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Abstract

This paper introduces pixel-wise prediction based visual
odometry (PWVO), which is a dense prediction task that
evaluates the values of translation and rotation for every
pixel in its input observations. PWVO employs uncertainty
estimation to identify the noisy regions in the input observa-
tions, and adopts a selection mechanism to integrate pixel-
wise predictions based on the estimated uncertainty maps
to derive the final translation and rotation. In order to train
PWVO in a comprehensive fashion, we further develop a
data generation workflow for generating synthetic training
data. The experimental results show that PWVO is able to
deliver favorable results. In addition, our analyses vali-
date the effectiveness of the designs adopted in PWVO, and
demonstrate that the uncertainty maps estimated by PWVO
is capable of capturing the noises in its input observations.

Keywords— Visual odometry, uncertainty estimation,
pixel-wised predictions.

1. Introduction
Visual odometry (VO) is the process of inferring the

correspondence of pixels or features via analyzing the as-
sociated camera images, and determining the position and
orientation of a robot. Conventionally, the process of VO
takes raw RGB images as inputs, derives the correspon-
dence from them, and estimates the changes in translation
and rotation of the camera viewpoints between consecu-
tive image frames. This process enables a robot to derive
its entire trajectory from its observed images over a period
of time. In the past decade, there have been a number of
VO methods proposed in the literature [1–22, 22–29]. The
requirement of estimating such changes from raw images,
however, often causes those methods to suffer from the ex-
istence of noises coming from moving objects, as the corre-
spondence extracted from those moving objects might not
be directly related to the motion of the camera viewpoint.
This leads to degradation in accuracy when performing VO,

and limits previous methods to further improve.
In order to deal with the above issue, the objectives of

this paper are twofold: (1) validating the fact that the noises
from moving objects would degrade the performance of
VO, and (2) investigating and proposing an effective ap-
proach to mitigate the impacts from them. Instead of em-
bracing VO frameworks that are based on raw RGB in-
puts [1–22, 26–29], in this work, we focus the scope of
our discussion on deriving relative translation and rotation
from intermediate representations [23–25, 30, 31], which
include extracted optical flow maps, depth maps, as well as
known camera intrinsic. Specifically, we aim to derive and
validate our method based on clear intermediate representa-
tions, decoupling the influences of inaccurate features and
correspondence from from the feature extraction processes.

The first step toward the aforementioned objectives is to
develop a mechanism that allows the noises of moving ob-
jects from those intermediate representations to be either
filtered out or suppressed. Past researchers have explored
three different directions: (i) semantic masks, (ii) atten-
tion mechanisms, and (iii) uncertainty estimation. Among
them, semantic masks require another separate segmenta-
tion model to discover potential moving objects (e.g., cars,
pedestrians, etc.) [32–35]. Attention mechanisms seek the
clues of possible candidates from intermediate representa-
tions [21, 26–29, 32, 36–39]. Uncertainty estimation, on
the other hand, implicitly captures the noises and enables
the models to respond to the measured stochasticity inher-
ent in the observations [11, 22, 40–45]. All of these direc-
tions have been attempted in the realm of VO. Neverthe-
less, the previous endeavors have only been concentrating
on predicting a single set of translation and rotation values
from their input observations, neglecting the rich informa-
tion concealed in pixels. In light of these reasons, we pro-
pose to employ uncertainty estimation as a means to lever-
age such information, and further extend VO to be based on
pixel-wise predictions. This concept can be regarded as an
implicit form of the attention mechanism.

Different from conventional VO approaches, pixel-wise
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prediction based VO (or simply ”PWVO” hereafter) is de-
signed as a dense prediction task, which evaluates the val-
ues of translation and rotation for every pixel in its input
observations. PWVO first performs predictions for all pix-
els in the input observations, and then integrates these local
predictions into a global one. As PWVO is based on pixel-
wise predictions, such a nature allows it to suppress noisy
regions through the usage of uncertainty maps. The regions
with high uncertainty are likely to be noises (e.g., moving
objects), and should not be considered in the final global
prediction. As a result, a weighting and selection strategy is
specifically tailored for PWVO to aggregate the local pre-
dictions from its input pixels.

