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Abstract

Cross-modal attention mechanisms have been widely ap-
plied to the image-text matching task. They have achieved
remarkable improvements thanks to their capability of
learning fine-grained relevance across different modali-
ties. However, the cross-modal attention models of existing
methods could be sub-optimal and inaccurate because there
is no direct supervision provided during the training pro-
cess. In this work, we propose two novel training strategies,
namely Contrastive Content Re-sourcing (CCR) and Con-
trastive Content Swapping (CCS) constraints, to address
such limitations. These constraints supervise the train-
ing of cross-modal attention models in a contrastive learn-
ing manner without requiring explicit attention annotations.
They are plug-in training strategies and can be generally
integrated into existing cross-modal attention models. Ad-
ditionally, we introduce three metrics, including Attention
Precision, Recall, and F1-Score, to quantitatively measure
the quality of learned attention models. We evaluate the
proposed constraints by incorporating them into four state-
of-the-art cross-modal attention-based image-text match-
ing models. Experimental results on both Flickr30k and
MS-COCO datasets demonstrate that integrating these con-
straints generally improves the model performance in terms
of both retrieval performance and attention metrics.

1. Introduction
The task of image-text matching aims to learn a model

that measures the similarity between visual and textual con-
tents. By using the learned model, users can retrieve im-
ages that visually match the context described by a text
query, or retrieve texts that best describe the image query.
Because of its critical role to bridge the human vision and
language world, this task has emerged as an active research
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Figure 1: Visualization of the attention maps of the SCAN
model learned without and with our proposed constraints.

area [5, 17, 8, 12, 16, 1, 23].
Recently, cross-modal attention models have been

widely applied to this task [16, 12, 17, 8, 7, 2, 13, 4].
These approaches have achieved remarkable improvements
thanks to their ability to capture fine-grained cross-modal
relevance by the cross-modal attention mechanism. Specif-
ically, given an image description and its corresponding im-
age, they are first represented by fragments, i.e., individual
words and image regions. We refer to the fragments of the
context modality as query fragments, and the fragments of
the attended modality as key fragments. Given a query frag-
ment, a cross-modal attention model first assigns an atten-
tion weight to each key fragment, each of which measures
the semantic relevance between the query fragment and the
corresponding key fragment. Then the attended informa-
tion of the query fragment is encoded as the weighted sum
of all key fragment features. The similarity between each
query fragment and its attended information is thus aggre-
gated as the similarity measurement between the query and
the retrieval candidates.

In ideal cases, well-trained cross-modal attention mod-
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Figure 2: Overview of the training pipeline which contains (a) the cross-modal attention mechanism and our proposed
attention constraints including (b) Contrastive Content Re-sourcing (CCR) and (c) Contrastive Content Swapping (CCS).

els will attend to the semantically relevant key fragments by
assigning large attention weights to them, and ignore irrele-
vant fragments by producing small attention weights. Take
Figure 1 (b) as an example: when “dog” is used as a query
fragment, the cross-modal attention model is supposed to
output large attention weights for all image regions contain-
ing the dog, and small attention weights for other irrelevant
image fragments. However, since the cross-modal attention
models of most existing image-text matching methods are
trained in a purely data-driven manner and do not receive
any explicit supervision or constraints, the learned atten-
tion models may not be able to precisely attend to the rele-
vant contents. As shown in Figure 1 (a), the learned SCAN
model [12], a state-of-the-art cross-modal attention-based
image-text matching model, fails to attend to the relevant
image regions containing the dog’s main body when using
the word “dog” as the query fragment. This example il-
lustrates a false negative case, i.e., a low attention “recall”.
Additionally, a learned cross-modal attention model might
also suffer from false positives (low attention “precision”).
As shown in Figure 1 (c), when using “helmet” as the query
fragment, the SCAN model assigns large attention weights
to the irrelevant human body and background areas. A pos-
sible solution to these limitations is to rely on manually gen-
erated attention map ground truth to supervise the training
process of cross-modal attention models [19, 27]. However,
annotating attention distributions is an ill-defined task, and
will be labor-intensive.

