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Abstract

Scene graph generation (SGG) models seek to detect re-
lationships between objects in a given image. One chal-
lenge in this area is the biased distribution of predicates
in the dataset and the semantic space. Recent works in-
corporating knowledge graphs with scene graphs prove ef-
fective in improving recall for the tail predicate classes.
Moreover, many recent SGG approaches with promising re-
sults explicitly redistribute the predicates in both the train-
ing process and in the prediction step. To incorporate ex-
ternal knowledge, we construct a commonsense knowledge
graph by integrating ConceptNet and Wikidata. To explic-
itly unbias SGG with knowledge in the reasoning process,
we propose a novel framework, Explicit Ontological Ad-
justment (EOA), to adjust the graph model predictions with
knowledge priors. We use the edge matrix from the com-
monsense knowledge graph as a module in the graph neural
network model to refine the relationship detection process.
This module proves effective in alleviating the long-tail dis-
tribution of predicates. When combined, we show that these
modules achieve state-of-the-art performance on the Visual
Genome dataset in most cases. The source code is available
at https://github.com/zhanwenchen/eoa.

1. Introduction
What is the relationship between the man and the ski

as shown in Figure 1? Given such an image from the Vi-
sual Genome (VG) dataset [15], Scene Graph Generation
(SGG) answers questions like this by combining symbolic
and graphical representations extracted from this image.
The output can be represented as a graph where scene ob-
jects are nodes or entities and their relationships as edges or
predicates. Taking Figure 1 as an example, there are 12 such
predicates such as ⟨man, ski, standing on⟩ and ⟨man, jacket,
wearing⟩. Recent work has drawn attention to SGG thanks

Figure 1: An example image from the Visual Genome
dataset [15] with ground-truth relation labels including
⟨man, ski, standing on⟩ and ⟨man, jacket, wearing⟩

to its promising applications in downstream tasks such as
image captioning [34, 7, 37], image retrieval [13, 23], im-
age synthesis [12], and visual question answering (VQA)
[6, 8, 31, 34, 42]. Additionally, SGG can offer interpretabil-
ity for VQA [39, 24]. However, two challenges limit the
performance of most existing SGG methods: (1). the long-
tail distribution of predicate classes in practice, and (2). the
limited volume and depth of commonsense knowledge in
knowledge-based SGG models. As Guo et al. point out [9],
common predicates like “on” crowd out rarer but more in-
formative ones like “standing on.” Common predicates have
larger semantic spaces (i.e., more meanings), causing bias
against less common but more informative relations. More-
over, despite the performance gains from introducing com-
monsense knowledge, only one source of structured ontol-
ogy is used - ConceptNet [26], from which only 104 facts
have been used in knowledge-based SGG [39]. The 104
facts are also limited to entities belonging to the VG ob-
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ject classes. This leaves room for further performance gains
from not only using more knowledge but also from adding
deeper knowledge outside of VG.

Recently, some works on SGG have successfully incor-
porated knowledge into the SGG task. KB-GAN [8] ad-
dresses the problem of object label imbalance by intro-
ducing external knowledge and a novel image reconstruc-
tion loss. KI-Net [41] incorporates off-scene higher-order
knowledge (“suit worn over shirt”) to solve the downstream
VQA task. GB-Net [39] introduces a bipartite knowledge-
and-scene graph and adapts the Gated Graph Sequence
Neural Networks (GGNN) [17] to refine the scene graph
(SG) edges and the SG-KG edges. However, as Zhang et
al. point out [41], GB-Net only includes knowledge edges
whose head and tail entities are both part of the VG visual
classes1, potentially limiting the depth of the reasoning pro-
cess. To enrich the knowledge graph and address the limita-
tion of reasoning with only on-scene concepts, we propose
to incorporate additional knowledge by designing a com-
monsense knowledge graph extension procedure.

Many recent works have also attempted to address the
biased distribution of predicates. In addition to knowledge-
based approaches that improve the per-class performance
of the tail classes [39], recent efforts have featured various
data augmentation-based approaches such as Dynamic La-
bel Frequency Estimation [3], sampling-based approaches
such as Total Direct Effect [28], Balanced Predicate Learn-
ing (BPL) [9], and Semantic Adjustment (SA) [9]. Most
relevant to our work are the BPL and the SA modules [9].
BPL conducts domain transfer by refining the trained model
on an unbiased version of the original dataset with under-
sampled top-k predicates. The SA module uses the row-
normalized confusion matrix to adjust the prediction log-
its in the model via matrix multiplication [9]. Although
BPL and SA contribute to a significant improvement over
all three SGG tasks on mean recall metrics, they do not take
advantage of external commonsense knowledge.