In order to validate the advantages of PWVO, we further
develop a data generation workflow, which features a high
degree of freedom to generate intermediate representations
for PWVO. The workflow is fully configurable, and allows
various setups of camera intrinsic, viewpoint motion, ex-
trinsic range, as well as a diverse range of the number, size,
and speed for moving objects. Such a flexibility enables
the training data to be comprehensive, and prevents PWVO
from overfitting to the setups of a certain existing dataset.
In our experiments, we examine the effectiveness of PWVO
in terms of its accuracy, saliency maps, as well as factorized
optical maps. We further present a set of ablation analyses
to justify the design decisions adopted by PWVO. The main
contribution of this paper is the introduction of pixel-wise
predictions in VO, and the dataset generation workflow.

The paper is organized as follows. Section 2 reviews
the related work. in the literature. Section 3 walks through
the PWVO framework and its components. Section 4 de-
scribes the dataset generation workflow. Section 5 reports
the experimental results. Section 6 discusses the limita-
tions and future directions. Section 7 concludes the paper.
Please note that the essential background material, hyper-
parameter setups, additional results, and our reproducible
source codes are offered in the supplementary material.

2. Related Work
Traditional VO methods are based on multiview geom-

etry. According to the algorithms adopted by them, these
methods can be roughly categorized into either feature-
based [46–48] or direct [49–51] methods. The former in-
volves correspondences between image frames by using
sparse key points, while the latter attempts to recover cam-
era poses by minimizing the image warping photomet-
ric errors. Both categories suffer from the scale drift is-
sue if the absolute depth scale is unknown. The authors
in [2, 3] pioneered the usage of convolutional neural net-
works (CNNs) to learn camera pose estimation with various
types of loss functions and model architectures. The authors
in [5, 10, 15, 16] proposed to directly regress six degrees of
freedom (6-DoF) camera poses through weighted combina-

tions of position and orientation errors. Methods employ-
ing geometric re-projection errors [13] and visual odometry
constraints [10, 18, 19] were also introduced in the litera-
ture. Moreover, the authors in [17, 20] attempted to train
their models with extra synthetic data, while the authors
in [4] trained their VO models from videos using recur-
rent neural networks. Furthermore, the technique proposed
in [5] adopted an end-to-end approach that merges camera
inputs with inertial measurement unit (IMU) readings using
an LSTM network. Most of these image-based localization
methods perform VO via retrieving information from input
images. As a result, feature extraction is critical to their
performance, which in turn impacts their generalizability
to challenging scenarios. To reduce the impacts from fea-
ture extraction stages, some researchers [23–25] proposed
to use optical flow maps as inputs instead of RGB images.
The authors in [24] further proposed to utilize autoencoder
networks to learn a better representations for their optical
flow maps. To eliminate the noises from input observations,
a number of researchers have investigated attention based
VO methods [21, 26–28, 32, 36–38] and uncertainty based
VO methods [22, 41, 44, 45] as well to mitigate the impacts
of moving objects from their input observations.

3. Methodology
In this section, we first formally define our problem for-

mation, and provide an overview of the PWVO framework.
Next, we describe the two constituent stages in PWVO. Fi-
nally, we introduce the refinement strategy as well as the
total loss term, and elaborate on the rationale behind them.

3.1. Problem Formation

Given an optical flow field Ftotal
i ∈ RH×W×2, depth

maps (Di,Di+1) ∈ RH×W×1, two dimensional pixel co-
ordinates x ∈ RH×W×2, and the camera intrinsic Ki ∈
R3×3, the proposed PWVO framework aims at predicting a
tuple of camera rotation γ̃i ∈ R3 and translation ϕ̃i ∈ R3,
where i denotes the frame index, and H,W represent the
height and width of the input frames, respectively.