To this end, we propose two learning constraints,
namely Contrastive Content Re-sourcing (CCR) and

Contrastive Content Swapping (CCS), to supervise the
training process of cross-modal attentions. Figure 2 gives
an overview of our method. CCR enforces a query fragment
to be more relevant to its attended information than to the
reversed attended information, which is generated by calcu-
lating the weighted sum of key fragments using reversed at-
tention weights (details in Section 3.2). It can guide a cross-
modal attention model to assign large attention weights to
the relevant key fragments and small weights to irrelevant
fragments. On the other hand, CCS further encourages a
cross-modal attention model to ignore irrelevant key frag-
ments by constraining the attended information to be more
relevant to the corresponding query fragment than to a neg-
ative query fragment. In the example shown in Figure 2 (c),
by using the word “grass” as a negative query fragment, the
attention weights assigned to regions containing grass will
be diminished so that a more accurate attention map is gen-
erated. The proposed constraints are plug-in training strate-
gies that can be easily integrated into existing cross-modal
attention-based image-text matching models.

We evaluate the performance of the proposed constraints
by incorporating them into four state-of-the-art cross-
modal attention-based image-text matching networks [12,
16, 23, 4]. Additionally, in order to quantitatively com-
pare and measure the quality of the learned attention mod-
els, we propose three new attention metrics, namely At-
tention Precision, Attention Recall and Attention F1-
Score. The experimental results on both MS-COCO [14]
and Flickr30K [25] demonstrate that these constraints sig-
nificantly improve image-text matching performances and
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the quality of the learned attention models.
To sum up, the main contributions of this work include:

(i) we propose two learning constraints to supervise the
training of cross-modal attention models in a contrastive
manner without requiring additional attention annotations.
They are plug-in training strategies and can be easily ap-
plied to different cross-modal attention-based image-text
methods; (ii) we introduce the attention metrics to quan-
titatively evaluate the quality of learned attention models,
in terms of precision, recall, and F1-Score; (iii) we vali-
date our approach by incorporating it into four state-of-the-
art attention-based image-text matching models. Extensive
experiments conducted on two publicly available datasets
demonstrate its strong generality and effectiveness.

2. Related Work
Image-Text Matching. The task of image-text matching

is well-explored yet challenging. Its main challenge is how
to measure the similarity between texts and images. Early
approaches propose to measure the similarity at the global
level [10, 6, 26, 5]. Specifically, these methods first train an
image encoder and a text encoder to embed the global in-
formation of images and sentences into feature vectors, and
then measure the similarity between images and sentences
by calculating the cosine similarity between the correspond-
ing feature vectors. For example, by using the triplet rank-
ing loss with hard negative samples, Faghri et al. [5] train a
VGG-based image encoder [21] and a GRU-based text en-
coder [3], respectively. One major limitation of these meth-
ods is that they failed to capture fine-grained image-text rel-
evance.

To address this limitation, recent studies propose to
apply the cross-modal attention mechanism to measure
the similarity between texts and images at the fragment
level [16, 12, 23, 24]. Typically, given an image and a sen-
tence, these methods first extract embeddings on object re-
gions from the image by feeding it into an object detection
model, such as Faster R-CNN [20], and embed each word
of the sentence by using recurrent neural networks. Then
the relevant regions of each word and the relevant words
of each region are inferred by leveraging the text-to-image
and image-to-text attention, respectively. The similarity be-
tween each fragment (word or image region) and its relevant
information is calculated and aggregated as the final similar-
ity score between the image and sentence. Although these
methods have achieved notable results, the learning process
of these cross-modal attention models could be sub-optimal
due to the lack of direct supervision, as discussed in Sec-
tion 1.