Although KG-based SGG methods such as GB-Net [39]
have reduced bias, they rely on a single knowledge source
and limit the knowledge to on-scene entities. We improve
KG-based SGG by taking advantage of the unbiasing effect
of knowledge by enriching the commonsense KG. Specif-
ically, we increase both the depth and the breadth of the
KG by incorporating additional knowledge and off-scene
knowledge with an external knowledge base (KB), Wiki-
data [30]. Additionally, we propose a novel framework
called Explicit Ontological Adjustment (EOA) to rebal-
ance predicates using knowledge as statistical priors. Our
method outperforms state-of-the-art methods on the Visual
Genome dataset on the Predicate Classification (PredCls)
task and achieves a competitive performance gain on the

1We refer to entities that are part of the VG classes as on-scene entities
and those not in VG as off-scene entities.

Scene Graph Classification (SGCls) task, confirming a sig-
nificant unbiasing effect of knowledge in relationship rea-
soning for SGG.

We summarize our contributions as follows:

• We build an enriched commonsense graph for SGG by
incorporating higher-order and on/off-scene facts from
ConceptNet and Wikidata [11].

• We propose the Explicit Ontological Adjustment
(EOA) approach for the neural network architecture
that includes BPL, SA, and a novel Ontological Ad-
justment (OA) module.

• Our method outperforms state-of-the-art methods on
the Visual Genome dataset on the PredCls task and
achieves competitive performance on the SGCls task,
potentially suggesting a superior ability to unbias.

The rest of this paper is organized as follows. Section
2 reviews related work on SGG and discusses the various
threads in solving the predicate bias issue in SGG, includ-
ing resampling- and knowledge-based approaches. Section
3 describes our approaches to unbiasing SGG, including the
commonsense KG extension process and the EOA neural
network module. Section 4 shows extensive results and ab-
lation studies on the Visual Genome dataset. Finally, Sec-
tion 5 concludes the paper by discussing the results, poten-
tial next steps, and limitations.

2. Related Work
2.1. Scene Graph Generation (SGG)

SGG methods first extract region proposals using an ob-
ject detector like Faster-RCNN [21] with feature extraction
backbones such as VGG-16 [25] and ResNet [10]. SGG
then classifies the individual regions into object classes be-
fore classifying region pairs into relation classes. The key
to the main relationship reasoning process is joint reason-
ing with contextual information. For example, the Itera-
tive Message Passing (IMP) technique [35] iteratively prop-
agates contextual messages along the scene graph topol-
ogy. MotifNet [40] encodes global context using LSTMs to
assist with local predictions. Information propagation be-
tween region proposals is typically achieved with a graph
neural network (GNN) [32]. Additional statistical metadata
such as statistical correlation and semantic information also
prove helpful. For example, MotifNet [40] achieves predic-
tion improvement by reasoning with statistical correlations
of object pairs and GloVe vectors.

2.2. Knowledge-Graph Based SGG Methods

Recently, some methods have introduced external
knowledge to improve the reasoning process [2, 8, 39, 40].
MotifNet can also be seen as a knowledge-based approach
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Figure 2: An example subgraph of the extended common-
sense knowledge graph. Blue nodes from GB-Net [39] cor-
respond to VG scene entities. The orange node “body part”
is an off-scene entity from Wikidata. Adding the off-scene
“body part” node makes the KG more densely connected
and thus more informative.

