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Abstract

Recently, masked image modeling (MIM) has gained
considerable attention due to its ability to learn from vast
amounts of unlabeled data and has been demonstrated to
be effective on various vision tasks involving natural im-
ages. Meanwhile, the potential of self-supervised learn-
ing in modeling 3D medical images is anticipated to be
immense due to the high quantities of unlabeled images
and the expense and difficulty of quality labels. How-
ever, MIM’s applicability to medical images remains un-
certain. In this paper, we demonstrate that masked im-
age modeling approaches can also advance 3D medical
image analysis in addition to natural images. We study
how masked image modeling strategies leverage perfor-
mance from the viewpoints of 3D medical image segmenta-
tion as a representative downstream task: i) when compared
to naive contrastive learning, masked image modeling ap-
proaches accelerate the convergence of supervised train-
ing even faster (1.40×) and ultimately produce a higher
dice score; ii) predicting raw voxel values with a high
masking ratio and a relatively smaller patch size is non-
trivial self-supervised pretext-task for medical images mod-
eling; iii) a lightweight decoder or projection head de-
sign for reconstruction is robust for masked image model-
ing on 3D medical images which speeds up training and
reduce cost; iv) finally, we also investigate the effective-
ness of MIM methods under different practical scenarios
where different image resolutions and labeled data ratios
are applied. Anonymized codes are available at https:
//github.com/ZEKAICHEN/MIM-Med3D.

1. Introduction
The demand for deep neural networks that conduct anal-

ysis tasks on 3D medical image data has expanded dra-
matically in recent years due to technological advances in
deep learning and hardware compute capabilities. 3D med-
ical volumetric images show much potential in healthcare,
which can help increase the speed and accuracy of diagnos-

ing patient conditions. For instance, properly and swiftly
discovering and measuring tumor lesions from MRI/CT
scans would be critical to disease prevention, early detec-
tion, and treatment plan optimization and would also spur
the development of more successful clinical applications
that would ultimately improve patients’ lives [6]. However,
the high expense of expert annotation frequently stymies
attempts to leverage advances in clinical outcomes using
deep learning approaches. Annotations of 3D medical im-
ages at scale by radiologists are limited, expensive, and
time-consuming to produce. Another barrier in 3D medical
imaging is data volume, driven by the increased 3D image
dimensionality and resolution, resulting in significant pro-
cessing complexity. Consequently, training deep learning
models on 3D medical images from random initialization
necessitates burdensome compute and data requirements.

As a viable alternative, self-supervised learning [26] ob-
tains supervisory signals from the data itself and has re-
cently been shown to address the appetite for data success-
fully and to be capable of learning generalizable dense rep-
resentations of the input. Among contemporary approaches,
masked signal modeling is one such learning task: mask-
ing a subset of input signals and attempting to forecast the
masked signals. This paradigm has been extremely success-
ful in NLP since self-supervised learning algorithms based
on the masked language modeling task have largely revo-
lutionized the discipline [13, 39, 40, 7], demonstrating that
giant models such as BERT [13] and GPT [39, 40, 7] can be
learned on unlabeled text data and adapted to a wide vari-
ety of applications. More importantly, with the introduction
of Vision Transformers (ViT) [51, 15], the architecture gap,
where it was not intuitive to apply mask tokens [51, 13] us-
ing covolutions [27], is no longer an obstacle. Following
this philosophy, latest approaches baased on masked image
modeling (MIM) have demonstrated their efficacy in the de-
velopment of scalable vision models [23, 56, 2]. Despite
these accomplishments, masked image modeling-based al-
gorithms have received little attention in medical imaging
modeling, and their applicability has not been thoroughly
investigated. Naturally, we wonder whether masked im-
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(a) The SimCLR architec-
ture.

(b) The MAE architecture. (c) The SimMIM architecture.

Figure 1: Illustration of different self-supervised learning methods for modeling 3D medical images.

age modeling will advance 3D medical imaging analysis as
well. In this work, we aim to address this question from the
following attempts:

• Contrastive learning [5, 19, 10] has been proven in a
few studies to be capable of learning generic repre-
sentations of medical images that leverage the down-
stream tasks such as 3D segmentation and classifica-
tion [47, 1, 48]. It is worthwhile to compare masked
image modeling to contrastive learning approaches
(see Fig. 1a for illustration) on medical images.

