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Figure 1: Three-dimension controls of image generation from stroke and sketch. (left) Our proposed model is able
provide three-dimension controls over image synthesis from stroke and sketch. Given sketch and stroke as input, we can
control the scales of faithfulness for the synthesized output with respect to the sketch and stroke, as well as the degree of its
realism. (right) (a) Given sketch and strokes, we perform sketch/stroke-to-image translation. (b) We generate multimodal
results with partial sketch/strokes as input. (c) Sketch/strokes conditioned local editing.

Abstract

Generating images from hand-drawings is a crucial and
fundamental task in content creation. The translation is
difficult as there exist infinite possibilities and the different
users usually expect different outcomes. Therefore, we pro-
pose a unified framework supporting a three-dimensional
control over the image synthesis from sketches and strokes
based on diffusion models. Users can not only decide the
level of faithfulness to the input strokes and sketches, but
also the degree of realism, as the user inputs are usu-
ally not consistent with the real images. Qualitative and
quantitative experiments demonstrate that our framework

*Equal contribution.
Project page: https://cyj407.github.io/DiSS/

achieves state-of-the-art performance while providing flex-
ibility in generating customized images with control over
shape, color, and realism. Moreover, our method unleashes
applications such as editing on real images, generation with
partial sketches and strokes, and multi-domain multi-modal
synthesis.

1. Introduction
Sketches and strokes are abstract depictions of objects

and scenes. They represent different abstract illustrations
that people have in mind and thus serve as important com-
munication mediums. Conceivably, image synthesis from
hand-drawn inputs can bridge human creations with reality,
unleashing potential applications and assistance toward the
content creation process.
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Image generation from sketches and strokes is diffi-
cult as the translation is ill-defined and multimodal. For
each sketch and stroke, different users will expect differ-
ent outputs under different circumstances in terms of how
faithful the results should be to the given inputs. Ini-
tially, the problem is formulated as image-to-image trans-
lation [21, 1, 15, 23, 21] with the help of generative adver-
sarial networks (GANs) [6]. This stream of works is usu-
ally task-dependent, requiring different models for various
tasks (e.g. separate models for stroke-to-image and sketch-
to-image translations). Moreover, they lack flexibility and
controllability in terms of the degree of faithfulness. Re-
cently, diffusion models [18, 5] shed light on the tasks with
high-quality image synthesis and stable training procedures.
Variants of diffusion models are proposed to handle condi-
tions in different forms, such as category [5, 9], reference
image [3], and stroke-based painting [17]. Therefore, uti-
lizing diffusion models, we would like to explore the possi-
bility of a unified framework that can consider all factors of
interest, including contour, colors, consistency, and realism.

In this paper, we introduce DiSS, a DIffusion-based
framework that generates images from Sketches and
Strokes while enabling a three-dimensional (contour, color,
realism) control over the degree of consistency to the in-
put. First, unlike previous works using either black-white
sketches or stroke paintings, we propose to handle both fac-
tors simultaneously, which is not trivial because it often
comes with a trade-off between faithfulness to shape and
to color. To provide disentangled control for the consis-
tency of sketch and stroke, we adopt classifier-free guid-
ance [9] to support two-dimensional control. Upon disen-
tangling the shape and color information, we can customize
the generative process and separately adjust the sampling
results depending on users’ demands. However, the input
strokes and sketches from general users are often inconsis-
tent with the distribution of real images. Therefore, we pro-
pose the third control factor, the realism scale, to realize
a trade-off between consistency and realism. Specifically,
we apply iterative latent variable refinement [3] and utilize
a low-pass filter to adjust the coarse-to-fine features of the
referred drawings.

With three-dimensional control, the proposed DiSS pro-
vides flexible editability, as shown in Fig. 1. Users can
decide to what extent the faithfulness should be to the in-
put sketch and strokes, and to what degree the results are
close to real images. DiSS naturally unleashes several
applications. First, multi-modal multi-domain translation
(Fig. 4) can generate diverse results in multiple domains
guided only by sketches and strokes without explicit la-
bels. Second, multi-conditioned local editing (Fig. 5(a)) en-
ables users to edit existing images by simply drawing con-
tours and colors. Third, region-sensitive stroke-to-images
(Fig. 5(b)) supports inputs that are not fully colored and

provide variations on the blank regions.
We evaluate the proposed framework quantitatively and

qualitatively on the three-dimension controllability. We
measure the realism and perceptual quality with Fréchet in-
ception distance (FID) [7], LPIPS [24], and subjective study
on the AFHQ [4], Oxford Flowers [19], and Landscapes-
HQ [22] datasets. Qualitatively, we present the diverse im-
age synthesis conditioned on different kinds of drawings
and demonstrate the adjustment of the three scales.

