps in the wild. In contrast, we aim to im-
prove the model generalization ability for image recognition
tasks, and our method is able to handle domain shifts from
small (cross-site medical images) to more significant ones
like photos and sketches in the PACS dataset.

The FL scenario poses particular and new challenges to
DG: regarding each client as a domain with a specific style,
the data from each domain cannot be put together during
training, which violates the implicit requirement of many
DG methods. For example, meta-learning [26] and adver-
sarial domain invariant feature learning [27] both require
access to all the source domains at the same time, which
is not directly applicable in federated learning. In addition,
straightforward aggregating the parameters of local models
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Figure 1: Overview of our framework with style transfer across source clients using three different source styles on the PACS
dataset. We augment each source client data with styles of other two source clients.

may lead to a sub-optimal global model because the local
models are biased to different client styles. To solve those
problems, we propose a data-level cross-domain style trans-
fer (CCST) method that augments the data by using other
source domain styles with the style transfer technique. In
this way, each client will have styles of all the other source
clients, and thus all the local models will have the same
goal to fit images with all the source styles, which avoids
the different local model biases that may compromise the
global model performance. Moreover, CCST is orthogonal
to other DG methods, and thus existing methods on central-
ized DG can also benefit from a further accuracy boost.

Our CCST method for federated domain generalization
is general and compatible with any style transfer method
that satisfies two requirements: First, the style information
in the style transfer algorithm cannot be utilized to recon-
struct the dataset; Second, this style transfer method should
be an arbitrary style transfer per model method, which
means the style transfer model should be ready to transfer a
content image to arbitrary styles. Since there can be many
clients in federated learning, the style transfer model should
better have the ability to transfer all those styles without re-
training. Otherwise, the deployment cost will significantly
increase since each client has to store various models locally
for different styles and even require retraining for unseen
styles. In our paper, we choose AdaIN [15], an effective
real-time arbitrary style transfer model to demonstrate the
effectiveness of our CCST framework. The style informa-
tion used in AdaIN is the moments (i.e., mean and variance)
of each pixel-level feature channel at a specific VGG layer,
which are extremely lightweight (two 512-dimensional vec-
tors) and do not contain spatial structural information about

the image content. Therefore, such style information is ef-
ficient to be shared across clients and can hardly lead to
the reconstruction of the dataset. Further analysis could be
found in Section 4.4.

The overall framework of our method is shown in Fig-
ure 1. Each client is regarded as a domain with a domain-
specific style. Before training the image recognition model,
we first compute the style information of images in each
source client. We design two types of styles that can be
shared: single image style and overall domain style, which
will be illustrated in detail in Section 3. Then the source
clients will upload their style information to the global
server and share them with all the source clients, which we
call style bank. Each source client utilizes the shared style
bank to perform style transfer on their local data, during
which a hyperparameter K is introduced to control the di-
versity level of our CCST process. Federated training will
begin after each source client finishes data augmentation,
and then the trained model will be directly tested on the un-
seen target client. Our contributions are summarized below:

(a) We propose a simple yet effective framework named
cross-client style transfer (CCST). Our approach achieves
new state-of-the-art generalization performance in FL set-
ting on two standard DG benchmarks (PACS [24], Office-
Home [39]) and a large-scale medical image dataset (Came-
lyon17 [3]). (b) Two types of styles with corresponding
sharing mechanisms are proposed, named overall domain
style and single image style, which can be chosen accord-
ing to different circumstances. The diversity level of our
method is also flexible to be adjusted. (c) The proposed
method is orthogonal to many other SOTA DG methods.
Therefore, our method can be readily applied to those DG
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methods to have a further performance boost. We also study
the effectiveness of several SOTA DG methods when they
are applied in the FL setting for image recognition. (d) We
give an intuitive (Section 4.4) and experimental analysis
(Section A) on the privacy-preserving performance of our
style vectors to demonstrate that one can hardly reconstruct
the original images merely from the style vectors using the
generator from a SOTA GAN [32] in FL setting.