• Natural images are raw, low-level signals with a sig-
nificant degree of spatial redundancy; restoring some
missing patches can be accomplished by directly copy-
ing surrounding patches with little high-level under-
standing of the objects and sceneries [23]. Most back-
ground tissues are comparable for certain CT/MRI
scans with solid tumors, making it even more diffi-
cult for the model to learn useful features about the
lesion regions. As a result, we assess several mask-
ing strategies (masked patch size and masking ratio)
to determine the most efficient way to promote holistic
comprehension beyond low-level data while avoiding
excessive attention to features such as texture and ma-
terials.

• In practice, medical image analysis is utilized in a va-
riety of contexts with varying amounts of annotated
data, accessible unlabeled data, and even image res-
olutions. As a result, it is also vital for us to exten-
sively analyze how these elements affect the pertaining
as well as the performance of downstream tasks.

This paper investigates how masked image modeling-based
self-supervised learning can be utilized to improve 3D med-
ical image analysis. It does so by conducting extensive ex-
periments on two real-world benchmark datasets: multi-
organ segmentation1 and brain tumor segmentation [44].

1https://www.synapse.org/#!Synapse:syn3193805/wiki/89480

Our experimental results demonstrate that masked image
modeling is advantageous for modeling 3D medical images
by significantly speeding up training convergence (e.g., at
most 1.4× training cost saving to reach the same dice score)
and ultimately improved downstream performance (e.g.,
over 5% improvements on both segmentation with simple
training recipe).

2. Related Work
Masked Image Modeling. Masked image modeling is a
self-supervised learning method that learns representations
via recovering masking-corrupted images. It evolved in line
with the MLM task in NLP but remained out of the main-
stream for a long period. DAE [52] is a pioneering work
in this domain, presenting masking as a noise type. The
context encoder [37] predicts the missing pixels by inpaint-
ing a large rectangular area of the source images. Recent
techniques [8, 15, 4] based on Transformers [51] are moti-
vated by the success of NLP. iGPT [8] groups pixel values
into different clusters and classify unknown pixels. The ViT
study [15] investigates masked patch prediction for self-
supervised learning by predicting the mean color of images.
BEiT [4] recently used a dVAE network to tokenize and
forecast pixel values into discrete numbers [50, 42]. More
recently, MAE [23] adheres to the spirit of raw pixel restora-
tion, demonstrating for the first time that masking a high
proportion of the input images can yield a non-trivial and
meaningful self-supervisory task. It adopts a design of au-
toencoder with a lightweight decoder, which reduces train-
ing costs even more. SimMIM [56] takes it a step further
and substitutes the entire decoder with a single linear pro-
jection layer, resulting in comparable results. Approaches
such as data2vec [2] and CAE [11] make predictions in
the latent representation space from the visible patches to
the masked patches, attempting to make MIM a universal
framework for self-supervised learning. Nonetheless, the
techniques described above have only been shown to be use-
ful for natural image modeling. In this work, we aim to
investigate whether MIM approaches can also advance 3D
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Figure 2: Example results of one CT scan from TCIA-COVID19 [20] validation set. As the original images are all 3D
volumes, we show the reconstructed images in the form of slices, where the indexing number represents the depth. For each
triplet, we show the ground truth (left), the masked image (middle), and the SimMIM [56] reconstruction (right). In this case,
a ViT-Base backbone is applied for the encoder, the masked patch size is 16 (for all dimensions), and the masking ratio is
75% following [56].

medical image analysis.

Transfer Learning in Medical Image Analysis. Trans-
fer learning from natural images is extensively utilized in
medical image analysis [31, 34], regardless of disparities
in image statistics, scale, and task-relevant characteristics.
Raghu et al. [41] and [1] showed that transfer learning from
ImageNet could accelerate convergence on medical images,
which is especially useful when the medical image train-
ing data is limited. Transfer learning using domain-specific
data can also assist in resolving the domain disparity issue.
For instance, [9, 29] indicates improved performance fol-
lowing pretraining on labeled data from the same domain.
However, this strategy is frequently impractical for various
medical scenarios requiring labeled data that is costly and
time-consuming to gather.

