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Figure 1. Three example match cuts where the framing of the sub-
ject is matched: (left) Forrest Gump (1994), (center) Up (2009),
and (right) 2001: A Space Odyssey (1968).

Abstract

A match cut is a transition between a pair of shots that
uses similar framing, composition, or action to fluidly bring
the viewer from one scene to the next. Match cuts are
frequently used in film, television, and advertising. How-
ever, finding shots that work together is a highly man-
ual and time-consuming process that can take days. We
propose a modular and flexible system to efficiently find
high-quality match cut candidates starting from millions
of shot pairs. We annotate and release a dataset of ap-
proximately 20k labeled pairs that we use to evaluate our
system, using both classification and metric learning ap-
proaches that leverage a variety of image, video, audio,
and audio-visual feature extractors. In addition, we release
code and embeddings for reproducing our experiments at
github.com/netflix/matchcut.

1. Introduction
In film, a shot is a series of frames representing an unin-

terrupted period of time between two cuts [12]. A match cut
is a transition between a pair of shots that uses similar fram-
ing, composition, or action to fluidly bring the viewer from
one scene to the next. It is a powerful visual storytelling
tool used to create a connection between two scenes.

For example, a match cut from a person to their younger
or older self is commonly used in film to signify a flashback

Figure 2. A match cut from the Star Wars: The Rise of Skywalker
(2019) [1] trailer. The trailer editor took two shots from the differ-
ent scenes with similar jump motions and cut them together. The
matched motion gives the illusion of one continuous jump.

or flash-forward to help build the backstory of a character.
Two example films that used this are Forrest Gump (1994)
[79] and Up (2009) [21] (Fig. 1). Without this technique, a
narrator or character might have to explicitly verbalize that
information, which may ruin the flow of the film.

A famous example from Stanley Kubrik’s 2001: A Space
Odyssey [43] is also shown in Fig. 1. This iconic match cut
from a spinning bone to a spaceship instantaneously takes
the viewer forward millions of years into the future. It is a
highly artistic edit which suggests that mankind’s evolution
from primates to space technology is natural and inevitable.

Match cuts can use any combination of elements, such
as framing, motion, action, subject matter, audio, lighting,
and color. In this paper, we will specifically address two
types: (1) character frame match cuts, in which the framing
of the character in the first shot aligns with the character in
the second shot, and (2) motion match cuts, where shots are
matched together on the basis of general movement. Mo-
tion match cuts can use common camera movement (pan
left/right, zoom in/out) or motion of subjects. They create
the feeling of smooth transitions between inherently discon-
tinuous shots. An example is shown in Fig. 2.

Match cutting is considered one of the most difficult
video editing techniques [22], because finding a pair of
shots that match well is tedious and time-consuming. For
a feature film, there are approximately 2k shots on average,
which translates to 2M possible shot pairs, the vast majority
of which will not be good match cuts. An editor typically
watches one or more long-form videos and relies on mem-
ory or manual tagging to identify shots that would match to
a reference shot observed earlier. Given the large number of
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shot pairs that need to be compared, it is easy to overlook
many desirable match cuts.

Our goal is to make finding match cuts vastly more ef-
ficient by presenting a ranked list of match cut pair can-
didates to the editors, so they are selecting from, e.g., the
top 50 shot pairs most likely to be good match cuts, rather
than millions of random ones. This is a challenging video
editing task that requires complex understanding of visual
composition, motion, action, and sound.

Our contributions in this paper are the following: (1) We
propose a modular and flexible system for generating match
cut candidates. Our system has been successfully utilized
by editors in creating promotional media assets (e.g. trail-
ers) and can also be used in post-production to find matched
shots in large amount of pre-final video. (2) We release a
dataset of roughly 20k labeled match cut pairs for two types
of match cuts: character framing and motion. (3) We eval-
uate our system using classification and metric learning ap-
proaches that leverage a variety of image, video, audio, and
audio-visual feature extractors. (4) We release code and em-
beddings for reproducing our experiments.

2. Related Work
Computational video editing There is no computational
or algorithmic approach to video editing that matches the
skill and creative vision of a professional editor. However,
a number of methods and techniques have been proposed to
address sub-problems within video editing, particularly the
automation of slow and manual tasks.

