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Abstract

With labeled data, self distillation (SD) has been pro-
posed to develop compact but effective models without a
complex teacher model available in advance. Such ap-
proaches need labeled data to guide the self distillation pro-
cess. Inspired by self-supervised (SS) learning, we propose
a self-supervised self distillation (SSSD) approach in this
work. Based on an unlabeled image dataset, a model is con-
structed to learn visual representations in a self-supervised
manner. This pre-trained model is then adopted to extract
visual representations of the target dataset and generates
pseudo labels via clustering. The pseudo labels guide the
SD process, and thus enable SD to proceed in an unsuper-
vised way (no data labels are required at all). We verify this
idea based on evaluations on the CIFAR-10, CIFAR-100,
and ImageNet-1K datasets, and demonstrate the effective-
ness of this unsupervised SD approach. Performance out-
performing similar frameworks is also shown.

1. Introduction

Knowledge distillation [14] has been proven very effec-
tive to transfer knowledge of a large, relatively complex
teacher model to a smaller student model, so that a light-
weight student model can achieve similar or even better
performance than the teacher model. Generally, a complex
teacher model pre-trained based on a large dataset is needed
in advance. However, large-scale and labeled datasets are
not always available, and thus the requirement of a pre-
trained teacher model cannot be met in all cases.

Self distillation eliminates the requirement of a pre-
trained teacher model. A single network plays both the roles
of teacher and student. For example, Zhang et al. [27] pro-
posed that, in a ResNet structure, deeper residual blocks
could be viewed as the teacher of shallower blocks, which
are viewed as student models. Once the shallow parts (stu-
dents) get improved, the deeper parts (teachers) could get
improved also. Yang et al. [24] proposed that knowledge
in the earlier epochs of a network (teacher) is transferred
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into its later epochs (student) to supervise the training pro-
cess. In [27] and [24], only one network (serving both as
the teachers and the students) is needed in the self distilla-
tion process.

Although the self distillation (SD) technique removes the
requirement of a pre-trained teacher model, data labels are
still needed to supervise the training process. Without la-
beled data, current self distillation methods cannot work
because there is no ground to train the teacher. Motivated
by the current progress of self-supervised learning, in this
work we propose self-supervised self distillation (SSSD) to
enable SD based on the pseudo labels given by a model pre-
trained based on a pretext task. In this way, we can proceed
SD without data labels and expand the applicability of SD.

Specifically, based on an unlabeled dataset Dy, we train
a model Mg to complete the instance discrimination task
[21], so that its ability of feature extraction is built. For
the target dataset Dy, that is used for self distillation, the
pre-trained model Mgy, is adopted to extract features. Fea-
tures are then clustered by the K-means algorithm, and
data points belonging to the same cluster are labeled with
the same pseudo label. The pseudo labels serve as the
(weak) ground to guide learning, and thus the self distil-
lation process can be proceeded. We call this approach self-
supervised self distillation (SSSD) for that no data label is
needed in the entire process.

A similar structure has been proposed in [1], where the
self-supervised model shares the same backbone network
with the self distillation model, and conceptually SSL and
SD are trained together. The main target of [1] is to release
SSL from the limitation of specifically-designed data aug-
mentation. The SSL model provides soft labels for learn-
ing, while the SD model further provides self-supervisory
signals to improve performance of SSL. That is, SD is used
to assist SSL. In our work, we view from the opposite view-
point, i.e., we use SSL to assist SD. The main target of our
work is to release SD from the limitation of well-labeled
data.

Contributions of this work are twofold. First, we propose
a self-supervised self distillation approach that enables SD
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even if well-labeled data are not available. Second, we ver-
ify this idea based on a comprehensive experimental study.

The rest of this paper is organized as follows. Sec. 2
presents literature surveys of self-supervised learning and
self distillation. ~ Sec. 3 presents the proposed self-
supervised self distillation approach. Evaluation and ab-
lation studies will be provided in Sec. 4, followed by the
concluding remarks in Sec. 5.