for using prior triplet frequency to bias the relationship pre-
dictions [40]. KERN [2] jointly classifies object and rela-
tionship classes using prior knowledge of object and rela-
tionship co-occurrence. Incorporating such statistical pri-
ors, KERN modifies the task to be predicting the likeliest
relation between objects given likelihood priors [2]. KB-
GAN [8] uses commonsense knowledge from ConceptNet
[26] to refine object and phrase features for SGG. KB-GAN
also uses a Generative Adversarial Network (GAN) to reg-
ularize the whole SGG network. Most relevant to our work,
GB-Net [39] extends the KERN approach by explicitly con-
structing the bipartite graph ontology to combine the scene
graph and knowledge graph (KG). GB-Net also adapts a
graph neural network, Gated Graph Sequence Neural Net-
works (GGNN) [17], to iteratively pass messages along this
bipartite ontology. Our work is motivated in part by using
knowledge to unbias SGG. Our first baseline, GB-Net, pro-
vides an innovative technique to propagate messages in both
the knowledge graph and the scene graph in a dual message-
passing network model. However, GB-Net only uses 104
facts [39] from ConceptNet [26], which leaves room for
further performance gains from the additional breadth and
depth of the KG. Furthermore, GB-Net [39] ignores off-
scene knowledge that may be useful in reasoning about the
scene. This limits the reasoning power of a KG where part
of a dense knowledge subgraph is missing in the dataset.
As Figure 2 illustrates, the original KG on the left side is
missing an important off-scene node, “body part,” limiting
the depth of reasoning. We address both issues by enriching
the KG with a new data source, Wikidata [30].

2.3. Unbiased SGG Methods

Many recent works attempt to address the long-tailed
distribution of relationship predicates in SGG. Instead of
making predictions in isolation, the IMP method proposed
by Xu et al. [35] incorporates the contextual information in
the neural network model to address the uneven distribution
of the relationship labels in the VG dataset. IMP achieves
this by updating both entity and predicate representations in

an interwoven fashion with Gated Recurrent Units (GRUs)
[4]. Other more recent works focus on directly address-
ing the distribution bias. Tang et al. [28] propose the Total
Direct Effect (TDE) loss function to measure the relative
contribution of the visual features to relationship detection
that is distinct from the context. Unlike traditional debi-
asing approaches, which cannot distinguish between desir-
able bias (e.g., “man wearing jacket” instead of “eating” it)
and bad bias (e.g., “man on snow” instead of “man standing
on snow”), TDE eliminates the harmful context bias with
counterfactual evaluations. Another relevant recent work is
the G2S framework involving the BPL and the SA modules
proposed by Guo et al. [9]. Directly attacking the bad bias,
i.e., the lack of informative predicates in both the semantic
space and the VG sample space, SA and BPL are pipeline
modules compatible with various models. SA [9] adjusts
the model predictions with the confusion matrix, a proven
strategy for reducing bias in long-tail classification tasks
[19]. As for the sample-level predicate imbalance, BPL [9]
offers a domain transfer-based solution by creating a data-
augmented version of the original VG dataset. The “new”
dataset is constructed by undersampling the top-K common
predicates in the original dataset.

Inspired by the explicit adjustment technique in SA, we
propose a novel technique, Explicit Ontological Adjust-
ment (EOA), to explicitly adjust the distribution of pred-
icates using knowledge-based priors. EOA uses the KG
adjacency matrix to adjust the predicate logits in training
to take advantage of the knowledge priors that are readily
available in the KG. For example, knowing that “flying” is a
“/r/MannerOf” “transport,” the model is more likely to con-
sider “flying,” which is more informative than “transport”.

3. Our Approach
In this section, we first introduce the preliminary SGG

formalism. We explore the unbiasing potential of additional
knowledge in two ways. The first is enriching the knowl-
edge graph for SGG with off-scene entities. To achieve
this, we adopt an entity linking algorithm to integrate mul-
tiple commonsense knowledge sources, including Concept-
Net [26] and Wikidata [30]. We also use the knowledge
graph to explicitly redistribute the long-tail distribution of
predicates.

3.1. Preliminary

We first formally describe the Scene Graph Generation
(SGG) problem. A scene graph (SG) consists of visual
relations expressed as ⟨subject, predicate, object⟩ triplets
2. This triplet can also be seen as an SG edge going
from subject to object. An example is ⟨man, standing on,
snow⟩ where “man” is the subject, “snow” is the object, and

2Similar to KG triplets ⟨head entity, relation, tail entity⟩.
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Figure 3: An overview of our entire pipeline with EB-Net and EOA. We first train the EB-Net after conducting the common-
sense knowledge graph extension. In the last prediction step, we adjust the predicted logits by the sum of our ontological
adjustment (OA) matrix and the confusion matrix C” similar to SA [9]. Lastly, we use the undersampled source dataset
similar to BPL [9] to conduct domain transfer. The BPL process is not illustrated because it degrades figure readability.