In order to achieve the above objective, PWVO first per-
forms pixel-wise predictions of the camera motion (R̃i, T̃i),
where R̃i ∈ RH×W×3 and T̃i ∈ RH×W×3 correspond
to the pixel-wise rotation and translation maps, respec-
tively. In addition, PWVO further generates an uncer-
tainty map tuple (ŨRi , ŨTi ), where ŨRi ∈ RH×W×3 and
ŨTi ∈ RH×W×3, to reflect the uncertainty (i.e., noises) in
the input observations. The predicted (R̃i, T̃i) are then used
along with (ŨRi , ŨTi ) to derive the final (γ̃i, ϕ̃i).

3.2. Overview of the PWVO Framework

Fig. 1 illustrates the proposed PWVO framework, which
consists of two stages: (i) an encoding stage and (ii) a pixel-
wise prediction stage. The function of the encoding stage is
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Figure 1: An overview of the proposed PWVO framework.

to encode the inputs (i.e., Ftotal
i ,Di,Di+1, and x) by a se-

ries of convolutional operations into a feature embedding
ψ̃, which bears the motion information concealed in the in-
puts. This embedding is then forwarded to the pixel-wise
prediction stage to generate (R̃i, T̃i) and Ũi by two sepa-
rated branches. The uncertainty map Ũi is utilized to re-
flect the noises contained in the inputs. On the other hand,
the predicted (R̃i, T̃i) and Ũi are later fed into a selection
module, which employs a patch selection procedure to mit-
igate the impacts of the regions that may potentially con-
tain moving objects by referring to Ũi, and aggregates the
weighted predictions to derive the final (γ̃i, ϕ̃i). In order to
further refine the predicted (γ̃i, ϕ̃i), PWVO additionally re-
constructs an ego flow prediction F̃ego

i ∈ RH×W×2 as well
as a depth map D̃i+1 ∈ RH×W×1 based on (γ̃i, ϕ̃i). The
reconstructed F̃ego

i , D̃i+1, and (γ̃i, ϕ̃i) are then compared
against their corresponding ground truth labels Fego

i , Di+1,
and (γi, ϕi) respectively to optimize the model parameters
θ in PWVO through backward propagation.

3.3. Encoding Stage

The encoding stage first forwards Ftotal
i ,Di,Di+1, and

x through three distinct branches, which are then followed
by an encoder to transform the concatenated feature em-
beddings from the outputs of the three branches into ψ̃. In
addition to the flow and depth information, the last branch
of the encoding stage is designed to encapsulate the posi-
tional clues of x. This encapsulation process allows PWVO
to learn translation dependence [52], and is expressed as:

Xp
i = K−1i xp

i ,Ki ∈ R3×3,xp
i ∈ R3,N ∈ R(H×W ), (1)

where p denotes the pixel index, Xp
i represents the three di-

mensional coordinates in the film space, and N is the pixel
number H × W . Eq. (1) reveals that the third branch of
the encoding stage allows the information of the camera in-
trinsic and x to be carried over to ψ̃. This can potentially
benefit PWVO to possess better understanding about posi-
tioning and translation dependence, as the motion features

provided by Ftotal
i and the coordinate information offered

by x can complement each other.

3.4. Pixel-Wise Prediction Stage

The pixel-wise prediction stage first utilizes two de-
coders Decoder-rt and Decoder-un, as depicted in
Fig. 1, to upsample ψ̃ to (R̃i, T̃i) and (ŨRi , ŨTi ), respec-
tively. In the following subsections, we elaborate on the
distribution learning procedure and the selection module.