2. Related Works
2.1. Self-Supervised Learning

Self-supervised learning is a paradigm for unsupervised
learning. The main concept is to exploit information freely
available besides or within label-free data to implicitly
guide model learning, so that the model learns general-
purpose features. Some typical ways to discover the weak
supervisory information includes predicting the position of
an image patch [6], predicting image rotation [8], and com-
pleting a jisaw puzzle [18].

Contrastive learning is a widely adopted formulation to
do self-supervised learning. It encourages learning similiar
representations for the data augmented from the same in-
put (positive pairs), and learning distinct representations for
the data augmented from different inputs (negative pairs).
How to form positive/negative samples and how distribu-
tions of them influence learning is a key component. Wu
et al. [21] formulated an instance discrimination task to fa-
cilitate learning features to be discriminative of individual
instances. Chen et al. [3] showed that composition of mul-
tiple data augmentation operations is crucial in contrastive
learning. He et al. [11] formulated contrastive learning as
dictionary look-up, and the dictionary is dynamically built
with a queue and a momentum encoder. By combining two
designs of SimCLR [3] into the MoCo strategy [11], the
MoCo v2 [4] further gets performance gain. In this pa-
per, we mainly take MoCo v2 to construct a self-supervised
model. More literature surveys on self-supervised learning
or contrastive learning can be found in [15] and [16].

2.2. Self Distillation

To avoid the requirement of a complex teacher model
and reduce the cost of knowledge distillation, self distilla-
tion methods have been proposed since 2019. Based on the
same data with different distortions, Xu and Liu [22] pro-
posed to construct a single network to extract features. This
network is split into two branches to construct two classi-
fiers, and these classifiers were guided to output similar pos-
terior distributions for the same data with different distor-
tions. Zhang et al. [27] proposed self distillation based on a
ResNet framework. The deepest residual block serves as the
teacher to distill knowledge to shallower residual blocks,
which are viewed as students. Shallow and deep classi-

fiers are constructed based on outputs of different resid-
ual blocks, and their ensemble result can provide promis-
ing performance. This “Be Your Own Teacher” (BYOT)
framework largely reduces training overhead required by a
complicated teacher model. In their follow-up work [26],
the classifiers are attached with attention modules to boost
performance, and a dynamic inference mechanism was pro-
posed to better make ensemble results. In this paper, our
SSSD is mainly based on the BYOT framework.

The concept of self distillation has been adopted in deep
metric learning [20], graph neural network [5], and word
segmentation [13]. Gong et al. [9] proposed to combine
mutual information and self information to increase expres-
sivity of extracted features and thus improve self distilla-
tion. Although the effectiveness of self distillation has been
empirically observed, why it works still needs investigated.
Mobahi et al. [17] provides the first theoretical analysis of
self-distillation. In [2], self distillation is shown as implic-
itly combining ensemble and knowledge distillation to im-
prove test accuracy. More surveys on knowledge distillation
and variations of self distillation can be found in [10].

3. SSSD: Self-Supervised Self Distillation

Fig. 1 shows the overview of the proposed SSSD. The
top part shows the self-supervised learning model pre-
trained based on an unlabeled dataset D,,... This SSL
model is used to extract features from the target dataset
D4, which are then clustered to generate a pseudo label
to each cluster. The bottom part shows that we utilize the
pseudo labels to guide the learning of the teacher model (the
deepest block) and self distillation.

3.1. Self-Supervised Learning

Based on an unlabeled dataset D,,,.., we adopt the MoCo
v2 mechanism [11][4] to train a model M in a self-
supervised way. Specifically in the pretext task, the ResNet-
18 or ResNet-50 [12] are taken as the backbone networks of
M. Random crop, random color jittering, random hori-
zontal flip, and random grayscale conversion are used for
data augmentation. We follow the instance discrimination
task [21] where a query image matches a key image if they
are (augmented) from the same image.

Given the target dataset Dy, the pre-trained model
M ¢ extracts features from it, and then the K-means clus-
tering algorithm is adopted to cluster these features. After
clustering, data points clustered to the same cluster are la-
beled as the same pseudo label. These pseudo labels provide
weak supervisory signals to the following self distillation
process. Notice that the dataset D). for SSL and the target
dataset Dy, for SD could be the same or different.
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Figure 1. Overview of the proposed self-supervised self distillation.