“standing on” is the relation or predicate. Here, “man” and
“snow” are visual instances belonging to the visual class
set C for all scenes S in the dataset. The relation “stand-
ing on” describes the directed relation between this instance
of “man” and this instance of “snow” that are localized in
their bounding boxes. Each scene si, i ∈ [1, |S|], con-
sists of a variable number ki of such relations rs,m where
m ∈ {1, 2, ..., ki}. For convenience, we do not consider
attributes such as “red”. The set of all relations in scene s,
Rs, can be expressed as

Rs ⊆ C × P × C (1)

where C is the set of all visual classes and can appear as
subjects and/or objects; P is the set of all predicates in the
dataset. Each visual class cs in scene s has its bounding box
bcs and its ground-truth class label lcs . The probability of a
scene graph Ts can be represented as:

p(Ts|s) = p(Bs|s) p(Cs|bs, s) p(Rs|Cs, Bs, s) (2)

Namely, given an image, SGG algorithm detects the
bounding boxes Bs (p(Bs|s)), classifies the bounding
boxes into visual classes Cs (p(Cs|Bs, s)), and de-
tects the relations Rs among the bounding boxes/classes
(p(Rs|Cs, Bs, s) [43].

Typically, the scene graph ontology can be expressed as a
set of nodes N and edges E such that nodes consist of both
visual class nodes NC and predicate nodes NP . Specifi-
cally,

G = {N = NC ∪NP , E} (3)

The SG edges can be further formalized as two sets of
directed edges [39]:

{EP→C
hasSubject, E

P→C
hasObject} (4)

When we introduce a knowledge graph (KG) to build a
bipartite SG-KG, we have entities from both the scene and
the KG. The existing entities and predicates from the im-
age are now called scene entities and scene predicates. The
entities and predicates from the KG are called concept en-
tities and concept predicates. We denote scene entities as
NSE and scene predicates as NCP with KG concepts corre-
sponding to the visual classes or concept entities NCE . We
also proxy visual relations or scene predicates NSP with
ontological concepts corresponding to the visual relations,
i.e., concept predicates NCP . We use two-directional edges,
which can be expressed as

{ESE→CE
classifiedTo, E

SP→CP
classifiedTo,

ECE→SE
hasInstance, E

CP→SP
hasInstance}

(5)

. The SGG task becomes classifying the scene entities and
scene predicates, given concept entities and concept predi-
cates [39]:

p(NSE , NSP , ES |I,NCE , NCP , EC) =

p(N?
SEN

?
SP , ES |I)×

p(EB)|I,NCE , NCP , EC , N
?
SE , N

?
SP , ES), (6)

where EB are the bridge edges. The unknown nodes in the
graph to be learned are denoted with question marks.

3.2. Framework Overview

The overall pipeline of our framework is shown in Fig-
ure 3, which contains two major components. To fully ex-
ploit the unbiasing potential of knowledge, our first com-
ponent aims to enrich the KG with additional knowledge
by increasing its volume and depth. Since GB-Net [39]
exhaustively adds ConceptNet [26] entities that are related
to scene entities, we can benefit from using an additional
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Figure 4: The effect of ontological extension on the knowl-
edge edge matrix. The red values correspond to the addi-
tion of the off-scene “body part” entity and its edges. We
include 26 off-scene entities from Wikidata.

data source, Wikidata [11], and extend the knowledge graph
topology to add off-scene concept entities. We call this ex-
tended bipartite graph Extended Bridge Network (EB-Net).

Our second component explicitly resamples the biased
distribution of relations based on the KG. Inspired by the
SA approach [9] that adjusts the model predictions with
the confusion matrix, we use the adjacency matrix from the
knowledge graph to adjust the distribution of the prediction
logits in the model. We name this method Explicit Ontolog-
ical Adjustment (EOA).