Supervision on Learning Cross-Modal Attention. The
task of training cross-modal attention models with proper
supervision has drawn growing interests. The main chal-
lenge lies in how to define and collect supervision signals.

Qiao et al. [19] first train an attention map generator on a
human annotated attention dataset and then apply the atten-
tion map predicted by the generator as weak annotations.
Liu et al. [15] leverage human annotated alignments be-
tween words and corresponding image regions as supervi-
sion. Similar to [15], image local region descriptions and
object annotations in Visual Genome [11] are used for gen-
erating attention supervision [27]. These methods obtain at-
tention supervision from different forms of human annota-
tions, such as word-image correspondence and image local
region annotations. By contrast, we provide attention su-
pervision by constructing pair-wise samples in a contrastive
learning manner which does not require additional manual
attention annotations.

3. Methodology

3.1. Cross-Modal Attention Model

Given an image-sentence pair in image-text matching,
they are first represented as fragments, i.e., individual words
and image regions. The fragments of the context modal-
ity are query fragments, and the fragments of the attended
modality are key fragments. Each of these fragments is
encoded as a vector. A cross-modal attention model takes
these vectors as input, and infers the cross-modal relevance
between each query fragment and all key fragments. The
similarity score of the image-sentence pair is then calcu-
lated according to the obtained cross-modal relevance.

Let qi and kj refer to the feature representation of the
i-th query and j-th key fragments, respectively. The cross-
modal attention model first calculates kj’s attention weight
with respect to qi as follows:

ei,j = fatt(qi, kj),

wi,j =
exp(ei,j)∑

j∈K exp(ei,j)
,

(1)

where fatt is the attention function whose output is a scalar
ei,j that measures the cross-modal relevance between qi and
kj ; K is a set of indexes of all key fragments; wi,j is kj’s
attention weight with respect to qi.

qi’s attended information (i.e., qi’s relevant cross-
modal information) is defined as the attention feature ai
using the weighted sum of key fragment features in the fol-
lowing equation:

ai =
∑
j∈K

(wi,j · kj) . (2)

The similarity score between the image I and the sen-
tence T is then defined as:

S(I, T ) = AGGi∈Q(Sim(qi, ai)), (3)

4434



where Q denotes the set of indexes of all query fragments;
Sim is the similarity function; AGG is a function that ag-
gregates similarity scores among all query fragments, such
as the average pooling function [12].

The most widely used loss function for this task is the
triplet ranking loss with hard negative sampling [5] defined
as:

ℓrank = [S(I, T̂ )− S(I, T ) + γ1]+

+ [S(Î , T )− S(I, T ) + γ1]+, (4)

where γ1 controls the margin of similarity difference; the
matched image I and the sentence T form a positive sample
pair, while T̂ and Î represent the hardest negative sentence
and image for the positive sample pair as defined by [5].
ℓrank enforces the similarity between the anchor image I
and its matched sentence T to be larger than the similarity
between the anchor image and an unmatched sentence by a
margin γ1. Vice versa for the sentence T .

However, this loss function works at the similarity level
and does not provide any supervision for connecting cross-
modal contents at the attention level. In other words, learn-
ing cross-modal attentions is a pure data-driven approach
and lacks supervision. As a result, the learned cross-modal
attention model could be sub-optimal.

3.2. Contrastive Content Re-sourcing

A desired property of a well-learned cross-modal atten-
tion model is that, for a query fragment, the attention model
should assign large attention weights to the key fragments
that are relevant to the query fragment, and assign small at-
tention weights to the key fragments that are irrelevant to
the query fragment. The Contrastive Content Re-sourcing
(CCR) constrain is proposed to explicitly guide attention
models to learn this property. It enforces a query fragment
to be more relevant to its attended information than to its
reversed attention information. For example, as shown in
Figure 2 (b), the query “dog” is required to be more relevant
to its attended information than to the reversed attended in-
formation which contains the person and trees.