3.2. Self Distillation
3.2.1 Network Architecture

The bottom part of Fig. 1 shows the network architecture of
the self distillation approach [27]. Starting from a backbone
network, based on the target dataset D, this model Mg
takes pseudo labels as supervisory signals to conduct self
distillation. In the following, we mainly implement the self
distillation method by taking ResNet-18 [12] as the back-
bone. This network can be divided into four sections ac-
cording to residual blocks. The deepest section (the 4th
section) is viewed as the teacher of the shallower sections
(the 1st to the 3rd sections).

To proceed self distillation, the output of each section is
connected by a sequence of bottleneck layers, followed by
a fully-connected layer and a softmax layer, so that each
section can be viewed as a classifier. The 1st to the 3rd
classifiers are constructed based on the knowledge distilled
from the 4th classifier. The distillation is guided from three
perspectives.

» The classification results of student classifiers should
be similar to the pseudo labels. Quantitively, cross
entropy between predicted labels and pseudo labels is
calculated. The weakly-supervised knowledge hidden
in pseudo labels are implicitly utilized by shallow sec-
tions.

* The classification results of student classifiers should
be similar to that of the teacher classifier. Specifically,
the KL divergence of softmax outputs between stu-
dents and the teacher is calculated. The KL divergence
measures similarity between the output distributions of
the teacher classifier and student classifiers.

* Different sections make their classification based on
different levels of feature maps, which represent the
same image from different perspectives. Implicit
knowledge of the deepest feature maps can be intro-
duced to improve feature extraction in shallow sec-
tions. The L2 losses between feature maps of the deep-
est section and each shallow section are thus calcu-
lated.

3.2.2 Loss Functions

Here we formally define the loss functions mentioned
above. Let © = {0;,c}, denote the classifiers in Mg,
which is divided into C' sections, and thus conceptually C
classifiers are included. The softmax output of the ith clas-
sifier is denoted as ¢%, i = 1,2,3,4. The softmax output
of the deepest classifier is especially denoted as ¢, i.e.,
q* = ¢“. Given an input image x, the network M .4 finally
outputs the predicted label.

The first item mentioned in Sec. 3.2.1 is defined as the
summation of cross entropy between the pseudo labels y
(obtained by M ;) and the softmax outputs of classifiers:

3
Ec :ZCE(anQ)v (D

i=1

where C'E(-) denotes cross entropy.

The second term is defined as the summation of the KL
divergence between the softmax output of the C'th classifier
and each shallow classifier:

3
L, =Y KL(q',q9), )

i=1
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where K L(-) denotes KL divergence. Notice that the cross
entropy in eqn. (1) is calculated between the softmax output
and the pseudo labels, while the KL divergence in eqn. (2) is
calculated between softmax outputs of the teacher classifier
and student classifiers.

The third term is defined as the summation of L2 dis-
tances between the deepest section and each shallow sec-
tion:

3
L= |IF; = Fol$3, 3)
i=1

where F; and Fo denote features (output by the bottleneck
layers) fed to the classifier 6; and 6, respectively.
Overall, these three losses are combined as:

Lot =CE(q%,§)+ (1 — a)Le+aly + ALy, (4)

where « and ) are balanced parameters set as 0.3 and 0.003,
respectively. The first term C' E(¢®, @) is the cross entropy
between the softmax ouput of the teacher classifier and the
pseudo labels. This term is weighted more as compared to
losses from student classifiers.

4. Experiments

4.1. Performance Evaluation

Taking CIFAR-10, CIFAR-100, and ImageNet-1K
datasets as the main bases, we first verify that SSL aids
SD. In the following, the pre-trained dataset D, is the
same as the target dataset Dy, if not specially noted. We
adopt ResNet-18 or ResNet-50 as the backbones to con-
struct the SSL model Mg, in order to evaluate how dif-
ferent SSL models influence performance of SD. We also
try the pre-trained models trained for different numbers of
epochs. Conceptually training more epochs makes the SSL.
model learn more knowledge. The backbone of SD is keep-
ing as ResNet-18. Visual features are extracted by Mg
and then clustered into K classes to get pseudo labels. The
self distillation process then learns student classifiers and a
teacher classifier.