3.3. Commonsense Knowledge Graph Extension

To enrich the commonsense knowledge graph (KG), we
combine the ConceptNet KG [26] used by GB-Net [39] with
a subset of Wikidata that includes commonsense knowl-
edge, Wikidata-CS [11]. We choose Wikidata-CS because it
shares the same ontology KG edge types (e.g., “/r/PartOf”
and “/r/RelatedTo”) with ConceptNet, ensuring their con-
ceptual coherence. To link the two KBs, we use the BLINK
entity linking algorithm [33] to associate each ConceptNet
entity class to Wikidata. To increase the depth of our KG,
we relax GB-Net’s [39] restriction to on-scene entities and
include off-scene ones such as “body part.” For each VG
object label, we randomly select one neighbor to prevent
the KG from becoming unwieldy. The result is a total of 305
Wikidata KG edges or facts. We keep the 51 most relevant
ones such as ⟨arm, /r/IsA, body part⟩ by manually remov-
ing confusing ones such as ⟨bed, /r/PartOf, member⟩ and
irrelevant ones such as ⟨boot, /r/UsedFor, torture⟩. Together
with the 104 edges from GB-Net [39], we have a combined
total of 152 unique edges (with three duplicates between the
two KBs). We introduce a total of 26 off-scene entities.

In addition to extending the ontology, we also need
to modify the other components of GB-Net [39], includ-
ing word similarity, entity covariance, predicate covariance,
triplet conditional probability, and predicate counts statis-
tics that are previously used by MotifNet [40] and IMP [35].
Since the existing statistical matrices are based on the orig-
inal 150 VG concept entities, we remap them to include our

Figure 5: The Ontological Adjustment (OA) module rebal-
ances the distribution of predicates with knowledge. The
Ontological Matrix O′ from Equation 9 on the right side
approximates the conditional probability of knowledge-
adjusted relations yoa given the predicated relations y in the
neural network model using commonsense knowledge.

new off-scene entities with trivial values. After this statis-
tics remapping step, we have constructed our final knowl-
edge graph, Extended Bridge Network (EB-Net). Figure 4
illustrates the effect of this extension.

3.4. Explicit Ontological Adjustment

Inspired by the logit resampling technique of Seman-
tic Adjustment (SA)[9], we use commonsense knowledge
to redistribute relations by adjusting the model predictions.
We propose a novel method, Ontological Adjustment (OA),
to model the underlying probability distribution of relations
given a priori commonsense knowledge. Intuitively, the
model should weigh conceptually related predicates more
favorably than unrelated ones. For example, “standing on”
should have a higher probability when given a prediction
of “on” than “has” because “standing on” and “on” are con-
ceptually related while “standing on” and “has” are not. No-
tably, unlike SA which derives correlation from a sample-
based confusion matrix, OA uses external knowledge which
does not suffer from the sample-level relation imbalance.

The adjustment task for the ontological can be expressed
by Equation 7:

P (yoa|osubj , oobj) = P (yoa|y)× P (y|osubj , oobj) (7)

, where P (y|osubj , oobj) ∈ R51 is the original predication
of an SGG model for 51 predicate categories between sub-
ject oi and object oj . P (yoa|y) is the predicate conceptual
relatedness given by the OA matrix, and P (yoa|y) is the
conceptually adjusted prediction of the OA model. Figure 5
illustrates this adjustment process.

To conduct this redistribution, we take advantage of the
knowledge-based predicate priors readily available in the
EB-Net knowledge graph (KG) edge matrix and multiply it
with the original logits. Specifically, we use the predicate-
to-predicate subgraph Eext

p2p in the overall KG. We then sum
Eext

p2p along the KG edge type dimension which consists of
four edge types. The first three are Wikidata ontological
edge types describing how two predicates are related: “Re-
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latedTo,” ”MannerOf,“ and “MannerOf” in the reverse di-
rection. The last KG edge type is the predicate covariance
matrix from [2]. We refer to this summed Eext

p2p as the On-
tological Matrix O. To avoid dramatically decreasing the
probability of predicates without facts, we add a diagonal
identity matrix to O. Lastly, we row-normalize O so that
each element ok,l represents the conditional probability of
P (rk|rl):

ok,l =
ok,l∑51

m=1 ok,m
, (8)

The final ontological matrix is given by Equation 9

O′ = Row Normalize(O + I51). (9)

, which is matrix-multiplied with the original predicted log-
its Y to get the adjusted logits Loa:

Y oa = O′ · Y. (10)

Finally, we incorporate our baseline SA[9] method
which adjusts the logits with a row-normalized confusion
matrix C ′ to measure semantic distance. The final adjusted
logits Y oa+sa becomes:

Y oa+sa = (C ′ +O′) · Y
= C ′ · Y +O′ · Y.