2. Related Work
Domain generalization. Domain generalization is a

popular research field that aims to learn a model from
multiple source domains such that the model can gener-
alize on the unseen target domain. Many works are pro-
posed towards solving the domain shifts from various di-
rections under the centralized data setting. Those methods
can be divided into three categories [42], including ma-
nipulating data to enrich data diversity [18, 44, 37, 47],
learning domain-invariant representations or disentangling
domain-shared and specific features to enhance the gen-
eralization ability of model [1, 36, 4, 46] and exploiting
general learning strategies to promote generalizing capabil-
ity [26, 17, 7, 8].

However, many of these methods require centralized
data of different domains, violating the local data preser-
vation in federated learning. Specifically, access for more
than one domain is needed to augment data or generate new
data in [37, 18], domain invariant representation learning or
decomposing features is performed under the comparison
across domains [1, 36, 46] and some learning strategy based
methods utilize extra one domain for meta-update [26, 7, 8].
Nevertheless, some methods do not explicitly require cen-
tralized domains or can be adapted into federated learning
with minor changes. For example, MixStyle [47] can op-
tionally conduct the style randomization in a single domain
to augment data; [44] uses Fourier transformation to aug-
mentation that is free of sharing data; JiGen [4] proposes
a self-supervised task to enhance representation capability;
RSC [17] designs a learning strategy based on gradient op-
erations without explicit multi-domain requirements.

Federated / decentralized domain generalization. De-
spite many works on centralized domain generalization and
tackling non-IID issues in FL, there are few works address-
ing the DG problem in FL. FedDG [33] exchanges the am-
plitude information across images from different clients and
utilizes episodic learning to improve performance further.
However, it only focuses on the segmentation task with
superficial domain shift in data, and its performance on
image recognition with larger domain shift remains unex-
plored. COPA [43] propose only aggregating the weights
for domain-invariant feature extractor and maintaining an
assemble of domain-specific classifier heads to tackle the
decentralized DG. However, since COPA has to share clas-

sifier heads of all the clients locally and globally, it may
lead to privacy issues, heavier communication, and higher
test-time inference cost.

Neural style transfer. Neural style transfer (NST) aims
to transfer the style of an image to another content im-
age with its semantic structure reserved. The development
of NST has roughly gone through three stages: per-style-
per-model (PSPM), multiple-style-per-model (MSPM) and
arbitrary-style-per-model (ASPM) methods [20]. PSPM
methods [11, 21, 38] can only transfer a single style for each
trained model. MSPM methods [9, 5, 45, 31] are able to
transfer multiple styles with a single trained model. How-
ever, PSPM and MSPM are expensive to deploy when too
many styles are required to be transferred in our setting.
ASPM [6, 16, 12, 30] can transfer arbitrary styles to any
content images and is often faster than PSPM and MSPM,
which is more suitable for our scenario.

The first ASPM method is proposed by Chen and
Schmidt [6], but it cannot achieve real-time. AdaIN [16]
is the first real-time arbitrary style transfer method, which
utilizes the channel-wise mean and variance as style in-
formation. It performs de-stylization by normalizing the
VGG feature with its own style and then stylizes itself
by affine transformation with the mean and variance of
the style image feature. Another real-time ASPM method
[12] is a follow-up work of CIN [10]. They change the
MSPM method CIN into an ASPM method by predicting
the affine transformation parameters for each style image
through another style prediction network. However, the
level of style-content disentanglement of the predicted style
vector remains unknown, which may have privacy issue in
FL setting. Later, Li et al. [30] propose a universal style-
learning free ASPM method, which utilizes ZCA whitening
transform for de-stylization and coloring transform for style
transfer. However, this method is much slower than previ-
ous methods in practice. Therefore, we choose the neatest
and efficient real-time ASPM method AdaIN as our style
transfer model in our framework.

3. Method
The core idea of our method is to let the distributed

clients have as similar data distribution as possible by in-
troducing styles of other clients into each of them via cross-
client style transfer without dataset leakage. Figure 3 shows
the data distribution before and after our CCST method. In
this way, we can make the trained local models learn to fit
all the source client styles and avoid aggregating the local
models biased to different styles. As a result, each client
can be regarded as a deep-all [4] setting, and the local mod-
els will have the same goal to fit styles from all the source
clients. We propose two types of styles that can be chosen
to transfer: one is overall domain style, the other is single
image style. In the following sections, we will introduce
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our reorganized style transfer framework and the process of
cross-client style transfer.