To be specific, given a query fragment qi, its attended
information is embedded as the attention feature ai. Its re-
versed attention information is encoded by the vector âi,
which is obtained by reversing attention weights and calcu-
lating weighted sum of key fragment features based on the
reversed attention weights, as shown in Equation 5:

ŵi,j =
1− wi,j∑

j∈K(1− wi,j)
,

âi =
∑
j∈K

(ŵi,j · kj) ,
(5)

where ŵi,j is the reversed attention weight of the key frag-
ment kj with respect to the query fragment qi.

We use the similarity function Sim to measure the rele-
vance between the query fragment and either the attention
feature or reversed one. Therefore, the loss function for
CCR is defined as:

ℓCCR = [Sim(qi, âi)− Sim(qi, ai) + γ2]+, (6)

where γ2 controls the similarity difference margin.
Intuitively, in order to minimize this loss, a cross-modal

attention model should assign large attention weights to rel-
evant key fragments to increase qi’s relevant information
ratio in ai and decrease that contained in âi. The attention
model will also learn to assign small attentions weights to
irrelevant key fragments to diminish qi’s irrelevant informa-
tion ratio in ai and increase that in âi.

3.3. Contrastive Content Swapping

As shown in Figure 1 (c), attention models could assign
large attention weights to both relevant and irrelevant key
fragments. In such cases, the CCR constraint might not be
able to fully address these false-positive scenarios because
the query fragment can be more relevant to its attended in-
formation than to its reversed attention information. There-
fore, we propose the Contrastive Content Swapping (CCS)
constraint to address this problem. It constrains a query
fragment’s attended information to be more relevant to the
query fragment than to a negative query fragment.

Specifically, given a query fragment qi, we first sam-
ple its negative query fragment q̂i from a predefined set Q̂i

which contain all negative query fragments with respect to
qi. The relevance between the attended information and ei-
ther the query fragment or the negative query fragment is
also measured by the similarity function Sim. Then the
CCS constraint’s loss function ℓCCS is defined as:

ℓCCS = [Sim(q̂i, ai)− Sim(qi, ai) + γ3]+, (7)

where γ3 is the margin parameter.
The CCS constraint will enforce the cross-modal atten-

tion model to diminish the attention weights of the key frag-
ments that are relevant to q̂i. As a result, the information
that is relevant to q̂i but irrelevant to qi is eliminated.

By incorporating the CCR and CCS constraints for
image-text matching, we obtain the full objective function
by Equation 8, where λCCR and λCCS are scalars that con-
trol the contributions of CCR and CCS, respectively:

ℓ = ℓrank + λCCR · ℓCCR + λCCS · ℓCCS . (8)

3.4. Attention Metrics

Previous studies [12, 16] focus on qualitatively evalu-
ating the attention models by visualizing attention maps.
These approaches cannot serve as standard metrics for
comparing attention correctness among different models.
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Therefore, we propose Attention Precision, Attention Re-
call and Attention F1-Score, to quantitatively evaluate the
performance of learned attention models. Attention Preci-
sion is the fraction of attended key fragments that are rel-
evant to the correspondent query fragment, and Attention
Recall is the fraction of relevant key fragments that are at-
tended. Attention F1-Score is a combination of the Atten-
tion Precision and Attention Recall that provides an overall
way to measure the attention correctness of a model.

In this paper, we only evaluate the attention models that
use texts as the query fragments. This is because text en-
coders used in the evaluated models [12, 23, 16, 4] are
GRUs [3] or Transformers [22], where defining the relevant
and irrelevant key text fragments of a query region fragment
could be difficult since the text fragments will be updated to
include global information by the text encoder.