3.4.1 Distribution Learning

The distribution learning procedure in PWVO aims at learn-
ing the posterior probability distributions of rotation and
translation at each pixel. Assume that the noises are mod-
eled as Laplacian, this procedure can be carried out by lever-
aging the concept of heteroscedastic aleatoric uncertainty
of deep neural networks (DNNs) discussed in [40]. More
specifically, (R̃i, T̃i) and (ŨRi , ŨTi ) are learned together by
minimizing the loss terms LR

i and LT
i for all pixels, which

can be expressed as the following:

L̂Ri =
1

N

N∑
p=1

ER(γi, R̃p
i )

ŨRi (p)
+ log(ŨRi (p)), (2)

L̂Ti =
1

N

N∑
p=1

ET (ϕi, T̃ p
i )

ŨTi (p)
+ log(ŨTi (p)), (3)

where ER(x, y) = ‖x− y‖ and ET (x, y) = ‖〈x〉 − 〈y〉‖+
(‖x‖2−‖y‖2)2 serve as loss function for rotation and trans-
lation, respectively, 〈·〉 denotes the Euclidean normaliza-
tion vector, and (R̃p

i , T̃
p
i ) and (ŨRi (p), ŨTi (p)) represent the

means and variances of the probability distributions of ro-
tation and translation at pixel p, respectively. Please note
that (ŨRi (p), ŨTi (p)) are learned implicitly, and the second
terms in Eqs. (2) and (3) regulate the scales of them. The
loss functions allow PWVO to adapt its uncertainty estima-
tion for different pixels, which in turn enhance its robust-
ness to noisy data or erroneous annotations.
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In practice, Decoder-un is modified to predict log
variance, and Eqs. (2)-(3) are reformulated as follows:

L̂Ri =
1

N

N∑
p=1

exp (−s̃Ri (p)) · ER(γi, R̃p
i ) + s̃Ri (p), (4)

L̂Ti =
1

N

N∑
p=1

exp (−s̃Ti (p)) · ET (ϕi, T̃ p
i ) + s̃Ti (p). (5)

where s̃Ri (p) = log(ŨRi (p)), s̃Ti (p) = log(ŨTi (p)). This
modification allows the training progress of PWVO to be
stabler than the original formulation, as it avoids errors re-
sulted from division by zero. Moreover, the exponential
mapping enables PWVO to regress unconstrained s̃Ri (p)
and s̃Ti (p), as exp(·) guarantees the outputs to be positive.

3.4.2 Selection Module

Fig. 2 illustrates the mechanism behind the selection mod-
ule, which aims to derive (γ̃i, ϕ̃i) from (R̃i, T̃i) and
(ŨRi (p), ŨTi (p)). It adopts a hierarchical derivation proce-
dure, in which H ×W pixels of a frame are first grouped
into h×w patches of size k×k pixels, where h = H/k,w =
W/k. The rotation, translation, and uncertainty maps for
each patch can then be directly extracted from the original
ones, and are represented as (r̃l,m, t̃l,m) and (ũRl,m, ũ

T
l,m),

where l and m denote the row and the column indices of a
certain patch. The selection module next selects the pixel
with the lowest uncertainty value within each patch, repre-
sented as: pRl,m = argmin(ũRl,m), pTl,m = argmin(ũTl,m),
where pRl,m and pTl,m are the pixel indices corresponding to
patch (l,m). They are used to derive the final (γ̃i, ϕ̃i) as:

γ̃i =

h∑
l=1

w∑
m=1

WRl,m · r̃l,m(pRl,m),

WRl,m =
exp(ũRl,m(pRl,m))∑h

l=1

∑w
m=1 exp(ũ

R
l,m(pRl,m))

.

(6)

ϕ̃i =

h∑
l=1

w∑
m=1

WTl,m · t̃l,m(pTl,m),

WTl,m =
exp(ũTl,m(pTl,m))∑h

l=1

∑w
m=1 exp(ũ

T
l,m(pTl,m))

.

(7)

The advantage of the hierarchical procedure is that it en-
forces (γ̃i, ϕ̃i) to be derived from all the patches from the
entire image instead of focusing on a certain local region.