Table 1 shows the classification accuracy of the SD mod-
els assisted by SSL, on the CIFAR-10, CIFAR-100, and
ImageNet-1K datasets, respectively. The number of clusters
for generating pseudo labels is set as 1000, 500, and 5000
for the CIFAR-10, the CIFAR-100, and the ImageNet-1K
datasets. In addition, we intentionally implement a random
labeling approach as the baselines, where we randomly as-
sign one of 1000/500/5000 labels to each data point. Based
on such random labels, we train the SD model and get the
classification accuracy shown in the random label rows.

From Table 1 three observations can be made. First, a
well-trained SSL model really aids SD, compared to the
random labeling approach. This shows the value of the

proposed SSSD, where no data labels are available. Sec-
ond, an SSL model trained for more epochs really provides
more accurate pseudo labels and richer knowledge to the SD
model, so that accuracy of the corresponding counterparts is
higher. Third, a more complex M5 (ResNet-50) provides
richer knowledge than a simpler M5 (ResNet-18) to the
SD model.

4.2. Performance Comparison
4.2.1 Distillation Schemes

We compare the proposed method with SEED [7] and Clus-
terFit [23]. In SEED [7], a larger teacher network is lever-
aged to transfer its knowledge into a smaller student net-
work in a self-supervised manner. Without requiring la-
beled data, the teacher network is pre-trained by a self-
supervised learning process. Given test samples, the stu-
dent network is guided to output a score distribution similar
to the one output by the teacher network, based on losses
commonly used in knowledge distillation. The target of
SEED is to boost performance of small networks in the self-
supervised learning scheme. In ClusterFit [23], a network
is pre-trained to learn visual representations of an image
dataset. It then clusters the images based on the extracted
representations and generates pseudo labels. Next, a new
network is trained from scratch based on the pseudo labels,
which is then used to complete the downstream task. The
target of ClusterFit is to reduce overfit of the pre-trained
network and improve robustness of the learnt visual repre-
sentations.

Our method seems to be similar to the processes of
SEED and ClusterFit, but we need to emphasize the dif-
ference as follows. SEED clearly has the framework of a
teacher and a student, and works in the standard procedure
of knowledge distillation. Our pre-trained network merely
provides pseudo labels, and we only have one model (as the
teacher and the student at the same time) to self-distillate it-
self. In ClusterFit, the pre-trained network provides pseudo
labels, which is the same as ours. But in our work, the
network for downstream tasks is a self-distillation model
(BYOT [27]). Overall, SEED adopts distillation to improve
self-supervised learning in small models, while our work
adopts self-supervised learning to enable unsupervised self
distillation. ClusterFit utilizes the concept of clustering
(and thus pseudo labels) to avoid learning overfitted repre-
sentations, while our work adopts the concept of clustering
to guide self distillation.

Table 2 shows the comparison of classification accuracy
on the ImageNet-1K dataset. The pre-trained models are
ResNet-50 or ResNet-101 trained for 200 epochs. The stu-
dent models used in SEED and ClusterFit, and the backbone
of the proposed SSSD are all ResNet-18, no matter the pre-
trained models are ResNet-50 or ResNet-101. As can be
seen in this table, the proposed SSSD slightly outperforms
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Table 1. Classification accuracy of the SD model on the CIFAR-10, CIFAR-100, and ImageNet-1K datasets.

CIFAR-10

Ml Epochs | Classifier 1 | Classifier 2 | Classifier 3 | Classifier 4 | Ensemble
Random labels | — 42.34 42.10 41.92 44.03 45.99
ResNet-18 200 78.54 79.47 79.71 80.00 82.05

800 81.96 83.32 83.96 84.10 85.75
Mgl Epochs | Classifier 1 | Classifier 2 | Classifier 3 | Classifier 4 | Ensemble
ResNet-50 200 78.93 79.75 80.08 80.22 82.20

800 83.15 84.72 85.81 85.94 87.36

CIFAR-100

Ml Epochs | Classifier 1 | Classifier 2 | Classifier 3 | Classifier 4 | Ensemble
Random labels | — 18.05 17.88 18.66 21.06 21.34
ResNet-18 200 52.78 53.49 53.51 53.24 57.01