Our CCST method for federated domain generalization
is general and compatible with any style transfer method
that satisfies two requirements: For a style transfer model
to be utilized in our general CCST framework, at least
two requirements should be satisfied: 1) The style infor-
mation shared among clients cannot be utilized to recon-
struct the dataset; 2) The style transfer method should be
a real-time arbitrary style transfer model to allow efficient
and straightforward style transfer. AdaIN [16] is the first
real-time arbitrary style transfer model, and it perfectly sat-
isfies both requirements. Moreover, it is extremely difficult
to recover the dataset only from the style information uti-
lized in AdaIN. We give an intuitive analysis in Section 4.4
about the privacy issue. Therefore, we choose AdaIN as our
style transfer model to demonstrate the effectiveness of our
CCST framework. Formally, for content image Ic and style
image Is, the corresponding VGG features Fc and Fs are:

Fc = Φ(Ic), Fs = Φ(Is), (1)

where Φ is the VGG encoder.
The AdaIN module takes the VGG features Fc and Fs of

content and style images as input, which first normalize (de-
stylization) with moments of Fc and then perform an affine
transformation (stylize) with the moments of Fs. Formally,

AdaIN(Fc, Fs) = σ(Fs)

(
Fc − µ(Fc)

σ(Fc)

)
+ µ(Fs), (2)

where µ(·) and σ(·) compute channel-wise mean and stan-
dard variance of image features. Assume Fc have the shape
of x × h × w given channel dimension x and feature map
resolution h×w, then µ(Fc) and σ(Fc) have the same shape
of x× 1. Normally, x = 512 in our work.

Then, the transferred feature Fc←s derived from
AdaIN(Fc, Fs), is passed to a decoder Ψ to generate the
final stylized image Ic←s:

Ic←s = Ψ(AdaIN(Fc, Fs)). (3)

3.1. Preliminaries

As shown in Figure 2, we divide the workflow of AdaIN
into two parts. The first part is the style extractor SE with
style image as input. Denote the style as S, then:

S = SE(Is) = (Sµ, Sσ) = (µ(Φ(Is)), σ(Φ(Is))). (4)

The second part is an image generator G with content
image and style vector as input:

Ic←s = G(Ic, S) = Ψ(Sσ

(
Φ(Ic)− µ(Φ(Ic))

σ(Φ(Ic))

)
+ Sµ).

(5)
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Figure 2: The re-organized AdaIN [16] framework utilized
for cross-client style transfer in federated learning. The
VGG encoder is shared between the style extraction and im-
age generation stage. Dash lines separate the three stages of
our method: 1. Local style computation; 2. Server-side
style bank broadcasting; 3. Local style transfer.

3.2. Cross-Client Style Transfer

We regard each client in federated learning as a domain.
The workflow of the data augmentation process is shown in
Algorithm 1. Assume there are N clients {C1, C2, ..., CN}
and there is a central server. Note that we will introduce two
types of styles and corresponding mechanisms in parallel in
the following illustration. As shown in Figure 2, our method
has three stages:

3.2.1 Local style computation and sharing.

In the beginning, each client needs to compute their style
and upload them to the global server. Two types of styles
can be chosen to share across clients:

Single image style. Image style is calculated as the
pixel-level channel-wise mean and standard variance of the
VGG feature of image. Formally, for a randomly chosen
image with index i and VGG feature FCn

i at client Cn, the
single image style SCn

single(i) would be:

SCn

single(i) = (µ(FCn
i ), σ(FCn

i )). (6)

If single image styles are utilized for style transfer, mul-
tiple styles of different images should be uploaded to the
server for this client to avoid single image bias and increase
diversity, which forms a local image style bank SCn

bank. For-
mally, denote randomly selected J image styles to be up-
loaded by Cn as

SCn

bank = {SCn

single(i1)
, . . . , SCn

single(iJ )
}, (7)

where {i1, . . . , iJ} are randomly sampled image indices
from client Cn. Sharing single image styles consumes rela-
tively low computation but can lead to high communication
costs for uploading multiple styles.
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Overall domain style. Domain style is the domain-level
channel wise mean and standard variance, which consid-
ers all the images (pixels) in a client. Formally, assume
client Cn has M training images with corresponding VGG
features {FCn