(11)

Lastly, we include the baseline Balanced Predicate
Transfer (BPL) [9] pipeline which conducts a domain trans-
fer from the original Visual Genome dataset [15] with a
long-tail predicate distribution to its undersampled version
with fewer common predicates. BPL undersamples the top-
k (k=15) predicates (n ≤ 2000), leaving other predicates
as-is. This domain transfer pipeline requires training the
model on VG before retraining the model with additional
fully-connected clean classifier layers[9].

3.5. Discussions

In our commonsense knowledge graph extension pro-
cess, we choose Wikidata [11] as our new data source based
on the availability of the BLINK [33] entity linking al-
gorithm and the shared formats and edge types between
Wikidata-CS and ConceptNet. However, there exist many
alternative commonsense knowledge graphs including Cyc
and OpenCyc [16], NELL [20], WebChild 2.0 [27], Atomic
[22], and COMET [1]. By extending with more than one
source, the knowledge graph may be enriched further with
more diverse knowledge. For example, ATOMIC features
inferential rules; ATOMIC and COMET also contain social
knowledge [22, 1]. In addition, the ontological structure of
the commonsense knowledge graph itself can be studied.
For example, we can potentially benefit from having even
deeper knowledge. One way to study this is by using a KG
hop greater than 1. Furthermore, we only extend the con-
cept entity ontology but not the concept predicate ontology,

potentially limiting the unbiasing potential of our model.
Future work can include the latter effort as well. Lastly,
the random neighbor selection strategy in the entity linking
step does not guarantee relevant facts. However, Wikidata-
CS [11] does not offer scores for each edge. Thus, the only
alternative would be the manual exclusion of many more
edges.

For the EOA module, there may be alternative network
designs of the EOA matrix. Summing across the edge type
dimension can potentially destroy any effect associated with
each edge type. Therefore, it may be beneficial to preserve
the edge type dimension and compress the logit represen-
tation using another fully-connected neural network layer.
Additionally, we could remove the edge directions by treat-
ing both directions as one for all edge types. Section 4.3
discusses these variations of the ontological adjustment pro-
cess and their impacts.

4. Experiments

In this section, we first discuss the dataset we used, the
SGG tasks, our baselines, and evaluation metrics. We also
describe our implementation details, such as hyperparam-
eters and training. Furthermore, we analyze our results in
the context of our baselines. Lastly, we examine our model
components in ablation studies.

4.1. Datasets and Settings

SGG Tasks. To evaluate the performance of the pro-
posed approach and baselines on scene graph generation,
we focus on the following two tasks, predicate classification
(PredCls) and scene graph classification (SGCls), which
have been commonly used in the SGG literature. In particu-
lar, the PredCls task requires the algorithm to classify pred-
icates given both ground-truth bounding boxes and ground-
truth object labels, and the SGCls task removes the object
labels given in PredCls and thus must also classify the ob-
jects in the given bounding boxes.

Dataset. In our experiments, we use the Visual Genome
[15] dataset that consists of 108,077 images, each with
bounding boxes, object labels, and relation labels.

Baselines. We first include the experiment results from
classic methods such as IMP [35], MotifNet [40], and VC-
Tree [29]. Additionally, we reprint the reported perfor-
mance of our most relevant baseline, GB-Net [39]. More-
over, we include another relevant baseline that balances the
biased distribution, G2S (including BPL and SA modules)
[9]. Finally, we report recent methods that have demon-
strated competitive unbiasing performance, including PCPL
[36], DT2-ACBS [5], DLFE [3], and CogTree [38].

Evaluation Metrics. The Graph Constraint (GC) limits
a model to only one guess when predicting a relation. For
the same model, its unconstrained (UC) performance would
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Table 1: Evaluation in terms of mean triplet recall at top 20, 50, and top 100 (mR@K), with and without Graph Constraint
(GC), for Predicate Classification (PredCls) and Scene Graph Classification (SGCls) tasks. Numbers are in percentage. The
highest-performing method for each metric is shown in bold, and the second best one is in blue.