Self-Supervised Learning. Early work in self-supervised
learning focuses on learning representations from unlabeled
data so that a low-capacity classifier can achieve high ac-
curacy using these embeddings [14, 53, 35, 57, 36, 16].
For years, contrastive learning [5, 19, 54, 49, 24, 10] has
received much interest as one of the most popular and
widespread self-supervised learning strategies. It mod-
els image similarity and dissimilarity (or solely similar-
ity [17, 12]) between two or more views, with data aug-
mentation crucial for contrastive and related approaches.
According to several previous pieces of literature, self-
supervised learning has also been used in the medical field.
Domain-specific pretext tasks [46, 3, 60, 59], for example,

have been studied, while other work [30, 25, 58, 28] focuses
on tailoring contrastive learning to medical data. Taleb et
al. [47], in particular, examines a range of self-supervised
learning strategies for 3D medical imaging in depth. MI-
CLe [1] demonstrates that a model pre-trained on ImageNet
can also advance Dermatology image classification. Tang
et al. [48] further combines inpainting [37] with contrastive
learning for medical segmentation. Although all of these
methods have shown promise in medical imaging, masked
image modeling-based methods have yet to be substantially
investigated in this discipline.

3. Approach

Masked image modeling approaches, in general, mask
out a portion of input images or encoded image tokens
and encourage the model to recreate the masked area.
Many extant MIM models employ an encoder-decoder de-
sign followed by a projection head, such as BEiT [4] and
MAE [23]. The encoder aids in modeling latent feature
representations, while the decoder aids in resampling la-
tent vectors to original images. A projection head will sub-
sequently align the encoded or decoded embeddings with
the original signals at the masked area. Notably, the de-
coder component has been suggested to be designed in a
lightweight manner in order to minimize training time. In
our experience, a lightweight decoder reduces computing
complexity and increases the encoder’s ability to learn more
generalizable representations that the decoder can quickly
grasp, translate and convey. As a result, while the encoder
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Figure 3: Example results of another CT scan from TCIA-COVID19 validation set. Same as Fig. 2, we show the reconstructed
images slice by slice, where the indexing number represents the depth. For each triplet, we show the ground truth (left),
the masked image (middle), and the MAE [23] reconstruction (right). In this case, a ViT-Large is applied as the encoder
backbone, the masked patch size is 16 (for all dimensions), and the masking ratio is 75% following [23].

is more critical (only the encoder would be inherited for
finetuning), methods like SimMIM [56] simplify the archi-
tecture even more by obviating the entire decoder with a
single projection layer. In this work, we thoroughly investi-
gate the effectiveness of different MIM models on 3D med-
ical imaging data. The following components provide more
details:

3.1. Masking Strategies

Following ViT[15], an image is divided into regular non-
overlapping patches (e.g. a 96× 96× 96 3D volume will
be divided into 216 patches of 16× 16× 16 smaller vol-
umes), which are often considered as the primary process-
ing units of vision Transformers. Multiple random masking
methods have been proposed in the previous literature: 1)
InPainting [37] introduced a central region masking strat-
egy; 2) BEiT [4] proposed a complex block-wise masking
strategy; 3) most recent approaches such as MAE [23] and
SimMIM [56] followed a more straightforward uniformly
random masking method at patch-level while investigating
different masked patch sizes and masking ratios (see Fig. 1b
and Fig. 1c, respectively). Many random masking schemes
are patch-based since it is more convenient to operate mask-
ing on a patch-by-patch basis, where a patch is either fully
visible or masked. As demonstrated by these works, the
uniformly random sampling with a high masking ratio effec-
tively eliminates redundancy, resulting in a self-supervisory
task that cannot be easily solved by extrapolation from visi-
ble neighboring patches. Meanwhile, a potential center bias
(i.e. more masked patches near the image center) is avoided
by the uniform distribution. Finally, the sparse input allows

for the development of an efficient encoder, which will be
discussed next. In this work, we also use the random patch
masking approach for simplicity and efficacy.

3.2. Encoders

Encoders are responsible for modeling latent feature rep-
resentations of the masked patches, which are then uti-
lized to forecast the original signals in the masked area.
The learned encoder should be capable of adapting to a
wide range of vision tasks. We consider a variety of ar-
chitectures in this paper, including two fundamental vision
Transformer architectures: vanilla ViT [51, 15] and Swin-
Transformer [32], as well as one attentional visual network
VAN [18], which inherits the attention mechanism to derive
hierarchical representations similar to SwinTransformer but
using pure convolutions. All models are reimplemented to
3D versions in order to accommodate the 3D volume data.
We refer to these models as ViT3D, SwinTransformer3D,
and VAN3D.