We summarize our contributions as follows: We present
a unified framework of adaptively-realistic image genera-
tion from stroke and sketch that encodes the condition of
the given stroke and sketch with the classifier-free guidance
mechanism and adjusts the degree of realism with a latent
variable refinement technique. The proposed framework en-
ables a three-dimensional control over image synthesis with
flexibility and controllability over shape, color, and realism
of the generation, given the input stroke and sketch. More-
over, our proposed work unleashes several interesting ap-
plications: multi-conditioned local editing, region-sensitive
stroke-to-image, and multi-domain sketch-to-image.

2. Related Works
2.1. Image Generation from Hand-drawings

Sketch-to-Image (S2I) generation aims at learning the
mapping and eliminating the domain gap between hand-
sketches and real images, which is usually modeled as an
image-to-image translation task. Early works on image-
to-image translation [10, 25, 12, 26, 2, 20] learn to
map machine-generated edge maps or segmentation maps,
where the distributions are quite different from real-world
hand-drawn sketches ans scribbles, to real images. In turn,
Scribbler [21] and SketchyGAN [1] are among the pioneer-
ing works to specifically tackle the translation upon sketch
inputs. However, the training procedure requires datasets
composed of various paired sketch-image data, which is not
only hard to collect but also potentially limits the resultant
translation model to tackle the general misalignment be-
tween sketches and images other than the one being seen
in training set. More recently, efforts are made to address
the S2I task via unsupervised and self-supervised learning,
where the gray-scale version of photos serve as an auxil-
iary intermediate representation [15] or an autoencoder is
adopted to learn disentangled style and content factors [14].
However, these GAN-based methods suffer from unstable
training and quality. Moreover, hand-drawings can be de-
composed into sketches that model contours and strokes
that model colors, yet the GAN-based models are usually
task-specific, where different pipelines are adopted for dif-
ferent settings. Finally, it is difficult for GAN-based models
to control the level of faithfulness to the input, which is a
crucial property of S2I. Therefore, inspired by the recent
success of diffusion models [8, 5], we propose a diffusion-
based framework supporting flexible controls over the level
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Figure 2: Conditional denoising process . At each time-step t, our proposed pipeline first performs classifier-free guidance
with csketch and cstroke, which are extracted from a single input of colorful drawing ccomb, and then controls the fidelity/realism
by refining xt−1 with the input ccomb, in which such realism control is realized by iterative latent variable refinement.

of faithfulness to shapes, colors, and realism.

2.2. Diffusion Models
Diffusion models are flourishing in recent years as a

powerful family of generative models with diversity, train-
ing stability, and easy scalability, which GANs commonly
lack. Fundamentally, diffusion models fulfill the sampling
from a target distribution by reversing a progressive noise
diffusion process, in which the process is defined as a
Markov chain of diffusion steps for adding noise to the data.
In addition to providing competitive or even superior capa-
bility on unconditional image generation [8, 18] in com-
parison to GANs, diffusion models also make significant
progress on various tasks of conditional generation. Given
a target class, [5] proposes a classifier-guidance mechanism
that adopts a pretrained classifier to provide gradients as
guidance toward generating images of the target class. More
recently, classifier-free diffusion guidance[9] introduces a
technique which jointly trains a conditional and an uncon-
ditional diffusion model without any pretrained classifier.
Other than directly modifying the network of an uncondi-
tional diffusion model for conditional generation, ILVR [3]
instead proposes to iteratively introduce the condition into
the generative process via refining the intermediate latent
images with a noisy reference image at each time-step dur-
ing sampling. Therefore, ILVR is able to sample high-
quality images while controlling the amount of high-level
semantics being inherited from the given reference images.
As the nature of diffusion models for adopting a progres-
sive denoising process, the generation/synthesis via sam-
pling can start from a noisy input (similar to the interme-
diate stage of sampling) instead of always beginning from
random noise. SDEdit [17] hence realizes stroke-based im-
age synthesis by starting the sampling from a stroke input
with noise injected, in which the generative model used in
SDEdit is built upon stochastic differential equations where

its mechanism is quite similar to diffusion models (e.g.
sampling via iterative denoising). In this work, we exploit
both the techniques of classifier-free diffusion guidance and
ILVR into our diffusion-based framework of image genera-
tion for fulfilling a three-dimensional control on the synthe-
sized images in terms of their realism and the consistency
with respect to the stroke and sketch conditions.