3.5. Refinement and Total Loss Adopted by PWVO

In order to further refine the predicted (γ̃i, ϕ̃i), PWVO
additionally reconstructs F̃ego

i and D̃i+1 based on (γ̃i, ϕ̃i),
and compare them against their ground truth labels Fego

i

Pixel-Wise Prediction Patch-Wise Selection

Softmax 
Layer

argmin( )

Figure 2: An illustration of the mechanism of the selection
module.

and Di+1 to optimize the model parameters in both stages
of PWVO. The total loss of PWVO can be formulated as:

LTotal
i = L̂Ri + L̂Ti + L̂Di + L̂Fi , (8)

where L̂Di and L̂Fi represent the loss functions for ego flow
and depth reconstruction, respectively. Please note that the
detailed formulation of the two loss functions L̂Di and L̂Fi
are provided in the supplementary material.

The rationale behind the additional two loss terms (i.e.,
L̂Di and L̂Fi ) in Eq. (8) can be explained from two differ-
ent perspectives. First, re-projection from 2D coordinates
to 3D coordinates might potentially cause ambiguity issues
if depth information is not taken into consideration. Sec-
ond, due to the pixel-wise design of PWVO, the optimiza-
tion target should be different for each pixel coordinate, as
the position and depth is different for each pixel. As a re-
sult, only optimizing (R̃i, T̃i) without considering the depth
and the positional information could be insufficient. These
are the reasons that L̂Di and L̂Fi are included in the final op-
timization target of PWVO. Section 5.2.3 offers an ablation
analysis to validate the effectiveness of these loss terms.

Interestingly, part of the design of the optimization target
L̂Fi is similar to that of the well-known perspective-n-point
(PnP) [53] approach, and can be viewed as a variant of it.
This is because the re-projection error Ei in L̂Fi can be for-
mulated as the L2 loss between F̃ego

i and Fego
i , given by:

Ei =

N∑
p=1

‖F̃ego
i (p)− Fego

i (p)‖2

=

N∑
p=1

‖( 1

Di+1
KiMiX

p
i − xp)− (Fego

i (p))‖2, (9)

As a result, L̂Fi implicitly introduces geometric constraints
for improving the estimation of (γ̃i, ϕ̃i).

4. Data Generation Workflow
In this section, we introduce our data generation work-

flow for generating synthetic training data. The workflow is
developed to be fully configurable, with an aim to provide
various setups of camera intrinsic K, background depth Dt,
where t represents the current timestep, as well as diverse
combinations of the motions of the camera and the mov-
ing objects. Fig. 3 illustrates the data generation workflow,
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Figure 3: An illustration of the data generation workflow.

which consists of five distinct steps. Step 1 initializes a K
by sampling from a distribution, which is detailed in the
supplementary material. Step 2 randomly generates a D
based on the focal lengths in K. Step 3 randomly initializes
the rotation γ and translation ϕ for the camera and a set of
moving objects, and use them to derive their corresponding
transformation matrices M. Subsequently, in Step 4, each
transformation matrix is forwarded along with K and Di to
a rigid flow module to derive a rigid flow map Frigid. The
derivation procedure can be formulated as:

Frigid = 1
Di+1

KM(Di)K
−1x− x, M =

[
r(γ) ϕ
0ᵀ3 1

]
(10)

where r(·) represents the function that transforms a Euler
angle to a rotation matrix. Please note that the rigid flow
map derived from the camera motion is referred to as the
ego flow map Fego, while the rigid flow maps derived from
the motions of the moving objects correspond to the object
flow maps Fobj . Finally, Step 5 combines all the flow maps
together to obtain the total flow map Ftotal. The generated
F, K, D, and M are all used in Eq. (8) for training the
model parameters in PWVO.

5. Experimental Results

In this section, we present the setups, the quantitative and
qualitative results, and a set of analyses.