3.3. Decoders

For methods that follow an auto-encoder design to recon-
struct the image, the decoder takes the entire collection of
encoded tokens, including 1) encoded visible patches and
2) mask tokens. Each randomly initialized mask token is
a learnable vector jointly optimized to reveal the masked
patches. The absolute positional embeddings [51] or rel-
ative positional embeddings [32] are also applied to these
mask tokens corresponding to the backbone architecture.
Additionally, all the masked patches are invisible to the en-
coder, and only the decoder can see all tokens. As proved
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in [23], this can save more computation and memory while
not interfering with training. Meanwhile, the decoder back-
bones are independent of the encoder backbones, which are
likewise optional (see Fig. 1b). By default, we follow [23]
and use another series of Transformer blocks for decoding.

3.4. Reconstruction Target

Raw voxel value prediction. For a 3D medical image, re-
constructing the inputs by estimating the raw voxel values
for each mask token is simple and intuitive. The distance
between recovered and original images in voxel space can
be computed using a loss function of either l1 loss or l2 loss.
Furthermore, the loss is only computed on masked patches,
preventing the model from engaging in self-reconstruction,
which might potentially dominate the learning process and
ultimately impede knowledge learning. Notably, most vi-
sion Transformer topologies will downsample the original
image resolution. For 3D medical images, a 96× volume
resolution will be downsampled to 9× (i.e. 1*9*9*9≈768
using ViT-Base) and 3× using SwinTransformer or VAN.
Therefore, for vanilla ViT, we apply a single linear projec-
tion layer to transform the latent embeddings to the origi-
nal voxel space; for SwinTransformer and VAN, we apply
two-layers convolutional transpose to upsample the com-
pressed embeddings to the original resolution. See Fig. 2
and Fig. 3 for the reconstruction of 3D lung CT scans from
TCIA-COVID19 using SimMIM [56] and MAE [23], re-
spectively.

Other predictions. Many earlier studies transform
masked signals to clusters or classes rather than raw pixel
values. For example, iGPT [8] uses k-means to divide the
RGB values into 512 clusters and encourage the model
to predict which cluster each pixel belongs to. BEiT [4]
employs a discrete VAE (dVAE) to convert image patches
to discrete tokens. The prediction objective is then based on
the token identity. On the other hand, medical images are
often sparse, and voxel values are not scaled intensive. The
fine-grained texture or material information may be lost by
replacing the original signals with a discrete class target.
As a result, we concentrate on predicting raw voxel values
in this work for the sake of simplicity and robustness.

4. Experiments on 3D Segmentation
We evaluate masked image modeling methods on two

separate 3D segmentation tasks that involve both CT and
MRI imaging modalities.

Datasets. BTCV2 comprises 30 participants who had ab-
dominal CT scans with 13 organs annotated by interpreters

2https://www.synapse.org/#!Synapse:syn3193805/wiki/89480

Figure 4: An illustration of how MIM pre-training advances
the downstream supervised fine-tuning. We compare the av-
erage dice score on validation set between supervised base-
line and different MIM methods using different masking
ratios across training steps. Masked image modeling pre-
training can significantly save training costs and generate
better performance.

at Vanderbilt University Medical Center under the super-
vision of clinical radiologists. The first 24 volumes are
used for training, and we report on 6 validation volumes.
BraTS [44] contains a training set of 387 multi-modal multi-
site MRI data (FLAIR, T1w, T1gd, T2w) with ground truth
labels of gliomas segmentation necrotic/active tumor and
edema is used for brain tumor segmentation. Additionally,
we utilize a public dataset TCIA-COVID19 [20] consisting
of unenhanced chest CTs of patients with COVID19 infec-
tions. There are 771 volumes collected from 661 patients
in total. In an ablation study, we adopt this extra unlabeled
dataset for self-supervised learning. For more information
and data preprocessing details regarding the datasets, one
may refer to the supplementary materials due to the space
limitation.