PredCls SGCls

mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

Model UC C UC C UC C UC C UC C UC C

IMP+ [35] - - 20.3 9.8 28.9 10.5 - - 12.1 9.8 16.9 10.5
Neural Motifs [40] - 10.8 - 14.0 - 15.3 - 6.3 - 7.7 - 8.2
VCTree [29] - 14.0 - 17.9 - 19.4 - 8.2 - 10.1 - 10.8
PCPL [36] - - 50.6 35.2 62.6 37.8 - - 26.8 18.6 32.8 19.6
GB-Net [39] - - 41.1 19.3 55.4 20.9 - - 21.4 9.6 29.1 10.2
DT2-ACBS [5] - 27.4 - 35.9 - 39.7 - 18.7 - 24.8 - 27.5
G2S: Transformer + BPL + SA [9] - 26.7 - 31.9 - 34.2 - 15.7 - 18.5 - 19.4
G2S: MotifNet + BPL + SA [9] - 24.8 - 29.7 - 31.7 - 14.0 - 16.5 - 17.5
G2S: VCTree + BPL + SA [9] - 26.2 - 30.6 - 32.6 - 17.2 - 20.1 - 21.2
MotifNet+DLFE [3] - 22.1 - 26.9 - 28.8 - 12.8 - 15.2 - 15.9
SG-Transformer + CogTree [38] - 22.9 - 28.4 - 31.0 - 13.0 - 15.7 - 16.7
EB-Net + EOA (Ours) 39.8 30.8 54.9 36.7 66.3 39.2 19.6 14.9 26.7 17.3 32.5 18.3

be higher than constrained (C) because it is allowed multi-
ple guesses for the same task. We list both C and UC results
in our study.

Given our motivation to unbias SGG, we report the top-
k mean triplet recall (mR@K) results. As Chen et al. [2]
and Tang et al. [29] point out, the traditional top-k recall
(R@K) metric is biased by the long-tail distribution of re-
lation labels. A model can perform well on the R@K met-
ric by guessing the most frequent relations. Both papers
adopt the mR@K metric that takes the average across all
R@Ks for each predicate, where a low R in a tail class
would greatly reduce the mR. Conversely, a perfect unbi-
asing method would have R@Ks equal to mR@Ks because
it would achieve the same R@K for all relations. Many
works have since only reported mR@K [28, 9] results. In
our experiments, we report the mR@K results for PredCls
and SGCls with K=20, 50, and 100, with and without the
GC (i.e., UC and C).

Implementation Details. We use the Adam [14] opti-
mizer with a learning rate of 1 × 10−3 and an epsilon of
1× 10−3. We use single-GPU training with 30 epochs each
on NVIDIA A5000 (24GB) GPUs. We optimize the code
such that each task takes around 24 hours to train. We train
a PredCls model first and use the best validation epoch to
initialize an SGCls model.

4.2. Results and Analysis

As shown in Table 1, our model achieves a significant
improvement over all other models for the PredCls task.
Specifically, compared with the most relevant baselines,
GB-Net and BPL+SA, our model achieves a significant in-
crease of 17.4% in mR@50 over GB-Net [39] and an in-

crease of 4.8% over BPL+SA [9]. These results confirm the
effectiveness of commonsense knowledge in unbiasing.

For the SGCls task, our model does not outperform most
models though it achieves comparable performance to some
strong baselines such as the BPL/SA models. Our model ac-
tually obtains the second-best results in some cases. Given
the additional bounding box classification task, the cause
could be a difference in the object detection backends.
For example, GB-Net [39] uses the VGG-16 backbone
[25] while the BPL/SA [9] methods use ResNet101-FPN
[10, 18]. Desai et al. show that switching the detector back-
bone from VGG to ResNet101-FPN improves VCTree by
2.3% in mR@50 for PredCls and 1.1% in mR@50 for SG-
Cls [5]. As a result, the performance of our model could be
further improved by using the ResNet101-FPN backbone.
Another strategy is incorporating the Total Direct Effect
(TDE) loss by Tang et al. [28] to separate the visual rea-
soning from the biased relation label distribution.

4.3. Ablation Studies

We further study the respective contributions of the en-
riched knowledge graph and the EOA used in our frame-
work. To verify that additional knowledge translates to per-
formance gains, we deconstruct the final KG and train the
model with different combinations of the components. To
study the mechanism of EOA, we study the impact of the
variations of the OA matrix on performance.