1 , FCn
2 , ..., FCn

M }, the overall style SCn

overall of
this client is:

SCn

overall = (µ(FCn

all ), σ(F
Cn

all )),

FCn

all = Stack(FCn
1 , FCn

2 , ..., FCn

M ).
(8)

The computation cost of the overall domain style is rela-
tively high compared to just computing several single image
styles. However, since each domain only has one domain
style SCn

overall, choosing to upload the overall domain style
to the server is more communication efficient.

Besides, the overall domain style can represent the do-
main style more robustly, while single image styles give
more diversity and randomness to the style bank.

3.2.2 Server-side style bank broadcasting.

When the server receives all the styles of each client, it will
concatenate all the styles as a style bank B and broadcast
it back to all the clients. In the two different style sharing
modes, the style bank will also be different:

• Style bank Bsingle for single image styles:

Bsingle = {SCn

bank|n = 1, 2, ...N}. (9)

• Style bank Boverall for overall domain style:

Boverall = {SCn

overall|n = 1, 2, ..., N}. (10)

Similarly, here Bsingle cost more memory than Boverall.
Therefore, the latter one is more communication-friendly.

3.2.3 Local style transfer.

When client Cn receives the style bank B, the local data
can be augmented by transferring styles in B to existing
images, which introduces styles of other domains into this
client. A hyperparameter K ∈ {1, 2, ..., N} called augmen-
tation level, is set to choose K styles from style bank B for
the augmentation of each image, indicating the diversity of
final augmented data set. Suppose the size of the original
dataset is d, then after cross-client style transfer, the size of
the augmented data set will become d×K.

The workflow for local style transfer with two choices
of styles is illustrated in Algorithm 1. First, for each im-
age I in client Cn, K random domains are selected, and
each selected domain should have one style vector S to be
input into image generator G. If transfer the overall do-
main styles, simply choose the corresponding style Soverall

Algorithm 1 Local Cross-Client Style Transfer at Client Cn

Input: Training image set ICn , global style bank B.
Parameter: Augmentation level K, style type T .
Output: Augmented dataset DCn

1: DCn = [ ] ▷ Augmented dataset
2: for i = 1, 2, ...,m do ▷ m = size(I)
3: S = random.choice(B,K)
4: for SCn in S do
5: if Cn is current client then
6: DCn .append(Ii)
7: else if T is single mode then
8: DCn .append(G(Ii, random.choice(SCn , 1)))

▷ Eq. 5
9: else if T is overall mode then

10: DCn .append(G(Ii, S
Cn))

11: return DCn

from Boverall; otherwise if transfer single images styles,
one style Ssingle will be randomly chosen from SCn

bank as
the style of the selected domain in Bsingle. In both style
modes, if the domain itself is chosen, this image will be
directly put into the augmented data set.

4. Experiments
4.1. Datasets

We evaluate our method on two standard domain gener-
alization datasets (PACS [25], Office-Home [40]) that con-
sist of various image styles as domains and a real-world
medical image dataset (Camelyon17 [3]). Specifically,
PACS is a 7-class image recognition benchmark including
9,991 images with four different image style domains, in-
cluding photo, art, cartoon, and sketch. Office-Home is an-
other image recognition dataset that includes 15,588 images
of 65 classes from four different domains (art, clipart, prod-
uct, and real-world). Camelyon17 is a public tumor classifi-
cation dataset, which has histology images from 5 hospitals.