5.1. Experimental Setup

In order to evaluate the performance of PWVO, the ef-
fectness of each component of PWVO, as well as the pro-
posed data generation workflow, we design a number of
experiments based on the following experimental setups.
We train PWVO on a dataset of 100k samples generated
by the proposed data generation workflow, and evaluate the
trained PWVO on the validation sets of Sintel [54] and the
TartanAir [55]. The detailed configuration for generating

EPE Rerr Terr
VONet [56] 0.909 0.110 0.061
VONet + self-att. [27] 0.894 0.117 0.076
PWVO (naive) 0.829 0.091 0.061
PWVO 0.626 0.081 0.043

Table 1: Comparison of PWVO and the baselines in terms of Rerr , Terr ,
and EPE. It can be observed that PWVO outperforms the two baselines as
well as PWVO (naive) by noticeable margins.

the training dataset is provided in the supplementary ma-
terial. The trained PWVO is then evaluated using the fol-
lowing metrics: (1) the average rotation error Rerr and
translation error Terr, which are defined as the L1 error be-
tween (γi, ϕi) and (γ̃i, ϕ̃i); (2) the end-point-error (EPE)
for measuring the quality of the reconstructed F̃ego

i , which
can serve as another metric for evaluating the performance
of VO. In our experiments, EPE is defined as the average L1
error between Fego

i and F̃ego
i , which is commonly adopted

by flow estimation methods.

5.2. Quantitative Results

In this section, we first compare PWVO against two
baselines that adopt different mechanisms for suppressing
noisy regions in the input observations. Next, we ablatively
examine the effectiveness of the components in PWVO.
Finally, we validate the importance of L̂Fi in optimizing
PWVO. The primary objective of our paper is to investi-
gate an effective VO method for suppressing the noises from
moving objects contained in inputs. Although the TartanAir
dataset [55] consists of lots of training data, its optical flow
samples do not contain moving objects, making it inappro-
priate for our experiments. Therefore, all of our quantitative
results are evaluated on the validation set of Sintel [54], as
it includes moving objects in the optical flow data samples.
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Configurations EPE Rerr Terr
VONet [56] 0.909 0.110 0.061
+ pixel-wise 1.07 0.106 0.055
+ UR + UT (i.e., PWVO (naive)) 0.829 0.091 0.061
+ UD + UF 0.766 0.087 0.062
+ Selection Module (i.e., PWVO) 0.626 0.081 0.043

Table 2: Ablation study for the effectiveness of the components in PWVO.
The pixel-wise predictions are averaged to generate final outputs by de-
fault, if the selection module is not adopted.

5.2.1 Comparison of PWVO and the Baselines

In this experiment, we compare PWVO against VONet [56]
and its variant with self-attention mechanism [27], which
are employed as the baselines and are denoted as VONet
and VONet+self-att., respectively. VONet is implemented
using a similar architecture as the encoding stage of
PWVO, and directly predicts rotation and translation from
ψ̃. For PWVO, we consider two different configurations:
PWVO (naive) and PWVO, where the former directly de-
rives (γ̃i, ϕ̃i) from (R̃i, T̃i) by performing an average op-
eration instead of using the selection module. Moreover,
PWVO (naive) does not take into account the uncertainty
maps in its L̂Di and L̂Fi , and simply resorts to L1 and L2
losses when optimizing its D̃i+1 and F̃ego

i , respectively.
The comparison results are shown in Table 1. It can be ob-
served that both versions of PWVO are able to outperform
the baselines in terms of Rerr, Terr, and EPE, validating
the effectiveness of the pixel-wise prediction mechanism.

5.2.2 The Effectiveness of the Components in PWVO

In this section, we ablatively examine the effectiveness of
each component of PWVO by gradually incorporating them
into the framework. The results are reported in Table 2.
Please note that UD and UF are the uncertainty maps used
in L̂D and L̂F , which are detailed in the supplementary ma-
terial. It can be observed that, when simply incorporating
the pixel-wise design into VONet without uncertainty esti-
mation, the performance degrades slightly. However, when
incorporating both the pixel-wise design and the uncertainty
estimation for UR and UT , PWVO (naive) becomes capa-
ble of outperforming VONet, indicating that the proposed
pixel-wise design is complementary to the uncertainty esti-
mation strategy. The results also reveal that the performance
of the model keeps increasing when each new component is
added, validating that all them are crucial for PWVO.