Automated video editing techniques for specialized non-
fiction videos has seen success with rules-based methods,
such as those for group meetings [58, 64], educational lec-
tures [31], interviews [8] and social gatherings [5]. Broadly
speaking, these methods combine general film editing con-
ventions (e.g. the speaker should be shown on camera) with
heuristics specific to the subject domain (e.g. for educa-
tional lectures, the white board should be visible).

Computational video editing for fictional works tends to
fall in one of two lines of research: transcript-based ap-
proaches [45, 72, 25, 68] and learning-based approaches
[53]. Leake et. al. [45] generates edited video sequences
using a standard film script and multiple takes of the scene,
but their work is specific to dialogue-driven scenes. Two
similar concepts, Write-A-Video [72] and QuickCut [68],
generate video montages using a combination of text and a
video library. Learning-based approaches have seen success
in recent years, notably in Learning to Cut [53], which pro-
poses a method to rank realistic cuts via contrastive learning
[20]. The MovieCuts dataset [54] includes match cuts as a
subtype, though it is by far the smallest category and does
not distinguish between kinds of match cuts. In contrast,
we release a data set of 20k pairs that differentiate between
frame and motion cuts, with the goal of finding these pairs

from shots throughout the film instead of detecting exist-
ing cuts. Our work advances learning-based computational
video editing by introducing a method to generate and then
rank proposed pairs of match cuts without fixed rules or
transcripts.
Video Representation Learning Self-supervised methods
have dominated much of the progress in multi-modal me-
dia understanding in recent years [76, 47, 24, 37]. CLIP
[57] was an early example of achieving impressive zero-
shot visual classification following self-supervised training
with over 400M image-caption pairs. Similar advances have
been made for audio [29] and video [50] by utilizing differ-
ent augmented views of the same modality [19, 18, 27, 60],
or by learning joint embeddings of short [29, 3, 50] or long-
form [39] videos. Our system leverages such work for
learning video representations that capture matching video
pairs for the task of match cutting.
Movie understanding There is a deep and rich literature
on models that understand and analyze the information in
movies. Many movie-specific datasets [34] have been de-
veloped that have enabled research into a variety of topics
such as human-centric situations [70], story-based retrieval
[6], shot type classification [59], narrative understanding
[6, 10, 44], and trailer analysis [35]. We release a dataset
which contributes a novel and challenging movie under-
standing task.

3. Methodology
In this section, we present a flexible and scalable sys-

tem for finding K matching shot pairs given a video. This
system consists of five steps, as depicted in Fig. 3.

3.1. Preprocessing

The first two steps of our system segment a video into a
sequence of contiguous and non-overlapping shots and re-
move near-duplicate shots. Although we present concrete
implementations for these steps, our system is agnostic to
these choices.

Step 1: Shot segmentation. For each movie m, we run a
shot segmentation algorithm to split that title into nm shots.
Let Sm = {smi }nm

i=1 be the set of shots where smi corre-
sponds to the i-th shot of the m-th movie. Shot smi consists
of an ordered set of frames Fm

i = {fm
(i,j)}

lmi
j=1, where fm

(i,j)

is the j-th frame of smi , and lmi is the number of frames
in smi . We use a custom shot segmentation algorithm but
similar results can by achieved with PySceneDetect [15] or
TransNetV2 [62].

Step 2: Near-duplicate shot deduplication. Matching
shots should have at least one difference in character, back-
ground, clothing, or character age. Therefore, we remove
near-duplicate shots (e.g. two shots of the same character
in the same scene and framing, but with a slightly different
facial expression).
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Figure 3. System diagram for generating candidate match cut pairs. The input is a video file for movie m and the output is K match
cut candidates. (1) Video is split into shots using a shot segmentation algorithm. (2) Near-duplicate shots are removed. (3) A tensor
representation rmi is computed for each shot smi using an encoder. (4) All unique shot pairs are enumerated and a score function sim
is used to compute the similarity between shot representations. (5) The top-K pairs with highest similarity are returned. We show an
illustrative example with four shots from Moonrise Kingdom (2012) [4] and K = 2.

Our specific methodology for deduplication is as fol-
lows: we first extract the center frame cmi for each shot smi
defined as cmi = fm

(i,⌊lmi /2⌋). For each center frame, we
extract the penultimate embeddings out of MobileNet [33]
pretrained on ImageNet [42]. Let emi = enc(cmi ) ∈ R1024

be the embedding for frame cmi where enc takes an image
and outputs a 1024-dimensional vector.