Given a matched image-text pair, an image fragment v
is labeled as a relevant fragment of the text fragment t if
the Intersection over Union (IoU)1 between v and the cor-
respondent region2 of t is larger than a threshold TIoU . In
addition, v is regraded as an attended fragment by t if v’s
attention weight with respect to t is larger than a threshold
TAtt. Let A and R be the sets of attended and relevant im-
age fragments of t. t’s Attention Precision (AP ), Attention
Recall (AR), and Attention F1-Score (AF ) are defined as:

AP =
|A ∩R|
|A|

, AR =
|A ∩R|
|R|

, AF = 2× AP ×AR

AP +AR
.

(9)
The annotations [18] that are used to calculate attention

metrics provide the correspondence between noun phrases
and image regions. A noun phrase might contain multiple
words, and different words could correspond to the same
image region. In order to obtain the overall attention metrics
of a learned attention model, we first calculate the attention
metrics at word-level, and use the maximal values within
each phrase as the phrase-level metrics. The overall atten-
tion metrics are then obtained by averaging the phrase-level
metrics.

4. Experiments
4.1. Datasets and Evaluations

Datasets. We evaluate our method on two public
image-text matching benchmarks: Flickr30K [25] and MS-
COCO [14]. Flickr30K [25] dataset contains 31K images,
each of which is annotated with 5 captions. Following the
setting of [16, 12], we split the dataset into 29K training
images, 1K validation images, and 1K testing images. The

1Given two bounding boxes, the IoU score between them is calculated
as the ratio of their joint area to their union area.

2The correspondent regions of a word t are the regions that contain the
object described by t.

Sentence Retrieval Image Retrieval
Method R@1 R@5 R@10 R@1 R@5 R@10 rsum

SCAN [12] 67.2 90.7 94.8 48.4 77.6 84.9 463.6
+ CCR 67.8 91.1 95.0 49.4 77.6 85.3 466.2
+ CCS 69.1 91.1 95.4 50.8 78.4 85.6 470.4
+ CCR & CCS 68.8 91.6 95.3 51.1 79.0 86.5 472.3

PFAN [23] 69.7 90.2 94.1 50.1 78.6 86.0 468.7
+ CCR 70.3 90.5 94.7 51.9 79.4 86.7 473.5
+ CCS 70.3 90.9 95.2 51.9 79.2 86.5 474.0
+ CCR & CCS 70.9 91.8 95.6 52.5 79.6 86.9 477.3

BFAN [16] 70.7 92.3 96.3 51.8 79.3 85.9 476.3
+ CCR 71.7 92.8 96.0 53.2 80.5 87.1 481.3
+ CCS 71.0 93.2 96.0 52.6 79.4 86.4 478.6
+ CCR & CCS 72.0 93.4 96.2 53.1 80.3 86.9 481.9

SGRAF [4] 77.8 94.5 96.8 59.0 82.9 88.6 499.6
+ CCR 78.0 95.2 97.2 59.5 83.1 88.7 501.7
+ CCS 78.3 94.6 97.4 59.6 83.5 89.0 502.4
+ CCR & CCS 79.3 95.2 98.0 59.8 83.6 88.8 504.7

Table 1: Results of the sentence retrieval and image retrieval
tasks on the Flickr30K test set.

MS-COCO dataset used for image-text matching consists of
123,287 images, each of which includes 5 human-annotated
descriptions. Following [16, 12], the dataset is divided into
113,283 images for training, 5K images for validation, and
5K images for testing.

Evaluation Metrics. Following [16, 12, 23], we mea-
sure the performance of both Image Retrieval and Sen-
tence Retrieval tasks by calculating recalls at different K
values (R@K, K = 1, 5, 10), which are the proportions of the
queries whose top-K retrieved items contain their matched
items. We also report rsum, which is the summation of all
R@K values for a model. On the Flickr30K dataset, we
report results on the 1K testing images. On the MS-COCO
dataset, we report results through averaging over 5-folds 1K
test images (referred to MS-COCO 1K), and testing on the
full 5K test images (referred to MS-COCO 5K) following
the standard evaluation protocol [12, 16, 23].