4.2. Experimental Settings

Experiment setup. We take each domain as a single
client and conduct the leave-one-domain-out experiments
on PACS and Office-Home datasets. Specifically, we select
one client as the target test domain and train our model on
the other clients. For the medical dataset, following the set-
ting of source/target domains in literature [3, 23], we apply
the leave-one-domain-out setting to hospital 4 and hospi-
tal 5. For the PACS dataset, we follow the JiGen [4] to split
90% data of each client as the training set and 10% of that as
the validation set for source clients, while for unseen target
clients, the entire data is used for testing. For OfficeHome
and Camelyon17, which have more data samples, the ratio
between train and validation set is 4:1 for each source client,
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Table 1: Accuracy comparison of image recognition on the PACS and Office-Home dataset, each single letter column repre-
sents an unseen target client. Our CCST with the overall domain style (K=3) outperforms other methods. We use FedAvg as
our base FL framework. Jigen, RSC, and Mixstyle are applied within each client. The backbone networks utilized in PACS
and Office-Home are ImageNet-pretrained ResNet50 and ResNet18 respectively. (†: Since COPA did not release their code,
we copy the results from their paper here. But it cannot directly compare with our results due to the setting difference.)

Method

PACS Office-Home

Avg.P A C S Avg. A C P R Avg.

FedAvg (AISTATS’17) [34] 95.51 82.23 78.20 73.56 82.37 60.08 45.59 69.48 72.82 61.99 72.18
Jigen (CVPR’19) [4] 95.99 84.72 77.09 72.16 82.49 60.29 46.16 69.26 72.59 62.07 72.28
RSC (ECCV’20) [17] 95.21 83.15 78.24 74.62 82.81 58.23 46.05 70.27 73.39 61.99 72.40

MixStyle (ICLR’21) [47] 95.93 85.99 80.03 75.46 84.35 58.44 50.29 70.61 70.64 62.49 73.42
FedDG (CVPR’21) [33] 96.23 83.94 79.27 73.30 83.19 60.70 45.82 71.51 73.05 62.77 72.98

COPA-Res18† (ICCV’21) [43] 94.60 83.30 79.80 82.50 85.10 59.40 55.10 74.80 75.00 66.10 75.60
CCST (Overall, K=3) 96.65 88.33 78.20 82.90 86.52 59.05 50.06 72.97 71.67 63.56 75.04

and 20% data is utilized as the test set on the unseen target
client. We compare our method with FedDG [33], which
aims to solve DG problems in federated learning for med-
ical image segmentation. We also test the performance of
three centralized DG methods under FL setting (FedAvg),
including JiGen [4], RSC [17] and MixStyle [47]. For
COPA, due to its re-designed layers of ResNet18 and un-
known train-validate-test split, we copy the results for ref-
erence only. We regard every single client as a centralized
dataset and apply these methods locally in FL. We report
the test accuracy on each unseen client by choosing the best
validation model.
Implementation details. We utilize the pre-trained
AdaIN [16] to perform style transfer. Following [17], we
choose ResNet [13] pre-trained on ImageNet as our back-
bone for PACS and Office-Home datasets. For the Came-
lyon17 dataset, we follow [19] to use the DenseNet121 [14].
We use FedAvg [34] as our FL framework and train the
model using SGD optimizer with 1e−3 learning rate for
500 communication rounds with one local update epoch
on the PACS and Office-Home dataset. For Camelyon17,
we train 100 communication rounds considering its large
data amount. The JiGen and RSC can be directly integrated
into the FedAvg without further modifications. We adapt
the MixStyle into an intra-client version that shuffles styles
inside each batch of data to fit the federated setting. All
hyper-parameters of compared methods are chosen based
on corresponding papers. We follow the standard train-
ing procedure of FedAvg [34] for federated training. The
value of M in is ⌈dataset size/32⌉ in our experiment. The
framework is implemented with PyTorch and is trained on
a single NVIDIA RTX 2080 Ti GPU.

4.3. Results

Comparison with state-of-the-arts. We compare our
approach with three centralized DG methods and a feder-

ated DG method for on standard DG benchmarks PACS and
OfficeHome as well as a real-world medical image dataset
Camelyon17. Table 1 presents the quantitative results of
the image recognition task for different target clients on
both PACS and Office-Home datasets. Each single letter
column shows the test accuracy of the global model with
the best validation accuracy on an unseen client. Although
all DG methods can have better performance based on Fe-
dAvg, our approach demonstrates a significant boost over
others on both datasets. On the PACS benchmark, our
method achieves the average accuracy of 86.52% , which
is 3.47% better than the second best method FedDG. Es-
pecially for the unseen client S (Sketch), CCST outper-
forms other methods by more than 7%. When photo is
the target domain, all the methods perform similarly be-
cause we start training based on the ImageNet-pretrained
model, which already has very high performance on photo
images. Besides the PACS benchmark, the performance of
our approach on the Office-Home dataset also has consis-
tent results. Specifically, CCST outperforms other methods
on average with a testing accuracy of 63.56%. Due to the
small discrepancy in domain styles, all those domain gen-
eralization methods bring smaller improvements (less than
1%) than on the PACS. Overall, CCST outperforms other
DG methods by a large margin. Figure 4a shows the results
on the Camelyon17 dataset, our method outperforms other
DG methods both when hospital 4 and hospital 5 as the tar-
get client. Some DG method, such as JiGen, is even harmful
when applied in FL setting on the Camelyon17 dataset.