We define the set of duplicate shot indices for movie m
as

Dm = {j|i, j ∈ {1, 2, . . . , nm}, i < j, cos(emi , emj ) ≥ Td}
(1)

where cos computes the cosine similarity between a pair of
embeddings and Td is the similarity threshold.

Finally, the set of deduplicated shots for movie m can be
constructed by excluding the shots corresponding to the in-
dices in Dm as follows: Sm

d = {smi |i ∈ {1, 2, . . . , nm}, i ̸∈
Dm}. We leverage the imagededup [36] library and find
that setting Td = 0.8 removes most of the near-duplicates.

3.2. Shot Pair Ranking

Steps 3-5 score and rank pairs of deduplicated shots fol-
lowing step 2.

Step 3: Shot representation computation. In this step,
we compute a tensor representation rmi for each shot smi .
Representations for different shots need to preserve some
notion of similarity for matching pairs. Representations can
be extracted using any video, image, audio, text, or multi-
modal encoders. We present a few such choices in the up-
coming sections.

Step 4: Shot pair score computation. In this step, we
enumerate all unique shot pairs for movie m,

Pm = {(smi , smj )|smi , smj ∈ Sm
d , i < j} (2)

and compute a similarity score sim(rmi , rmj ) ∈ R for each
pair of shots (smi , smj ). This similarity score is used for
ranking pairs where higher-scoring pairs are considered
higher quality. The function sim can be any function that
takes a pair of tensors and outputs a real scalar. This func-
tion can be chosen beforehand (e.g. cosine similarity) or
learned through supervision.

Step 5: Top-K pair extraction. This step simply ranks
the results from the previous step and returns the top-K
pairs.

3.3. Heuristics

We define a heuristic h as a specific combination of shot
representation and predetermined scoring function. These
heuristics serve two functions. We use them to generate
candidate pairs for manual annotation by video editors, and
then also to evaluate the annotated data set. Here, evaluate
means that we use the heuristic to rank the candidate pairs
and compute the average precision of that ranked list. More
details about evaluation can be found in Supplementary 3.

We leverage four of the heuristics presented in this sec-
tion (h1, h2, h4, and h5) to generate candidate pairs for
annotation in Sec. 4 and report how all of the heuristics
perform on our dataset in Sec. 5.

Heuristic 1 (h1): equal number of faces. One very
crude heuristic for character frame match cutting is to con-
sider pairs where the number of faces between the two shots
is equal. For the shot representation, we extract the center
frame and use a face detection model (Inception-ResNet-v1
[63] pretrained on VGGFace2 [13]) to determine the num-
ber of faces. The scoring function outputs 1 if the two shots
have the same number of faces, and 0 otherwise.

Heuristics 2 (h2) and 3 (h3): Instance segmentation.
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These heuristics are designed for character frame match-
ing. We leverage instance segmentation to extract pixel-
level representations of the presence of people in a frame.
In other words, we can extract the silhouette of characters,
which contain rich information about the character’s fram-
ing in the image.

The instance segmentation model takes a single center
frame cmi and returns a set of instance-level binary masks
Bm

i = {bm(i,x)}
um
i

x=1, where um
i is the number of such in-

stances, bm(i,x) ∈ {0, 1}W×H is the binary mask of the x-th
instance, W is the width of the binary mask, and H is the
height (same shape as cmi ).

We use the union of all binary masks bmi =
⋃um

i
x=1 b

m
(i,x)

as the shot representation rmi for heuristic 2 (h2). Intu-
itively, a perfect character match cut will involve charac-
ters with the exact same binary mask. The Intersection over
Union (IoU ) metric captures this notion well and we use it
as the similarity score for h2. Concretely, IoU takes two bi-
nary masks and returns a real value between 0 and 1, which
captures how well the masks overlap (the higher the better):

IoU(bmi , bmj ) = |bmi ∩ bmj |/|bmi ∪ bmj | (3)

where bmi , bmj are binary masks for center frame cmi and cmj ,
bmi ∩ bmj is the set of person pixels that are shared between
the two masks, and bmi ∪ bmj is the set of pixels that contain
a person pixel in at least one of the masks. If either mask is
empty, we set IoU = 0.