To compute the attention metrics, TIoU is set as 0.4, and
the results for other values of TIoU can be found in the sup-
plementary material. The possible values of TAtt are uni-
formly chosen between 0 and 0.1 with the interval of 0.01.
We set the range of TAtt based on the experimental results
that when achieving the best Attention F1-Score the TAttis
ranging from 0 to 0.1. We calculate the Attention Precision,
Attention Recall and Attention F1-Score for each value of
TAtt, and then report the precision-recall (PR) curves and
the best Attention F1-Score with its correspondent Atten-
tion Precision and Attention Recall.

4.2. Baselines and Implementation Details

We evaluate the proposed constraints by incorporat-
ing them into the following state-of-the-art attention-based
image-text matching models:
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Sentence Retrieval Image Retrieval
Method R@1 R@5 R@10 R@1 R@5 R@10 rsum

1K Test Images

SCAN [12] 70.6 93.8 97.7 54.1 86.0 93.4 495.6
+ CCR 71.4 94.2 97.7 55.6 86.7 93.8 499.4
+ CCS 71.1 94.0 97.7 56.6 87.2 94.0 500.6
+ CCR & CCS 71.6 94.0 97.7 56.4 87.3 94.0 501.0

PFAN* [23] 74.5 95.4 98.6 59.8 88.8 94.8 511.9
+ CCR* 74.4 95.3 98.3 60.5 89.1 94.8 512.4
+ CCS* 74.9 95.8 98.3 60.8 89.1 94.5 513.4
+ CCR & CCS* 75.2 95.6 98.2 61.2 88.9 94.7 513.8

BFAN [16] 75.0 95.0 98.2 58.8 88.3 94.4 509.7
+ CCR 75.2 95.3 98.3 60.1 88.7 94.7 512.3
+ CCS 75.1 95.3 98.3 59.6 88.5 94.6 511.4
+ CCR & CCS 75.2 95.5 98.1 60.3 88.8 94.7 512.6

SGRAF [4] 79.7 96.5 98.5 63.3 90.1 95.7 523.8
+ CCR 79.7 96.8 98.7 63.8 90.4 95.9 525.3
+ CCS 79.7 96.8 98.8 63.8 90.3 95.7 525.1
+ CCR & CCS 80.2 96.8 98.7 64.3 90.6 95.8 526.4

5K Test Images

SCAN [12] 47.2 77.6 87.7 34.7 65.2 77.3 389.7
+ CCR 47.7 78.3 88.2 36.2 66.6 78.2 395.2
+ CCS 46.5 78.5 88.0 36.5 66.6 78.3 394.4
+ CCR & CCS 47.9 78.1 88.2 36.9 66.9 78.4 396.4

BFAN [16] 52.5 80.3 89.5 37.5 66.7 78.1 404.6
+ CCR 52.0 81.5 89.9 38.7 67.8 78.8 408.7
+ CCS 53.8 81.1 89.9 38.0 67.3 78.5 408.6
+ CCR & CCS 53.4 81.3 90.1 38.4 67.6 78.6 409.4

SGRAF [4] 58.3 84.8 91.9 41.8 70.9 81.2 428.9
+ CCR 59.2 84.8 92.0 42.2 71.1 81.7 431.0
+ CCS 58.6 85.0 92.2 42.2 71.2 81.6 430.8
+ CCR & CCS 59.7 85.0 92.0 42.3 71.4 81.9 432.3

Table 2: Results of the sentence retrieval and image retrieval
tasks on the MS-COCO test set. *Note that since the offi-
cial implementation of PFAN only provides 1K images for
testing, PFAN is tested without 5-fold cross-validation un-
der the setting of 1K test images, and cannot be tested under
the setting of 5K test images.

• SCAN [12] is a stacked cross-modal attention model
to infer the relevance between words and regions and
calculate image-text similarity.

• PFAN [23] improves cross-modal attention models
by integrating image region position information into
them.