Supervised Baselines. UNETR [22] is a U-shaped
encoder-decoder architecture for medical segmentation that
employs a ViT as the encoder backbone and a convolutional
upsampling decoder following U-Net [43] design. It is one
of the SOTA models in the domain of medical imaging seg-
mentation that incorporates the vision Transformers as the
backbone. UNETR-Base represents a ViT-Base [15] is ap-
plied as the encoder backbone. We adopt UNETR-B as the
default supervised baseline in our ablation study. For other
backbones (SwinTransformer and VAN) that produce hier-
archical features, we adopt UPerNet [55] as the decode head
by default for downstream segmentation. Dice score [45] is
utilized to evaluate the accuracy of segmentation in our ex-
periments consistently.
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Methods Backbones Multi-Organ Sementation Avg. ↑
Spleen RKid LKid Gall Eso Liv Sto Aor IVC Veins Pan RAG LAG

Sup. baseline [22]
our impl.

ViT3D-B [15] 0.8902 0.8926 0.8769 0.4763 0.4891 0.9447 0.7475 0.8207 0.773 0.6175 0.6442 0.5663 0.4699 0.7084
ViT3D-L 0.8993 0.9018 0.8859 0.4813 0.4942 0.9543 0.7553 0.8292 0.7810 0.6239 0.6508 0.5721 0.4749 0.7157
Swin3D-T [32] 0.8638 0.8661 0.8508 0.4622 0.4746 0.9166 0.7255 0.7963 0.7500 0.5992 0.6252 0.5496 0.4560 0.6874
Swin3D-S 0.8792 0.8815 0.8661 0.4704 0.4831 0.9331 0.7383 0.8107 0.7635 0.6099 0.6363 0.5594 0.4641 0.6997
Swin3D-B 0.8852 0.8876 0.8721 0.4737 0.4864 0.9395 0.7434 0.8162 0.7687 0.6141 0.6407 0.5632 0.4673 0.7045
VAN3D-S [18] 0.8572 0.8595 0.8444 0.4587 0.4711 0.9098 0.7198 0.7904 0.7444 0.5946 0.6204 0.5454 0.4525 0.6822
VAN3D-B 0.8813 0.8837 0.8682 0.4716 0.4843 0.9354 0.7401 0.8126 0.7653 0.6114 0.6379 0.5607 0.4653 0.7014

SimCLR [10] ViT3D-B [15] 0.9110 0.9135 0.8974 0.4875 0.5007 0.9669 0.7650 0.8399 0.7912 0.6320 0.6594 0.5795 0.4810 0.7249
ViT3D-L 0.9279 0.9304 0.9141 0.4965 0.5099 0.9849 0.7792 0.8556 0.8058 0.6437 0.6716 0.5904 0.4899 0.7385

MAE [23] ViT3D-B [15] 0.9488 0.9502 0.9341 0.5066 0.521 0.9863 0.7969 0.8742 0.8248 0.6589 0.6868 0.6052 0.5010 0.7534
ViT3D-L 0.9541 0.9566 0.9399 0.5105 0.5243 0.9878 0.8012 0.8797 0.8285 0.6618 0.6905 0.6070 0.5037 0.7574

SimMIM [56]

ViT3D-B [15] 0.9520 0.9545 0.9378 0.5194 0.5232 0.9875 0.7995 0.8776 0.8267 0.6605 0.6890 0.6076 0.5126 0.7575
ViT3D-L 0.9556 0.9582 0.9414 0.5206 0.5352 0.9898 0.8025 0.8811 0.8298 0.6649 0.6916 0.6088 0.5045 0.7603
Swin3D-T [32] 0.9157 0.9182 0.9021 0.4900 0.5032 0.9719 0.7690 0.8443 0.7952 0.6352 0.6628 0.5826 0.4834 0.7288
Swin3D-S 0.9319 0.9344 0.9181 0.4987 0.5121 0.9891 0.7826 0.8593 0.8093 0.6465 0.6745 0.5929 0.4920 0.7416
Swin3D-B 0.9387 0.9413 0.9248 0.5023 0.5159 0.9963 0.7883 0.8656 0.8152 0.6512 0.6794 0.5973 0.4956 0.7471
VAN3D-S [18] 0.9090 0.9115 0.8955 0.4864 0.4995 0.9648 0.7634 0.8382 0.7894 0.6306 0.6579 0.5784 0.4799 0.7234
VAN3D-B 0.9350 0.9375 0.9211 0.5003 0.5138 0.9924 0.7852 0.8621 0.8119 0.6486 0.6767 0.5949 0.4936 0.7441

Table 1: Main results on multi-organ segmentation task. All models are pretrained on a combination of BTCV and TCIA-
COVID19 [20] datasets. The BTCV validation set is utilized for validation consistently.