Taking the union of instance-level binary masks can lead
to matching the wrong number of characters between two
shots, as depicted in Fig. 4. Instead, for heuristic 3 (h3) we
use Bm

i as the representation of smi and use Instance IoU as
the similarity score function.

We start by associating character instances across center
frames, which ensures that each instance in Bm

i is matched
to at most one instance in Bm

j . Inspired by SORT [9], we
formulate this association as a linear assignment problem
with assignment cost computed using the negative IoU of
instance masks. We denote Am

(i,j) as the set of associated
instance mask pairs between cmi and cmj . The instance-level
IoU (IIoU) is computed as follows:

IIoU(Bm
i , Bm

j ) =

∑
(bm

(i,x)
,bm

(j,y)
)∈Am

(i,j)
|bm(i,x) ∩ bm(j,y)|

|bmi ∪ bmj |
(4)

Even with this improvement, both of these heuristics fail
in at least two scenarios. First, segmentation inaccuracies
can lead to false positives or false negatives. Second, two
frames with very different character poses sometimes pro-
duce highly similar binary masks (e.g. matching the face of
one character to the back of another).

We use the PyTorch [55] implementation of Mask R-
CNN with a ResNet-50-FPN backbone [30, 75], pretrained

Figure 4. (a) Two frames from the Moonrise Kingdom [4]
are passed through an instance segmentation network to obtain
instance-level binary masks. (b) For h2 we use the union of masks
as the representation and IoU as the similarity score function. (c)
for h3 we preserve the instance-level binary masks for the repre-
sentations, and use IIoU as the similarity score function.

on COCO train2017 [46], filter out all instance types except
for “person”, and use a 0.5 threshold.

Heuristics 4 (h4) and 5 (h5): Optical Flow. We use
heuristics 4 and 5 to generate annotation candidates for mo-
tion match cutting. The editors are looking for pairs of shots
with similar motions so that they can edit together to create
the continuation. The criterion for good motion match cuts
is a similarity in the movement of the camera or subjects
between the shots. Because movement is so critical to this
kind of match cut, we cannot simply take the static center
frame of each shot as we do for heuristics 1-3.

Instead, we need a way to quantify the motion of the shot
across all frames. Optical flow refers to the task of estimat-
ing the movement of boundaries, edges, and objects within
a video or sequence of ordered images. Dense optical flow
is the task of estimating the movement of each pixel within
a video frame. Sparse optical flow, on the other hand, only
tracks the movement of key points within the frame. Opti-
cal flow has been traditionally formulated as an optimiza-
tion problem [32, 16, 78] or as a gradient-based estimation.
However, in recent years, deep-learning based models have
become a viable alternative to these methods.

Both heuristics for motion match cuts use the following
general procedure. For each sequential pair of frames in the
shot smi , we compute the optical flow, which yields a tensor
of size W × H × 2, representing the horizontal and ver-
tical motion for each pixel. Here W and H are the width
and height, respectively, of the frame in pixels. The op-
tical flow tensor for consecutive frames fm

(i,j) and fm
(i,j+1)

is qm(i,j) = OF (fm
(i,j), f

m
(i,j+1)), where OF is the specific

choice of optical flow implementation.
For each shot, we average the optical flow tensors across

all the frames in the shot smi :

Qm
i =

lmi −1∑
j=1

qm(i,j)

 /(lmi − 1) (5)

This allows us to compare shots of different length. An
example optical flow output can be seen in Fig. 5.
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Figure 5. An optical flow result for the match cut in Fig. 2 from
the trailer for Stars Wars: The Rise of Skywalker [1]. In this visu-
alization, the color represents the direction of motion. Pink pixels
are moving to the right and blue pixels are moving to the left. The
intensity of the color represents the magnitude of the motion.

For heuristic 4 (h4), we use the opencv implementation
[11] of the Farnebäck method to compute dense optical flow
[23]. This method approximates the neighborhood of each
pixel with a quadratic polynomial and uses differences in
the polynomials to estimate the per-pixel displacement.

For heuristic 5 (h5), we use a deep-learning-based
method: Recurrent All-Pairs Field Transforms (RAFT)
[66]. Its network architecture comprises three components:
a feature extractor, a correlation layer that creates a 4D cor-
relation volume for all pixel pairs, and a recurrent GRU-
based update operator. We are using the version of the
model that has been pretrained on the FlyingThings [51]
dataset. The optical flow visualizations in Fig. 5 were gen-
erated using RAFT.