• BFAN [16] is a bidirectional cross-modality attention
model which allows to attend to relevant fragments and
also diverts all the attention into these relevant frag-
ments to concentrate on them.

• SGRAF [4] first learns the global and local align-
ments between fragments by using cross-modal atten-
tion models, and then applies the graph convolutional
networks [9] to infer relation-aware similarities based
on the local and global alignments.

We apply the proposed constraints to one randomly sam-
pled query fragment for each matched image-text pair, in
order to reduce the computational cost. For a query word
fragment, its negative query set Qi is consisted of the other
words of its correspondent sentence. For a query region
fragment, its Qi is set as the other regions of its correspon-
dent image. The constraint loss weight factors λCCR and
λCCS could be 0.1 or 1, and constraint similarity margins
γ2 and γ3 are set to 0, 0.1 or 0.2. We train models with all
possible combinations with constraint loss weight factors
and similarity margins, and report the best results.

The experiments on Flickr30K and MS-COCO are con-
ducted on the RTX8000 and A100 GPU, respectively. All
the baselines are trained by their officially released codes.
3 4 5 6. All models are trained from scratch by completely
following their original hyper-parameters settings such as
the learning rate, batch size, model structure, and opti-
mizer [12, 16, 23, 4]. More implementation details can be
found in the supplementary materials.

4.3. Experiments on Image-Text Matching

We start by evaluating the proposed approach for im-
age and sentence retrieval tasks on both Flickr30K and MS-
COCO datasets. Table 1 and Table 2 show the results on the
Flickr30K and MS-COCO datasets, respectively. We find
that when the proposed CCR and CCS constraints are em-
ployed separately, they both achieve consistent performance
improvements on all baselines and tasks. More importantly,
all models achieve the best overall improvements (rsum)
when we apply both constraints. These results demonstrate
the strong generality of our proposed constraints for differ-
ent models and datasets. We also note that using CCR or
CCS alone achieve better results than using both CCR and
CCS under some metrics. One possible reason is that the
CCR is expected to assign large attention weights to the key
fragments that contain both irrelevant and relevant informa-
tion. For example, it will attend to regions containing back-
ground and described objects. CCS tends to ignore these
key fragments to decrease the attention weights on irrele-
vant information. As a result, using CCR and CCS together
might result in conflicts in some rare cases, and using CCR
(or CCS) alone may achieve slightly better results under
some metrics.

4.4. Attention Evaluation

Quantitative Analysis. We report the results on
Flickr30K since it has publicly available cross-modal cor-
respondence annotations [18] while MS-COCO does not.

3https://github.com/kuanghuei/SCAN
4https://github.com/CrossmodalGroup/BFAN
5https://github.com/HaoYang0123/Position-Focused-Attention-

Network
6https://github.com/Paranioar/SGRAF
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Method
Attention
Precision

Attention
Recall

Attention
F1-Score

SCAN [12] 32.79 65.30 39.96
+ CCR 36.30 66.80 43.10
+ CCS 37.28 64.97 43.38
+ CCR & CCS 38.81 64.62 44.44

BFAN [16] 46.08 63.32 48.91
+ CCR 50.21 64.20 51.78
+ CCS 49.16 61.44 49.74
+ CCR & CCS 51.13 62.97 51.73

SGRAF [4] 44.54 61.98 47.91
+ CCR 45.22 64.07 49.12
+ CCS 47.43 60.41 49.20
+ CCR & CCS 49.48 62.12 50.90

Table 3: Results of Attention Precision, Attention Recall
and Attention F1-Score (%) of the SCAN, BFAN, and
SGRAF models trained on the Flickr30K dataset.
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Figure 3: The Attention PR curves of the SCAN, BFAN,
and SGRAF models trained on the Flickr30K dataset.

We note that the results of PFAN are not reported because
we cannot obtain the bounding boxes of the input image re-
gions that are correspondent to the testing data provided by
its official implementation.