3. Method
As motivated above, our proposed framework, named

DiSS, aims to perform image generation conditioned on the
input of stroke and sketches with three-dimensional control
over the faithfulness to the conditions and the realism of the
synthesized output. In the following we sequentially de-
scribe our proposed method, starting from the preliminaries
for diffusion models (Section 3.1) and the modifications we
make for realizing the conditional generation and the dis-
cussion for the sketch and stroke guidance (enabled by the
technique of classifier-free diffusion guidance, Section 3.2),
and the control over realism (achieved by the technique of
iterative latent variable refinement, Section 3.3).

3.1. Preliminaries
Denoising diffusion probabilistic models (DDPM) [8,

18] are a class of generative models (and the diffusion mod-
els that our proposed framework is based on) which adopt a
denoising process to formulate the mapping from a simple
distribution (e.g., isotropic Gaussian) to the target distribu-
tion. The forward diffusion process gradually adds noises
to the data sampled from the target distribution, while the
backward denoising process attempts to learn the reverse
mapping. Both processes are modeled as Markov chains.
Here we briefly introduce the process following the formu-
lations and notations in [18].

Given a sample from the target data distribution x0 ∼
q(x0), the forward diffusion path of DDPM is a Markov
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chain produced by gradually adding Gaussian noise to x0

with total T steps:

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI), (1)

where t ∼ [1, T ] and β1,...,βT is a fixed variance schedule
with βt ∈ (0, 1). Sampling xt at an arbitrary timestep t can
be expressed in a closed form:

q(xt|x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I),

xt =
√
ᾱtx0 +

√
(1− ᾱt)ϵ,

(2)

where αt := 1 − βt and ᾱt :=
∏t

i=1 αi. Consequently, xt

can be viewed as a linear combination of the original data x0

and ϵ ∼ N (0, I). The true posterior q(xt−1|xt) can be well
approximated by a diagonal Gaussian when the magnitude
of noise βt added at each step is small enough. Moreover,
xT is nearly an isotropic Gaussian N (0, I) when T is large
enough. These behaviors facilitate a generative (denoising)
process learning, the reverse of the forward path, to approx-
imate the true posterior q(xt−1|xt). Specifically, DDPM
adopts a deep neural network (typically U-Net is adopted)
to predict the mean and the covariance of xt−1 given xt as
input and the generative process is expressed as parameter-
ized Gaussian transitions:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)). (3)

Ho et al. [8] propose to predict the noise ϵθ(xt, t) instead
and derives µθ(xt, t) using Bayes’s theorem:

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)). (4)

To perform the learning of the denoising process, we first
generate sample xt ∼ q(xt|x0) by adding Gaussian noise ϵ
to x0(i.e. Eq. 2), then train a model ϵθ(xt, t) to predict the
added noise using a standard MSE loss:

Lsimple := Et∼[1,T ],x0∼q(x0),ϵ∼N (0,I)[∥ϵ− ϵθ(xt, t)∥2].
(5)

For Σθ(xt, t), Nichol et al. [18] presents an effective learn-
ing strategy as an improved version of DDPM with fewer
steps needed and applies an additional loss term Lvlb (the
details are shown in [18]) that interpolates between the up-
per and lower bounds for the fixed covariance proposed by
the original DDPM. The overall hybrid objective that we
adopt is:

Lhybrid := Lsimple + Lvlb. (6)

3.2. Sketch- and Stroke-Guided Diffusion Model
To generate images based on the given sketches and

strokes, our proposed method concatenates the sketch con-
dition csketch and the stroke condition cstroke along with xt as
input for the U-Net model (which is responsible for poste-
rior prediction). The modified parameterized Gaussian tran-
sition for conditioning generation is then represented as:

p̂θ(x̃t−1|xt, csketch, cstroke)

:= N (x̃t−1;µθ(xt, t, csketch, cstroke),Σθ(xt, t, csketch, cstroke)).
(7)

In practice, as following [8], the conditioning denoising
process learns the noise prediction with additional sketch
and stroke information, denoted as ϵ̂θ(xt, t, csketch, cstroke):

L̂simple := Et,x0,ϵ[∥ϵ− ϵ̂θ(xt, t, csketch, cstroke)∥2]. (8)

To separately control the guidance level of the sketch and
stroke conditions, we leverage classifier-free guidance [9]
and modify it for two-dimensional guidance. In practice,
we adopt a two-stage training strategy. First, we train the
model with complete sketches and strokes as conditions.
Then we fine-tune the model by randomly replacing 30%
of each condition with an image filled with gray pixels, de-
noted as ∅, for unconditional representation. During sam-
pling, the ratio between the degree of faithfulness to strokes
and sketches is controlled through the following linear com-
bination with two guidance scales ssketch and sstroke:

ϵ̂θ(xt, t, csketch, cstroke) = ϵ̂θ(xt, t,∅,∅)
+ ssketch(ϵ̂θ(xt, t, csketch,∅)− ϵ̂θ(xt, t,∅,∅))
+ sstroke(ϵ̂θ(xt, t,∅, cstroke)− ϵ̂θ(xt, t,∅,∅)).