Implementation Settings. All of the models are imple-
mented in PyTorch3. We use MONAI4 for data transfor-
mations and loading. In our ablation studies, we use ViT-
Base [15] as the default encoder backbone. For the super-
vised baseline of organ segmentation, we employ a batch
size of 4, the AdamW [33] optimizer, and a learning rate of
0.0003 with a weight decay of 0.05 (because ViT-based ar-
chitectures are enormous and easily overfit) based on a lin-
ear warmup up to 300 epochs and cosine annealing sched-
uler. Training is conducted on a single NVIDIA A10G GPU
for a total of 3000 epochs. For brain tumor segmentation,
the batch size is set to 8 as the training is conducted on
4 NVIDIA A10G GPUs for 1000 epochs. We use a 100
epochs linear warmup, and the optimizer settings are com-
patible with organ segmentation. Our supplementary mate-
rial provides additional information.

4.1. Comparison among Different Approaches

We begin by evaluating 1) how masked image modeling
methods compare to contrastive learning approaches and 2)
how different masked image modeling approaches perform
in comparison to one another using MAE [23] and Sim-
MIM [56] and a conventional contrastive learning method-
ology SimCLR [10]. We evaluate a range of encoder back-
bones with varying network sizes, including pure vision
Transformer [15], SwinTransformer [32], and visual atten-
tional network (VAN) [18]. For MAE, we use an 8-layer
Transformer block with 512-d as the decoder; for SimMIM,
we use a single linear layer as the projection head. We use a
two-layer convolutional transpose as the projection head for

3https://pytorch.org
4https://github.com/Project-MONAI

Methods Backbones Brain Tumor Sementation Avg. ↑
TC WT ET

Sup. baseline [22]
our impl.

ViT3D-B [15] 0.8162 0.8781 0.5734 0.7559
ViT3D-L 0.8178 0.8798 0.5745 0.7574

SimCLR [10] ViT3D-B [15] 0.8360 0.8988 0.5869 0.7739
ViT3D-L 0.8313 0.8944 0.5842 0.7699

MAE [23] ViT3D-B [15] 0.8690 0.9340 0.6104 0.8045
ViT3D-L 0.8723 0.9385 0.6130 0.8079

SimMIM [56]

ViT3D-B [15] 0.8734 0.9394 0.6103 0.8077
ViT-L 0.8738 0.9401 0.6141 0.8093
Swin3D-S [32] 0.8428 0.9067 0.5922 0.7806
Swin3D-B 0.8556 0.9205 0.6013 0.7924
VAN3D-B [18] 0.8406 0.9043 0.5907 0.7785
VAN3D-L 0.8522 0.9169 0.5989 0.7893

Table 2: Main results on brain tumor segmentation. All
models are pretrained on BraTS [44] training set without
extra data source.

pretraining and the UPerNet [55] for segmentation in both
Swin3D and VAN3D. All other hyper-parameters were set
identically in this investigation. Additionally, because the
whole 3D image volume is typically challenging to load
directly into the GPU (memory explosion), we employ a
sliding window training strategy [38, 22, 21] in which the
original image is divided into several (96×96×96) small
3D windows. For all ViTs, a patch size of 16 is utilized by
default.

Tab. 1 demonstrates that masked image modeling ap-
proaches outperform contrastive learning methods in gen-
eral, as both MAE [23] and SimMIM [56] achieve an av-
erage dice score of around 0.752∼0.758, while SimCLR
achieves an average dice score of around 0.723, which is
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4.5% lower than the best approach. The segmentation find-
ings for BraTS in Tab. 2 follow a similar pattern. The av-
erage dice score for masked image modeling approaches is
somewhat greater than 0.80; however, SimCLR [10] obtains
a dice value of 0.7739, which is 4.37% lower than the best
approach comparable to Tab. 1. Another note is that, despite
the similarity of the two MIM techniques, SimMIM [56]
achieves slightly better performance than MAE [23], as
demonstrated by both Tab. 1 and Tab. 2. One explana-
tion for this phenomenon is that an efficient decoder (even
a lightweight one) may be able to reconstruct the origi-
nal image even if the encoder does not acquire general-
izable representations, cyclically easing the motivation of
the encoder to learn more effective representations. Self-
supervised learning’s ultimate goal is always to learn ef-
fective and generalizable representations of the data rather
than self-convergence only. In comparison, SimMIM [56]
employs an even lighter design by omitting the decoder en-
tirely, which pushes the encoder to perform more complex
reconstruction and learning tasks.