The attention metrics of SCAN, BFAN, and SGRAF are
shown in Table 3. We can see that applying CCR and CCS
individually yields higher Attention F1-Score than both
baseline methods, and this is consistent to the observations
in Section 4.3. More interestingly, we can find that using
CCR alone improves both Attention Precision and Attention
Recall; using CCS alone mainly improves Attention Preci-
sion; combining both constraints further improves Atten-

tion Precision. These results show the constraints work as
intended. Note that the slight decrease in Attention Recall
caused by CCS might be due to the fact that CCS enforces
attention models to ignore the regions containing both fore-
ground objects and noise background. We also present the
PR curves of SCAN, BFAN, and SGRAF in Figure 3 to
demonstrate the impact of different TAtt on Attention Preci-
sion and Attention Recall. We can observe that applying the
proposed constraints yields consistently better results than
both baseline methods for different TAtt.

We further evaluate the relation between the image-text
matching performance and the quality of learned attention
models by calculating the Pearson correlation coefficient
between Attention F1-Score and rsum for each model. The
obtained correlation coefficients of the SCAN, BFAN, and
SGRAF models are 0.967, 0.992, and 0.941, respectively.
The p-values are all less than 0.05. The results show that
the image-text matching performance has strong positive
correlation with the quality of learned attention models,
which further demonstrate our motivation to propose the
constraints.

Qualitative Analysis. We visualize the attention
weights with respect to three sampled query word fragments
on the Flickr30K and MS-COCO dataset. The results are
shown in Figure 4 and Figure 5, respectively. More ex-
amples are provided in the supplementary material due to
the space limitation. In the examples of the query word
fragment “fire” and “mouse”, the learned attention model
of SCAN (see Column (b)) fails to assign large attention
weights to the most regions containing fire or mouse. By
contrast, the CCR constraint (see Column (c)) mitigates
this issue by significantly increasing the attention weights
assigned to the regions containing fire or mouse. The
CCS constraint (see Column (d)) is less effective in these
cases. In the cases of the query word fragment “infant” and
“surfer”, the learned attention model of SCAN (see Col-
umn (b)) assigns large attention weights to both the irrele-
vant and relevant regions. In this case, the CCR constraint
(see Column (c)) cannot fully diminish the attention weights
assigned to the regions irrelevant to “infant” and “surfer’. In
contrast, as shown in Column (d), the attention weights as-
signed to irrelevant regions are largely diminished by the
CCS constraint. In the examples of the query word “guy”
and ’suitcases’, they show that combining both constraints
decreases the attention weights of the background regions
(e.g., the surrounding areas of the “guy”) more significantly
than applying the them separately.

5. Conclusions
To tackle the issue of missing direct supervisions

in learning cross-modal attention models for image-text
matching, we introduce the constraints of CCR and CCS to
supervise the learning of attention models in a contrastive
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(a) Original Images (b) SCAN (c) SCAN+CCR (d) SCAN+CCS (e) SCAN+CCR+CCSQuery
Fragments

fire

infant

guy

Figure 4: Examples illustrating attended image regions with respect to the given words for the SCAN model on the Flickr30K
dataset.

(a) Original Images (b) SCAN (c) SCAN+CCR (d) SCAN+CCS (e) SCAN+CCR+CCSQuery
Fragments

surfer

mouse

suitcases

Figure 5: Examples illustrating attended image regions with respect to the given words for the SCAN model on the MS-
COCO dataset.

manner without requiring additional attention annotations.
Both constraints are generic learning strategies that can be
generally integrated into attention models. Furthermore, in
order to quantitatively measure the attention correctness, we
propose three new attention metrics. The extensive experi-
ments demonstrate that the proposed constraints manage to
improve the cross-modal retrieval performance as well as
the attention correctness when integrated into four state-of-
the-art attention models. For future work, we will explore

on how to extend the proposed constraints to other cross-
modal attention models based tasks, such as Visual Ques-
tion Answering (VQA) and Image Captioning.
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