We use rmi = flatten(Qm
i ) and cosine similarity as the

similarity function for this heuristic. In practice, we sample
every four frames to save computation and achieve similar
results to using every frame.

3.4. Scalability

Our proposed system can be used to find match cuts both
within a title and across multiple titles. However, the num-
ber of shot pairs that need to be compared is quadratic in
the number of shots, which can quickly become a bottle-
neck if we want to find match cuts across multiple titles. To
avoid this, we can replace steps 4 and 5 in Section 3.2 with
an approximate nearest neighbors approach (ANN) such as
FAISS [38]. For this approach, we first need to build an in-
dex of the representations that we computed in Section 3.2.
Once this index is built, we can retrieve the top-K results
for each shot, and then compute the global top-K pairs.

Although this approach is significantly more efficient, it
presents three issues. First, the approximate nature of ANN
methods may lead to imprecise results. Second, ANN meth-
ods don’t support arbitrary functions for computing near-
est neighbors. Third, representations must have the same
shape. We explore this trade-off further in Sec. 5.

4. Data
The dataset we release with this paper contains ∼20k

pairs of labeled shots. We include seven embeddings for
each shot (described in Sec. 5), shot boundary timestamps,

Figure 6. (left) A frame match cut from Life is Beautiful (1997)
[7], (right) A frame match cut from The Matrix (1999) [71].

and the annotated labels. In this section, we describe the
process for the collection of this dataset.

4.1. Movie Set Selection and Pre-processing

Here we select a set of movies, segment these movies
into shots, remove near-duplicate shots, and construct the
set of all shot pairs within the same movie (intra-movie).

Movie set selection We selected 100 movies from the
MovieNet [34] dataset which are diversified across genre,
release year, and country of origin. The full list of movies
can be found in Supplementary 2.

Shot segmentation We segmented each of the 100
movies into shots as described in Sec. 3.1. Following this
step, we are left with 128k shots across all movies, which
translates into over 8.2B unique shot pairs that could be con-
sidered for annotation.

Shot deduplication We use the deduplication method-
ology described in Sec. 3.1 to remove near-duplicate shots.
This step shrinks the overall number of shots by over 40%,
from 128k to 75k, which also shrinks the number of pairs to
2.8B.

Limit to intra-movie matches Though inter-movie
match cuts are also interesting, for this study we only con-
sider intra-movie pairs–which leaves ∼35M shot pairs. The
vast majority of these pairs are not match cuts, so we em-
ploy heuristics to further reduce the annotation candidate set
and increase the likelihood of finding positive pairs relative
to random sampling.

4.2. Annotation Candidate Pair Generation

Using the heuristics discussed in Sec. 3.3, we score,
rank, and retrieve the top 50 shot pairs for each movie
m, which we denote Pm

hi
. Note that Pm

hi
⊆ Pm and that

|Pm
hi
| = 50. For each type we utilized two heuristics hi and

hj , and used the union of the resultant sets as the dataset for
annotation.

We use h1 and h2 for character frame match cutting and
h4 and h5 for motion match cutting. (Heuristic h3 was not
available during the annotation process.) In other words,
Pm
h1

∪Pm
h2

is the set of pairs that we annotated for character
frame, and Pm

h4
∪ Pm

h5
for motion.

Heuristic-discovered match cuts We present a few ex-
amples from our match cutting heuristics. Fig. 6 contains
examples of character frame match cut h2. Fig. 7 is an
example of a motion match cut found by h5.
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Figure 7. A motion match cut from Moonrise Kingdom (2012) [4]
where the primary motion detected by optical flow is from the
camera zooming out.

4.3. Data Collection

4.3.1 Task Definitions

Our data collection process started with inspecting and re-
fining the definitions of each match cutting type with a
group of three senior in-house video editors. After arriving
at consistent definitions, we developed reference material,
which included illustrative examples of positive and nega-
tive pairs.

Our senior video editors trained two separate sets of
three annotators, one for each type. Due to the technical
nature of this task, we selected video editors at a video edit-
ing agency that we had previously worked with. We asked
annotators to assign a binary label to each pair they were
presented with. The training involved an hour-long walk-
through of guidelines and examples.