5.2.3 Importance of the Reconstruction Loss L̂F

In this section, we validate the importance of the reconstruc-
tion loss discussed in Section 3.5. Our hypothesis is that in-
corporating an additional reconstruction loss term L̂F could
introduce geometric constraints for improving the perfor-
mance of PWVO. To validate the assumption, we train the

EPE Rerr Terr

w/ L̂F w/o L̂F w/ L̂F w/o L̂F w/ L̂F w/o L̂F
VONet [56] 0.909 1.276 0.110 0.113 0.061 0.069
VONet + self-att. [27] 0.894 1.312 0.117 0.118 0.076 0.065
PWVO 0.829 1.241 0.091 0.144 0.061 0.095

Table 3: Validation of the effectiveness of the additional loss term L̂F .

(2) Object Flow Fobj (4) Saliency map of PWVO

(2) + (3) (1) Input FTotal (3) Saliency map of VONet

(2) + (4)

Figure 4: A comparison of VONet and PWVO via the high-
lighted pixels in their saliency maps.

baselines and PWVO with and without the reconstruction
loss L̂F and analyze their results, which are summarized in
Table 3. It can be observed that, with the help of the recon-
struction loss, nearly all the approaches are able to further
enhance their performance in terms of EPE, Rerr, and Terr.
This evidence thus supports our hypothesis that optimizing
PWVO with L̂F is indeed beneficial.

5.3. Qualitative Results

In this section, we examine the qualitative results for val-
idating the designs adopted by PWVO.

5.3.1 Examination of the Ability for Dealing with
Noises through Saliency Map

Fig. 4 compares PWVO and the baseline VONet from the
perspective of their saliency maps, which highlight the pix-
els that contribute to the predictions of (γ̃i, ϕ̃i). The first
column shows an input Ftotal and its corresponding Fobj

from Sintel, the second column depicts the saliency maps
of VONet and PWVO using their integrated gradients [57],
and the third column overlaps the saliency maps with Fobj .
It can be observed that the highlighted pixels of VONet’s
saliency map are widely scattered, and cover both the ob-
ject regions and the background. In contrast, the high-
lighted pixels of PWVO’s saliency map only fall on the
background. This observation thus confirms our hypothesis
that PWVO is capable of effectively suppressing the influ-
ence of noises when performing VO tasks.

5.3.2 Examination of the Uncertainty Map

In order to examine if the uncertainty maps predicted by
PWVO can correctly capture moving objects from their
background, we further showcase an example selected from
Sintel and visualize its input Ftotal, Fego, and Fobj in the
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Input FTotal Ego Flow Fego Object Flow Fobj

Uncertainty Map Error map of γ Error map of φ

Figure 5: A comparison of the uncertainty map predicted
by PWVO v.s. the error maps and Fobj .

first row of Fig. 5, as well as the uncertainty map Ũ and the
error maps of (γ̃i, ϕ̃i) predicted by PWVO in the second
row of Fig. 5. It can be observed that Ũ is highly correlated
with the error maps and Fobj , implying that Ũ is indeed
able to capture the noises in the input observations. Since
ŨR and ŨT are similar in this case, we only depict one of
them in Fig. 5.

5.3.3 Evaluation on the Sintel Validation Set

Fig. 6 presents several examples for demonstrating the qual-
itative evaluation results of PWVO on the Sintel validation
set. It can be observed that the predicted F̂ego and F̂obj

align closely with the ground truth annotations, and the esti-
mated uncertainty maps are highly correlated with the error
maps of F̂ego. This experimental evidence therefore vali-
dates the fact that PWVO trained on the dataset generated
by the proposed data generation workflow can deliver fa-
vorable results on the validation set of the Sintel dataset as
well. Please note that visualizations of additional examples
are provided in the supplementary material.