Our CCST enables each local client model to update un-
der more diversified images, thus providing a wide range of
image styles. The more diversified intra-client distribution
helps reduce the bias towards fitting a specific distribution
and update the model with a more general direction. As
shown in Figure 3, the distribution of source clients become
much more uniform after applying our CCST method. In
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(a) Camelyon17 distribution before CCST.
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(b) Camelyon17 distribution after CCST.

Figure 3: The distribution of source clients on the Camelyon17 before and after our CCST when the target client is hospital
5. The y-axis is the average pixel count per image, and the x-axis is the greyscale values. Note that we convert the RGB into
grey images for distribution visualization. (a) Before CCST, the distributions of source clients are not uniform. (b) After
CCST with either single image style or overall style, the distributions of source clients become much more uniform.

contrast, for domain generalization methods aim to learn
more general features (e.g., Jigen, RSC), they suffer from
limited intra-client distribution and different inter-client dis-
tribution, only achieving marginal improvements. Similar
to CCST, MixStyle and FedDG also aim to increase the
model generalization ability by diversifying the feature dis-
tribution. While in the federated setting, MixStyle can only
perform intra-client feature diversification by assuming ev-
ery single image has a unique style, which set a limit on
its diversity level. FedDG utilizes amplitude information in
frequency space of an image as a kind of style information,
and perform amplitude exchange to diversify the data distri-
bution across clients. Nevertheless, the amplitude exchange
leads to minor appearance change, which may not enough
for images with a large domain gap, while CCST utilizes
style transfer to give a more thorough style exchange across
clients, which leads to better results. We give visualiza-
tion results after style transfer in the Section F of the sup-
plementary. The overall domain style usually represents a
more general and accurate client style, while the single im-
age style brings more randomness.

Control experiments on CCST. We conduct control ex-
periments to investigate two types of image style with dif-
ferent augmentation levels. In Table 2a, Single and Over-
all represents single image style and overall domain style
mentioned in Section 3 respectively. Different augmenta-
tion level K indicates the intensity of augmentation. We
evaluate the four settings on the PACS benchmark with
ResNet50. For each kind of style, larger augmentation level
K leads to a better performance. It is worth mentioning
that the performance achieved by K=2 is similar with K=3,
which indicates that our method can already achieve good
performance with a relatively large K. For different types of
style, overall domain style shows more improvement than
single image style because the overall style is able to rep-
resent a more general and accurate domain statistics, while
single image styles may differ a lot due to randomness.

Orthogonality. Our method is orthogonal to many other
DG methods and can lead to additive performance via com-
bined utilization. As many traditional domain generaliza-
tion methods require centralized data and need to make use
of various styles to achieve a domain robust model, CCST
can serve as an initial step to benefit traditional DG meth-
ods with diversified styles. As shown in Figure 4b, we
plot the average test accuracy of FedDG and three central-
ized DG methods on the PACS benchmark before and af-
ter applying our CCST. From the average accuracy, we can
see all DG methods benefit a further boost with the help
of cross-client style transfer (CCST). Interestingly, we find
the performance when tested on sketch client (S) gains the
largest improvement with CCST. Besides, we also extend
our method with Tent [41] which uses entropy to update
parameters in batch normalization layers at test time. As
shown in Table 2b, with this method combined in feder-
ated setting, our method surpasses the state-of-the-art DG
method EoA [2] on the PACS benchmark in centralized set-
ting with an average test accuracy of 90.47%.