Additionally, masked image modeling approaches dra-
matically increase the training speed and reduce the cost, as
seen by Fig. 4. SimMIM-based architectures can obtain a
1.76× better dice score at the 1.3k training step. Moreover,
MIM-based approaches can reach a dice score of 0.7 with
1.4× less training time than the training time required for
supervised baseline.

4.2. Masking Strategy

Additionally, we investigate the effectiveness of different
masked patch sizes and masking ratios on self-supervised
learning performance. The performance of several MIM
techniques at finetuning segmentation is summarized in
Tab. 3 and Tab. 4. The following observations are made:
i) Consistent with the original MAE literature [23], we
conclude that a higher masking ratio is a non-trivial self-
supervised learning job that would continually drive the
model to build generalizable representations that can be
transferred effectively to downstream tasks. For example,
the best dice scores on multi-organ segmentation and brain
tumor segmentation tasks are obtained when a masking ra-
tio of 0.75 is used across multiple patch sizes (e.g., 0.7183
for patch size 16 in Tab. 3, and 0.8041 for patch sizes 24
and 32 in Tab. 4). ii) A high masking ratio combined with a
small patch size likewise results in a relatively good perfor-
mance when used in conjunction with SimMIM [56], sim-
ilar to MAE [23]. As demonstrated by Tab. 3 and Tab. 4,
when the patch size is equal to 16, the models perform op-
timally with dice scores of 0.7249 and 0.8077, respectively.
iii) However, as the patch size increases, the SimMIM [56]
method appears less sensitive to this masking ratio. For in-
stance, when the patch size is 32, models can earn the high-
est dice score with a masking ratio of 0.15, the smallest pos-

Methods Masked patch size Masking ratio Dice score Avg. ↑

MAE [23]

16 0.15 0.7156
16 0.30 0.7114
16 0.45 0.6896
16 0.60 0.7153
16 0.75 0.7183

24 0.15 0.6471
24 0.45 0.7123
24 0.75 0.7244

32 0.15 0.7065
32 0.45 0.7184
32 0.75 0.7048

SimMIM [56]

16 0.15 0.7144
16 0.30 0.7248
16 0.45 0.7227
16 0.60 0.7208
16 0.75 0.7249

24 0.15 0.7292
24 0.45 0.7278
24 0.75 0.7156

32 0.15 0.7471
32 0.45 0.7264
32 0.75 0.7245

Table 3: Ablation study of different masked patch size and
masking ratio on multi-organ segmentation. The default
backbone of ViT-B is applied as the UNETR encoder. No-
tably, in this table, we compare models that have been pre-
trained on the BTCV training set alone; no other datasets
are used.

sible masking ratio. One hypothesis is that medical images
are typically raw, low-level signals with a large degree of
spatial redundancy; recovering some missing patches can
be performed by directly copying nearby patches with little
comprehensive knowledge of the objects and surroundings.
A single small masked patch cannot adequately mask com-
plicated and intersecting structures or locations, but a high
patch size may be able to hide more significant signals inde-
pendently. As a result, a high masking ratio for small patch
sizes is more critical than a high masking ratio for big patch
sizes.

4.3. Data vs. Resolutions vs. Labeled Ratio

In this section, we analyze the results to address the
following three questions: i) Does increasing the amount
of pretraining data improve downstream performance? ii)
How do different pretrained resolutions affect downstream
knowledge transfer? Moreover, iii) how do masked image
learning approaches improve performance when using vary-
ing amounts of labeled data? All pretraining in Tab. 5 is
based on the MAE [23] architecture, which utilizes a ViT-
Base/16 as the backbone with a masking ratio of 75%, as
demonstrated in Tab. 3 and Tab. 4. Differently labeled ra-
tios indicate that we employ a varying percentage of anno-
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Methods Masked patch size Masking ratio Dice score Avg. ↑

MAE [23]

16 0.15 0.7864
16 0.30 0.7854
16 0.45 0.7902
16 0.60 0.7965
16 0.75 0.8045

24 0.15 0.7412
24 0.45 0.7947
24 0.75 0.8041

32 0.15 0.7823
32 0.45 0.7819
32 0.75 0.8041

SimMIM [56]

16 0.15 0.7818
16 0.30 0.7923
16 0.45 0.7945
16 0.60 0.8058
16 0.75 0.8077

24 0.15 0.7852
24 0.45 0.7654
24 0.75 0.7982

32 0.15 0.7985
32 0.45 0.7958
32 0.75 0.7986

Table 4: Ablation study on different masked patch sizes and
masking ratios on brain tumor segmentation. Likewise, the
pretraining data consists entirely of the BraTS dataset itself
and the ViT-B is applied as the encoder backbone in UN-
ETR for segmentation finetuning.