4.3.2 Annotations

We used six annotators: three for character frame match
cuts and three for motion match cuts, so each candidate
pair was annotated by three annotators. For frame match
cuts, our annotators labeled 9,985 pairs and were in perfect
agreement (all 3 annotators chose the same label) for 84%
of the pairs. For motion match cuts, our annotators classi-
fied 9,320 pairs and were in perfect agreement for 75% of
them. We attribute the lower annotator agreement for mo-
tion match cutting to the fact that it is a more difficult, sub-
jective, and nuanced task. We use the majority vote for each
pair as the final label for the rest of this paper. However,
annotator-level data is also made available in the dataset.
Roughly 8.7% of frame match pairs were majority labeled
positive, and 9.9% for motion.

4.3.3 Random negative pairs

Since we used heuristics to generate annotation candidates,
our dataset may not reflect many pairs that the models are
likely to encounter. For instance, we only used shots with
faces of people for frame match cutting, but our system
needs to be able to score pairs that contain no faces. To
reduce this bias, we randomly sample 50 pairs for each title
and append these pairs as negative examples to the dataset
we use for training and evaluating models in Sec. 5. These

pairs have no overlap with the annotated pairs and, since
they were drawn at random, they are extremely unlikely to
contain positive pairs. More information about the dataset
and its associated statistics can be found in Supp. 1.

5. Experiments
Our experiments explore two goals: finding a scalable

solution to a quadratic problem and high retrieval quality.
The heuristic-based candidate generators are useful to aid
labeling by suggesting pairs for annotation, but a learned
model can perform better than heuristics. High model accu-
racy translates to saved time and higher quality cuts for our
video editors.

Experiment 1 explores a binary classification setup,
which gives us high retrieval quality, but at the expense of
scalability, since every shot pair will need to be run through
the classifier. Experiment 2 uses metric learning to provide
both high retrieval quality and scalability. For both sets of
experiments, the shot segmentation and deduplication steps
remain fixed.

5.1. Setup

We split our dataset at the movie level by randomly se-
lecting 60, 20, and 20 titles for train, validation, and test
sets respectively. For all experiments we train 5 models us-
ing different seeds, compute average precision (AP ) on the
validation dataset (APval) for each model, and finally report
test AP (APtest) for the model with the highest APval in
addition to the mean and standard deviation of APval across
the 5 runs.

5.2. Experiment 1: Binary classification

In this experiment, we explore pretrained image, video,
and audio networks as embedding (i.e. representation) ex-
tractors. Once we extract penulatimate layer embeddings
for each shot, we train a binary classifier, which we use to
report evaluation metrics. Concretely, for each pair of shots
smi and smj , we extract representations rmi and rmj . These
tensors are then aggregated using a function that takes two
tensors and outputs a single tensor. The aggregated tensor
is used as the input into the binary classification model. We
experimented with using one layer prior to the penultimate
layer as well as end-to-end training and were not able to
produce reasonable results. We hypothesize that this could
be due to the relatively small size of our labeled data.

We experimented with 5 binary classifiers: (1) XGBoost
(XGB) [17] with 100 boosted rounds, unbounded depth,
and logistic objective, (2) logistic regression (LR) with L2

penalty, C = 1, and LBFGS solver, (3) 2-layer multi-layer
perceptron (MLPS) with ReLU activation [2], Adam opti-
mizer [41], lr=0.001, 200 max epochs, and 50 units in each
hidden layer, (4) MLPM same as (3) but with 100 units in
each layer, and (5) MLPL same as (3) but with 500 units.
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Table 1. Experiment 1: Binary Classification Results.
Character frame Motion