4.4. Discussions

Computation and communication trade-off. To re-
duce the communication cost that is usually known as the
bottleneck of FL, we make a trade-off of using extra local
computational cost in the overall style computation stage.
Specifically, for the overall style, it requires a lot of local
computation. A possible solution could be only choosing a
relatively large portion of images from each class to approx-
imate the overall domain style. After local style computa-
tion, only lightweight style vectors (two 512 dimensional
vectors for each client) will be communicated between lo-
cal clients and the central server for once. The extra com-
putation cost of our CCST method is very low, we give a
quantitative analysis in the Section B of the supplementary.

Analysis for the privacy issue of the shared style
vector. Like all federated learning methods, our method
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Table 2: (a) Performance of our approach using ResNet50 as the backbone with four different image style transfer settings
compared with the baseline of FedAvg on the PACS benchmark. Each column represents a single unseen target client. (b)
Performance of our approach with test time adaptation (Tent) [41] on the PACS benchmark using ResNet50.

Setting Unseen client AverageP A C S
FedAvg [34] 95.51 82.23 78.20 73.56 82.37
Single (K=1) 95.75 87.5 74.66 76.56 83.62
Single (K=2) 96.77 86.23 75.73 80.12 84.71
Single (K=3) 96.65 86.63 74.53 81.85 84.84
Overall (K=1) 95.69 86.67 75.85 77.37 83.90
Overall (K=2) 96.41 88.72 78.03 80.91 86.02
Overall (K=3) 96.65 88.33 78.20 82.90 86.52

(a) Control experiment for CCST.

Setting Unseen client AverageP A C S
EoA [2] 98.00 90.50 83.40 82.50 88.60

Single (K=1) 97.78 89.55 84.51 82.79 88.66
Single (K=2) 97.54 89.40 84.43 85.42 89.20
Single (K=3) 98.08 89.75 86.05 86.03 89.98
Overall (K=1) 97.78 90.92 86.01 83.66 89.59
Overall (K=2) 98.38 90.72 86.47 85.62 90.30
Overall (K=3) 98.14 90.87 86.77 86.10 90.47

(b) CCST+Tent [41].

Source Clients Target Client

Hospital 5

Hospital 4

(a) Results on the Camelyon17. (b) Orthogonality on the PACS.

Figure 4: (a) The results on the Camelyon17 dataset. Our method outperforms other DG methods when tested on hospitals
4 and 5. (b) Extra performance boost on other domain generalization methods with our cross-domain style transfer (CCST)
with overall style on the PACS dataset. Each x-tick represents the single unseen client in a leave-one-client-out experiment,
and Avg. is abbreviated for the average accuracy.

may also suffer from privacy issue. However, it is diffi-
cult to reconstruct the original datasets with only a 1024-
dimensional style vector shared. First, different datasets
can have the same style vector. Second, the style vector
is the statistics of the pixel feature set, which has no order.
Even if we assume that the original pixel feature set can
be reconstructed, it is hard to rearrange those pixels into
proper order. This is even more difficult for the overall style
vector because it is the set statistics of pixels features from
many images. Therefore, one can hardly recover the whole
datasets only with our shared style vectors. We further ex-
perimented with reconstructing the original images from
style vectors using a state-of-the-art GAN generator [32].
The experiment shows that neither can a malicious source
client recover other clients’ images only from style vectors,
nor an outside attacker can reconstruct source images using
a pre-trained generator. Please refer to the Section A in the
supplementary for more details.

5. Conclusion

In this paper, we propose a novel DG method for im-
age recognition under the FL setting. Our method uti-
lizes cross-client style transfer to introduce all the source
client styles into each client while not violating the origi-
nal data-sharing restriction of FL. Two types of styles and
corresponding sharing mechanisms are proposed to be uti-
lized accordingly. The state-of-the-art generalization per-
formance of our method under the FL setting is demon-
strated on two standard DG datasets and a real-world med-
ical image dataset with comprehensive experiments. The
data style transfer strategy opens a new way for hetero-
geneous clients to access diversified distributions without
sharing original data, which helps the global model gener-
alize better in FL. Moreover, our method is orthogonal to
many other SOTA DG methods and can be combined to-
gether to have further performance boost.
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