800 54.44 55.72 56.24 55.85 59.71
Mgl Epochs | Classifier 1 | Classifier 2 | Classifier 3 | Classifier 4 | Ensemble
ResNet-50 200 51.33 52.17 52.08 52.03 55.76

800 57.37 58.90 60.54 60.25 63.60

ImageNet-1K

Ml Epochs | Classifier 1 | Classifier 2 | Classifier 3 | Classifier 4 | Ensemble
Random labels | — 12.07 12.25 13.19 16.83 16.24
ResNet-18 200 44.19 45.68 48.53 51.95 52.35

800 45.86 48.05 51.38 54.82 54.82
Mg Epochs | Classifier 1 | Classifier 2 | Classifier 3 | Classifier 4 | Ensemble
ResNet-50 200 48.41 50.97 55.24 58.45 58.11

800 50.23 53.74 58.63 61.86 61.12

Table 2. Performance comparison of different distillation schemes
on the ImageNet-1K datasets.

Pre-trained models | Methods Accuracy
ClusterFit [23] | 56.55

ResNet-50 SEED [7] 57.90
SSSD (our) 58.45
ClusterFit [23] | 59.02

ResNet-101 SEED [7] 58.90
SSSD (our) 60.46

SEED and ClusterFit. This shows that the proposed self-
supervised self distillation is not only feasible, but also ef-
fective in the standard downstream task.

4.2.2 Pseudo Labels

Another work very similar to our work is DACSD [1]. In
DACSD, a ResNet-18 is jointly used to be the pre-trained
model that learns and clusters visual representations, as well
as the backbone for self distillation. As the training pro-
ceeds, the ResNet-18 gradually learns better visual repre-
sentations and generates better pseudo labels. These pseudo
labels reversely guide learning of the ResNet-18 through
back propagation. The main difference between ours and
DACSD is that, in our framework, we complete training of

the pre-trained model first and thus can generate relatively
good pseudo labels at the beginning of the self distillation
process. On the other hand, DACSD generates relatively
weak pseudo labels at the beginning of the self distillation
process.

Table 3 shows performance comparison of pseudo label
generation schemes on the ImageNet-1K dataset. The back-
bone of the self distillation models in both DACSD and ours
are ResNet-18. The self-supervised model to give our re-
sults in Table 3 is ResNet-50 (M;). As can be seen, per-
formance of ours outperforms the counterpart of DACSD
based on this experimental setting.

4.3. Semi-Supervised Evaluation

To evaluate effectiveness of the representations learnt by
the self distillation model, we connect a fully-connected
(FC) layer to the last residual block of the SD model af-
ter distillation, and train the FC layers based on the labeled
ImageNet-1K dataset. Following the settings in [25] and
[3], we intentionally subsample only 1%, 10%, 20%, ...,
50% of the labeled ImageNet-1K dataset and use them to
fine-tune the residual blocks as well as FC layers on the la-
beled data without regularization. This is to simulate the
semi-supervised learning scheme. If the learnt visual rep-
resentations are robust, only few labeled data are needed to
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Table 3. Performance comparison of pseudo label generation schemes on the ImageNet-1K datasets.

Backbone of M,y | Methods Classifier 1 | Classifier 2 | Classifier 3 | Classifier 4 | Ensemble
ResNet-18 DACSD [1] | 45.59 48.14 51.63 49.77 53.62
SSSD (our) | 48.41 50.97 55.24 58.45 58.11
Table 4. Classification accuracy obtained based on different settings of semi-supervised learning on the ImageNet-1K dataset.
Pre-trained models 1% 10% | 20% 30% | 40% | 50%
ResNet-50, 200 epochs | 40.16 | 57.41 | 61.18 | 63.19 | 64.54 | 65.53
ResNet-101, 200 epochs | 42.58 | 58.48 | 62.05 | 64.09 | 65.36 | 65.94

Table 5. Performance of object detection by the Faster R-CNN
with the backbones replaced by different M4’s.