4.3.1 KG Components and Additional Knowledge

As discussed in Section 3.3, GB-Net exploits not only the
ConceptNet knowledge graph but also other information

74029



Table 2: Ablation study with regard to EOA on Visual Genome. Numbers are in percentage.

PredCls SGCls

mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

Model UC C UC C UC C UC C UC C UC C

EB-Net + BPL + EOA Naı̈ve 34.4 26.7 47.6 31.9 58.7 33.9 19.3 14.3 26.1 16.5 31.7 17.4
EB-Net + BPL + EOA Plus 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EB-Net + BPL + EOA Folded 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EB-Net + BPL + EOA Merge 39.8 30.8 54.9 36.7 66.3 39.2 19.6 14.9 26.7 17.3 32.5 18.3
EB-Net + BPL + EOA Compress 32.6 24.7 45.8 28.9 57.4 13.9 13.5 9.6 22.9 12.4 26.6 13.2

Table 3: Ablation study with regard to the role of knowledge
in reasoning. Numbers are in percentage.

Model PredCls (mR@50)

CN 18.1
CN+Wiki 18.6
CN+Stat+Emb 19.3
CN+Wiki+Stat+Emb 19.5

such as conditional probabilities and word embedding. To
investigate the role of additional knowledge and highlight
the contribution of our EB-Net enrichment process, we dis-
sect GB-Net’s graph components and examine each one’s
contribution. GB-Net consists of ConceptNet edges, a sta-
tistical matrix, and a GloVe embedding matrix [39]. As
Table 3 shows, the statistical and embedding matrices to-
gether give a 0.9-1.2 boost to mR@50 on PredCls, while
additional Wikidata edges yield a non-trivial 0.2-0.5 perfor-
mance gain.

4.3.2 Alternative EOA Formulations

We also explore alternative ways to adjust the predicates
with knowledge-based correlation. We have designed five
distinct EOA formulations described below, whose results
are shown in Table 2

1. Naı̈ve. We construct a naı̈ve predicate-to-predicate
(p2p) matrix by summing the KG p2p edge matrix of
size 51×51×4 in the last (edge type) dimension. There
are three edge types - two undirected “r/RelatedTo”
types, one directed “r/MannerOf” type, and a predi-
cate covariance matrix from GB-Net [39]. The naı̈ve
model performed worse than EB-Net+BPL, possibly
because the knowledge matrix is relatively sparse, and
this may adjust the logit values to zero.

2. Folded. To examine the effect of knowledge edge
direction, we build an undirected knowledge matrix
where we add the naı̈ve EOA matrix to its trans-
pose. This diagonally folded model consistently out-

puts non-numerical results. This suggests that direc-
tion does matter.

3. Plus. Concerned about the potentially harmful effect
of sparsity in the knowledge matrix, we try to shift the
value of the edge matrix by one, but this model also
outputs non-numerical results.

4. Merge. We combine the EOA matrix with the SA con-
fusion matrix by summing the two before adjusting the
predicate prediction logits. This is equivalent to the
products of two adjustments summed together in the
iterative message propagation process. This formula-
tion proves most effective for PredCls and is the final
model that we report in Table 1.

5. Compress. Lastly, we use a fully-connected compres-
sion neural network to preserve all the channel dimen-
sions of the edge matrix consisting of three edge types
and one covariance matrix. The training process for
this method is slow to converge, and it underperforms
compared with Merge.

5. Conclusion
In this paper, we demonstrate that commonsense knowl-

edge has a significant contribution to reducing bias in rela-
tion reasoning in SGG. We illustrate this effect by design-
ing a new framework for SGG. First, our model increases
the volume and depth of the knowledge graph by incorpo-
rating additional facts, consisting of both on-scene and off-
scene class entities. Second, our model adjusts the long-
tail prediction logits with the knowledge-based statistical
priors. Through extensive experiments, we show that our
model with the above two improvements can achieve com-
petitive performance compared to the state-of-the-art SGG
methods. Additionally, unbiasing SGG methods like ours
necessarily sacrifice recall for mean recall until we reach
perfect unbiasing. This trade-off may not be acceptable in
all situations and requires further investigation.
Acknowledgement: This work is supported by the
U.S. Army Research Office Award under Grant Number
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