method model agg APval APtest model agg APval APtest

random - - 0.094 0.119 - - 0.096 0.122
h1 - - 0.006 0.017 - - - -
h2 - - 0.177 0.207 - - - -
h3 - - 0.234 0.248 - - - -
h4 - - - - - - 0.192 0.163
h5 - - - - - - 0.134 0.132
CLIP MLPM mean 0.253±0.023 0.240 MLPL cat 0.131±0.010 0.107
RN50 MLPL cat 0.266±0.015 0.269 MLPM mean 0.120±0.010 0.136
EN7 XGB mean 0.261±0.025 0.352 MLPL mean 0.118±0.007 0.129
R(2+1)D MLPL mean 0.222±0.021 0.224 MLPL cat 0.184±0.022 0.193
Swin MLPM mean 0.270±0.030 0.287 MLPS mean 0.155±0.016 0.150
C4C MLPL mean 0.277±0.012 0.304 MLPM mean 0.121±0.007 0.130
YN XGB cat 0.174±0.015 0.160 MLPL diff 0.136±0.016 0.136
YN-CLIP XGB cat 0.245±0.022 0.286 XGB diff 0.137±0.016 0.137
YN-RN50 XGB cat 0.283±0.015 0.321 XGB mean 0.129±0.007 0.145
YN-EN7 XGB mean 0.275±0.030 0.355 XGB diff 0.136±0.011 0.128
YN-R(2+1)D XGB cat 0.219±0.020 0.218 XGB mean 0.170±0.015 0.177
YN-Swin MLPL mean 0.269±0.024 0.336 XGB mean 0.139±0.010 0.161
YN-C4C XGB mean 0.289±0.017 0.327 XGB mean 0.140±0.008 0.124

We use the XGBoost [17] library for (1) and scikit-learn
[56] for (2-5). We also explored 3 aggregation functions
(agg): concatenation (cat), mean pooling (mean), and pair-
wise absolute distance (diff).

For each encoder and type we train all 15 combina-
tions of models and aggregation functions as described ear-
lier. We then report the combination with the highest mean
APval.

5.2.1 Encoders

We used a total of seven image, video, and audio encoders.
For image encoders, we use CLIP [57], ResNet-50 (RN50)
[30], and EfficientNet-B7 (EN7) [65]. For RN50 and EN7
we use the PyTorch [55] implementation pretrained on Im-
ageNet [42]. We pass the center frame through the network
and extract the penultimate layer embeddings.

For video encoders, we use Video Swin [49], R(2+1)D
[67], and CLIP4Clip (C4C) [50]. For Video Swin, we uni-
formly sample four views of 32 frames with stride 2 in the
temporal dimension. For R(2+1)D, we sample every four
frames as described in Sec. 3.3. For C4C, we first extract
one frame per second and then uniformly sample a max-
imum of 100 frames. For Video Swin, we use the offi-
cial implementation [48] pretrained on Kinetics-600 [14].
For R(2+1)D, we use the PyTorch [55] implementation pre-
trained on Kinetics-400 [40], and for C4C we use the CLIP
ViT-B/32 encoder trained on MSR-VTT [74].

Although frame and motion match cutting are largely vi-
sual tasks, we wondered whether audio carries any signal
that can be used for matching. Therefore, we used YAM-
Net (YN) [77], pretrained on the AudioSet dataset [26] by

feeding 16 kHz mono audio from the video and taking the
average over the 1024-dimensional embeddings produced
for each 0.48 seconds.

Finally, we also consider the concatenation of each im-
age and video encoder with YN. These audio-visual en-
coders YN-X are constructed by concatenating the YN em-
beddings with those for X, where X is either an image en-
coder or a video encoder (e.g. YN-CLIP).

5.2.2 Experiment 1 Results

We present the results in Table 1. We use a simple random
baseline method that assigns a random score between 0 and
1 for each candidate pair. The expected AP of this random
predictor represents the positive prevalence rate (see more
details in Supplementary 3). We include the five heuristics
in the table to serve as an additional baseline.

For character frame matching, all visual encoders outper-
form the random predictor and heuristics h1 and h2, while
h3 outperforms CLIP and R(2+1)D. The compound scal-
ing methodology in EN7 [65] tends to produce representa-
tions that capture additional object details, which may ex-
plain why it performs best for this task (see Supplementary
1 for a description of the nuanced criteria for this task).

Audio (YN) doesn’t perform well in isolation, but audio-
visual encoders outperform their visual-only counterparts
in most cases. Anecdotally, we have observed cases where
matching pairs have similar background music, but this pat-
tern is not very consistent.

Motion match cutting is a more challenging and subjec-
tive task relative to character frame (see Sec. 4.3.2). All
methods beat the random predictor, video encoders perform
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Table 2. Experiment 2: Metric Learning Results.
Character frame Motion

Encoder APval APtest APval APtest

CLIP 0.231±0.009 0.321 0.112±0.001 0.138
RN50 0.258±0.010 0.343 0.121±0.005 0.133
EN7 0.283±0.010 0.373 0.139±0.005 0.132

R(2+1)D 0.219±0.006 0.261 0.173±0.001 0.217
Swin 0.255±0.006 0.363 0.143±0.002 0.170
C4C 0.273±0.010 0.360 0.119±0.001 0.144
YN 0.115±0.010 0.102 0.122±0.001 0.124

better than image encoders, and R(2+1)D achieves the best
results amongst them. This makes sense since video en-
coders are capable of producing representations that cap-
ture motion. Also, both h4 and h5 do well, as the under-
lying models, Farnebäck and RAFT, were both specifically
designed to capture motion via optical flow. Audio doesn’t
appear to carry any additional signal for this task.