Methods Pre-trained models AP® | APE: T APR
ResNet-50, 200 ep 46.1 74.8 49.1

SEED [7] ResNet-101, 200 ep | 46.8 75.8 49.3
ResNet-50, 200 ep 53.3 79.2 58.4

SSSD(0un) | g iNet-101,200ep | 534 | 793 | 58.5

construct robust classifiers.

Table 4 shows classification accuracy obtained based
on different settings of semi-supervised learning on the
ImageNet-1K datasets. When the pre-trained model is
ResNet-50 trained for 200 epochs, the classification accu-
racy significantly boosts from 40.16 to 57.41 when the frac-
tion of training data increases from 1% to 10%. This shows
that the representations learnt by the proposed SSSD are ef-
fective because similar performance can be obtained even if
only 10% of training data are utilized. More training data
can help improve performance, but we found the improve-
ment gets saturated when more than 40% of the training
data are sampled. A similar trend can be seen when the
pre-trained model is ResNet-101 trained for 200 epochs.

4.4. Object Detection

In addition to image classification, here we want to verify
that the representations after distillation can be transferred
to other tasks like object detection. Specifically, we replace
the backbone of a Faster R-CNN [19] by the ResNet-18
M 4 after self distillation. It is then fine-tuned on the VOC-
07+12 train+val set and evaluated on VOC-07 test split. The
model M, used in this experiment is obtained by self dis-
tillation guided by the 16000 pseudo labels, which are gen-
erated by the SSL model M pre-trained based on the
ImageNet-1K dataset (with data labels).

Table 5 shows performance of object detection in terms
of bounding box average precisions AP, AP%, and
AP, As can be seen, the proposed SSSD and its learnt
model M, can be effective backbone for Faster R-CNN.
Comparing with the similar experiments provided in SEED
[7], the performance superiority is clear.

4.5. Different Pre-trained Datasets

The experiments shown from Table 1 to Table 5 are con-
ducted by setting the dataset for SSL the same as that for
SD, i.e., Dpre = Dyiqr. Here we further evaluate how
performance changes if Dy, 7# Diqr. Specifically, we
compare the setting of D, = ImageNetlK, Dy, = CI-
FAR, with Dy, = Dy, = CIFAR. Due to different image
sizes in ImageNet1K and CIFAR, we resize the images of
ImageNet1K into 32 x 32 and train the M ;5 model for 200
epochs.

Table 6 shows performance variations when the pseudo
labels are generated by pre-trained models learnt based on
different D,,.’s. As can be seen, for both D;,, = CIFAR-
10 and Dy,, = CIFAR100, using ImageNet1K as D,,.. can
yield better performances than using CIFAR10 and CIFAR-
100 as Dp,e. This shows that pseudo labels generated by
models trained based on a larger-scale dataset can provide
richer information than that trained based on a small-scale
dataset. Our proposed SSSD can utilize better pseudo labels
to learn better representations for SD models.

5. Conclusion

We have presented using self-supervised learning to en-
able unsupervised self distillation. A model is first pre-
trained based on a dataset D, to complete the instance
discrimination task in a self-supervised learning scheme.
This pre-trained model is viewed to have the ability to
extract satisfactory visual representations for general pur-
pose. It is used to extract visual features from the target
dataset Dy, and then the K-means clustering algorithm is
adopted to cluster features and thus generate pseudo labels.
These pseudo labels guide the learning of a self distillation
model, which learns effective representations for Dy, by
self learning from the deepest part of the network, with-
out requiring a teacher model trained in the supervised way.
Therefore, the whole framework does not need labeled data,
and the proposed self-supervised self distillation breaks the
limitation of previous supervised self distillation. We verify
the effectiveness of SSSD by evaluating on the CIFAR-10,
CIFAR-100, and ImageNet-1K datasets. Performance su-
perior to similar frameworks is shown.
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Table 6. Classification accuracy on CIFAR-10 and CIFAR-100 using pseudo labels generated by pre-trained models learnt based on different

Dpre’s.

D;qr = CIFAR-10

Dyre Mg | Epochs | Classifier 1 | Classifier 2 | Classifier 3 | Classifier 4 | Ensemble
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