Resolutions
(downsampled ratio) Pretrain data Labeled ratio Dice avg.

(2.0x, 2.0x, 2.0x) COVID19 + BTCV 50% 0.6919
(2.0x, 2.0x, 2.0x) COVID19 + BTCV 100% 0.7338
(1.5x, 1.5x, 2.0x) COVID19 + BTCV 50% 0.7024
(1.5x, 1.5x, 2.0x) COVID19 + BTCV 100% 0.7534
(2.0x, 2.0x, 2.0x) BTCV 50% 0.6552
(2.0x, 2.0x, 2.0x) BTCV 100% 0.7018
(1.5x, 1.5x, 2.0x) BTCV 50% 0.6814
(1.5x, 1.5x, 2.0x) BTCV 100% 0.7183

Table 5: We use MAE [23] (p/16 and m/75%) as the back-
bone for this ablation study. Models are pretrained on a
variety of different data sources with varying degrees of
downsampling. Then the pretrained models are finetuned
on multi-organ segmentation dataset with varying labeled
data ratios. Each model is validated using the same BTCV
validation set.

tated BTCV CT scans (e.g., 50% = 12 images, 100% = 24
images) for downstream finetuning, whereas the validation
set of 6 images is consistent.

In the majority of supervised learning cases, more train-
ing data results in improved performance. Given that the
majority of medical images are similar from the bottom
logic up, we ask if this holds in the case of self-supervised
learning, and in particular, how many benefits can be gained

through size of pretrain data when utilizing MIM for 3D
medical analysis. We adopt multi-organ segmentation as
the example downstream task and create two distinct train-
ing scenarios: one that uses both COVID19 and BTCV
datasets and another that uses only BTCV. Tab. 5 demon-
strates the constant tendency that models trained on more
plentiful pretrained data outperform models trained on less
pretrained data (e.g., 0.7534→0.7183: 4.9% improvements,
0.7338→0.7018: 4.6% improvements). This advantage
is even more pronounced at lower image resolutions, as
0.6919 is 5.6% more than 0.6552 when only half labeled
data is used.

In Tab. 5, we also explore how different pretrained image
resolutions affect the downstream task performance. Intu-
itively, a higher pretraining resolution should result in better
segmentation results [1], as the images contain more gran-
ular information. Here, we utilize different downsampled
ratios to represent the degree to which the original signals
are compressed in all dimensions for each volume. Specif-
ically, a bilinear interpolation function is used in conjunc-
tion with MONAI’s spacingd transformations. As can be
observed from Tab. 5, pretrained models with higher reso-
lutions (1.5x, 1.5x, 2.0x) generally perform better than pre-
trained models with lower resolutions (2.0x, 2.0x, 2.0x).
For instance, a 0.7338 dice score is 2.7% lower than the
one pretrained using the same data source and labeled ratio
but using a greater resolution.

In a practical situation, the majority of the medical im-
ages, such as CT/MRI scans, are left unannotated due to
the high cost of labeling. However, the public data is freely
available and abundant; the aforementioned results again il-
lustrate that pretraining on large datasets followed by fine-
tuning with small samples is feasible. It also demonstrates
that masked image learning can significantly improve the
downstream task performance in various contexts.

5. Conclusion

This paper demonstrates how masked image modeling
approaches in self-supervised learning leverage 3D medi-
cal image modeling by conducting extensive experiments
on two sample segmentation tasks. We show how masked
image modeling outperforms traditional contrastive learn-
ing by speeding up convergence and significantly improving
downstream task performance. We also show how masked
image modeling approaches can be utilized to advance 3D
medical image modeling in a variety of situations. However,
the fact that almost all medical images are weakly labeled
(e.g. as little as few lines of text for description) rather than
entirely unannotated is an open question we would like to
investigate further in the future. We are interested in com-
paring self-supervised learning to supervised learning with
limited supervisory signals.
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