For both match types, we are able to train models
with improved retrieval quality over the heuristic-based ap-
proaches. The downside is that we cannot easily use a clas-
sifier with ANN methods, as discussed in Sec. 3.4. In the
next experiment we explore the possibility of retaining the
same level of retrieval quality while using a method that is
amenable to ANN methods.

5.3. Experiment 2: Metric Learning

Experiment 1 demonstrated that binary classification is
an improvement over heuristics, but is not scalable for inter-
movie matching. A suitable approach to achieve this is
metric learning, which maps a feature vector to a new em-
bedding vector that can be directly searched through us-
ing nearest neighbor methods (rather than running a clas-
sifier for each pair). Here we take fixed shot encodings
from Experiment 1, and learn a new embedding space
via noise contrastive estimation [28]. We leverage the
pytorch-metric-learning library [52], with NTX-
entLoss (a.k.a. InfoNCE) [61], [69] and TripletMargin-
Miner with hard triplets and cosine similarity. The trans-
formed embeddings can be indexed and retrieved with ANN
methods as discussed in Sec. 3.4.

We experiment with embeddings from three image en-
coders: CLIP [57], RN50 [30], and EN7 [65], three video
encoders: R(2+1)D [67], Swin [49], and C4C [50], and one
audio encoder: YN [77]. For both character frame and mo-
tion matching, we use a 2-layer MLP with leaky ReLU [73]
activation and train with Adam [41] optimizer. A set of hy-
perparameters are separately tuned for frame matching and
motion matching datasets and are used across experiments
of all encoders. More details for this experiment can be
found in Supplementary 4.

The results are shown in Table 2. For both frame and
motion matching, we find that metric learning is able to
achieve higher retrieval quality relative to binary classifi-

cation, while providing superior inference scalability. EN7
and R(2+1)D perform the best for character frame and mo-
tion matching (consistent with the previous experiment).

6. Limitations and Discussion

One limitation of our work is that we have only ad-
dressed two specific types of match cutting. We hope to
extend this work to other types of match cuts, such as ac-
tion, sound, light, subject matter, or a broad generalization.

Although our heuristics were designed to aid annotation
efforts and are not our main contribution, we will discuss
some limitations with them. For frame matching, heuristics
1 was designed to be a crude heuristic and suffers from a
lack of spatial alignment between faces. Heuristics 2 and
3 are fairly robust to character framing, though we observe
that they can struggle with closeups of faces, where match-
ing face key points may be more suitable. Heuristic 4 and 5
for motion matching tend to surface shots with similar cam-
era movement (as opposed to action). This occurs because
the background covers more pixel area than the foreground
in most shots. We hope to address this in the future with
foreground-background segmentation. Also, our choice of
averaging of optical flow outputs over multiple frames dis-
cards temporal information.

Furthermore, our proposed frame matching system is
limited to only human characters. Non-human objects and
shapes can also make for very interesting matches. Lastly,
we acknowledge that there is a domain gap between the
datasets the models in our experiments were pretrained on
and Hollywood produced movies.

7. Conclusions

We have presented a system to take the task of generating
good match cut candidates from a manual process akin to
finding a needle in a haystack to a semi-automated process
that finds “cuts that work” in a fraction of the time.

We summarize our contributions as follows: (1) we
present a new and previously unaddressed problem of find-
ing specific match cut types, along with a novel system to
identify good candidates. (2) We release a dataset of ∼20k
annotated shot pairs for two types: character frame and mo-
tion matching. (3) We conduct experiments to evaluate our
system using the collected dataset. (4) We release code and
embeddings for reproducing our experiments.

While we have presented the first system for finding
match cuts, there is plenty of room for improvement. Match
cutting is a very challenging task relative to coarse-grained
object and action recognition tasks and requires more so-
phisticated video understanding methods that can capture
the nuances.
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