5.3.4 Evaluation on the Tartan Validation Set

Sintel and TartanAir datasets differ in that the data sam-
ples from TantanAir only involve the motion of the camera,
while the data samples from Sintel may involve both the
motions of the camera and the objects. Although there is no
moving object contained in the optical flow data samples
of the TartanAir dataset, we still evaluate our PWVO on it
as the qualitative results reveal some interesting insights. It
can be observed from Fig. 6 that the uncertain regions in Ũ
highly correlate with the regions of moving objects. On the
other hand, Fig. 7 shows that when evaluated on the Tar-
tanAir dataset, the uncertain regions become sparse, with
no specific target to focus on. This evidence reveals that
most of the regions can be utilized by PWVO to generate
the final (γ̃i, ϕ̃i), as there exists no noisy region caused by
moving objects in the data samples. These two examples
validate our hypothesis that the uncertainty maps adopted
by PWVO can indeed reflect the noisy regions in the in-
put observations, allowing the selection module to suppress

those regions to derive (γ̃i, ϕ̃i). Please note that in these
two figures and Fig. 5 of the main manuscript, the error
maps Fego − F̃

ego
are normalized to allow the regions of

differences to be visualized, since the original error values
are relatively small.

6. Limitations and Future Directions

Albeit effective, PWVO still has limitations in certain
hard scenarios. For example, in the case that moving objects
cover most of the regions in the input observations, PWVO
might be misled and treats them as F̃ego. This is due to the
lack of sufficient reference information to derive the motion
of the camera, which might lead to severe negative impacts
on other contemporary VO techniques as well. The future
direction of this research is to further extend PWVO to in-
corporate random occlusion masks or noises into the input
observations, and introduce more challenging scenarios to
the data generation workflow to reflect more difficult sce-
narios. From the experimental evidence presented in this
paper, we believe that pixel-wise prediction is a promising
avenue to explore and investigate in the realm of VO, and
may lead to further breakthrough in many benchmarks.

7. Conclusion

In this paper, we proposed the concept of utilizing pixel-
wise predictions in VO. To achieve this objective, we de-
veloped a PWVO framework, which integrates pixel-wise
predictions based on the estimated uncertainty maps to de-
rive the final (γ̃i, ϕ̃i). In order to provide comprehensive
data for training PWVO, we designed a fully configurable
data generation workflow for generating synthetic training
data. In our experiments, we presented results evaluated
on the validation set of Sintel. The results demonstrated
that PWVO can outperform the baselines in terms of Rerr,
Terr, and EPE. In addition, our analyses validated the effec-
tiveness of the components adopted by PWVO, and demon-
strated that the designs adopted in PWVO can indeed cap-
ture the noises, and suppress the influence from them.
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Figure 6: Evaluation of PWVO on the validation set of Sintel.
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Figure 7: Evaluation of PWVO on the validation set of TartanAir.

2525



References
[1] Kishore Konda and Roland Memisevic. Learning visual

odometry with a convolutional network. In VISAPP Inter-
national Conference on Computer Vision Theory and Appli-
cations, 2015.

[2] Pulkit Agrawal, João Carreira, and Jitendra Malik. Learning
to see by moving. In Proc. IEEE Int. Conf. on Computer
Vision (ICCV), 2015.

[3] Dinesh Jayaraman and Kristen Grauman. Learning image
representations tied to ego-motion. In Proc. IEEE Int. Conf.
on Computer Vision (ICCV), 2015.

[4] Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni.
Deepvo: Towards end-to-end visual odometry with deep re-
current convolutional neural networks. In Proc. IEEE Int.
Conf. on Robotics and Automation (ICRA), 2017.

[5] Florian Walch, Caner Hazirbas, Laura Leal-Taixé, Torsten
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