(9)

With this formulation, our model supports multi-guidance
on a single diffusion model.

3.3. Realism Control
In reality, sketches and strokes provided by users are usu-

ally inconsistent to the real images. Therefore, it is essential
to provide the control over how faithful the output should
be to the inputs. In other words, how realistic the out-
put should be. We then provide realism control in addition
to the two-dimensional classifier-free guidance with sketch
and stroke information. We apply iterative latent variable
refinement [3] to refine each intermediate transition in the
generative process with a downsampled reference image.
The proposed realism control allows additional trade-off be-
tween consistency to the provided strokes/sketches and the
distance to target data distribution (i.e. real images). Let
LP represents a linear low pass filtering operation which
performs downsampling to a transformed size N and up-
sampling back. Given a realism scale srealism ∼ [0, 1] as
an indication of the transformed size N and a reference im-
age combining sketch and stroke information ccomb of size
m ∗ m, the realism adjustment during the conditioning gen-
erative process at timestep t can be expressed as:

x̃t−1 ∼ p̂θ(x̃t−1|xt, csketch, cstroke),

xt−1 := x̃t−1 − LPN(x̃t−1) + LPN(ccombt−1),

in which N = −srealism(m/8 − 1) + (m/8) + k

(10)

where ccombt−1 ∼ q(ccombt−1|ccomb0) with ccomb0 = ccomb
showing that ccombt−1 is sampled following Eq. 2 as grad-
ually injecting noise into ccomb by t− 1 steps. In details, as
xt−1 can be seen as combining the high-frequency contents
of x̃t−1 (produced by x̃t−1 − LPN(x̃t−1)) with the low-
frequency contents of the corrupted reference ccombt−1, the
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Sketch Stroke Combine Ours SDEdit [17] SSS2IS [14] U-GAT-IT [11]

Figure 3: Qualitative comparisons. We present results from different approaches on the (top two rows) AFHQ, (middle two
rows) Oxford Flower, and (bottom two rows) Landscapes datasets. U-GAT-IT [11], as an image-to-image translation method,
takes as input the combination of sketches and strokes (third column). SDEdit [17], SSS2IS [14] and our model take the
contour and color as separate inputs (the leftmost two columns).

downsampled size N controlled by srealism determines how
faithful the output should be to the reference (on the other
hand, the tendency of the synthesized output towards the
target distribution). The detailed discussion and explanation
for the computation of N is provided in the supplementary
materials.

The overall three-dimensional control of our proposed
framework is illustrated in Figure 2, in which it is realized
via the combination of the sketch- and stroke-guidance with
the realism control.

4. Experiments
We conduct extensive qualitative and quantitative exper-

iments to validate the effectiveness of the proposed DiSS

method on the task of image generation from stroke and
sketch. First, we compare our approach with several re-
cent state-of-the-art frameworks, and demonstrate the three-
dimensional control (contour, color, realism) over the gen-
eration process. Second, we show two applications: multi-
conditioned local editing and region-sensitive stroke-to-
image generation. Finally, we discuss the trade-off and the
interaction between the three controllable dimensions.
Datasets. We conduct experiments using the AFHQ [4],
Landscapes [22] and Oxford Flower [19] datasets. We use
Photo-sketching [13] to generate the black sketches, and
the stylized neural painting [27] as well as the paint trans-
former [16] model to synthesize the colored strokes for all
the datasets. We provide more data preparation details in
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Input Multimodal Results Input Multimodal Results

Figure 4: Multi-modal and multi-domain generation. The proposed approach 1) produces multi-modal results from the
same set of input data, 2) understands the implicit class information from the input sketch image (as shown in the left hand
side of the figure), and 3) is robust to un-aligned sketch stroke input data (note the input sketch and stroke are extracted from
different source images in this example).

the supplementary document.

Compared methods. We compare our method with three
recent state-of-the-art frameworks on image generation via
the stroke and sketch task:

• U-GAT-IT [11] is a recent image-to-image translation
approach. To leverage U-GAT-IT, we overlay the black
sketches and the colored stroke to form the drawing
image, which is considered to belong to the source do-
main. The corresponding photo-realistic image is then
treated as the target domain image.

• SSS2IS [14] is a self-supervised GAN-based scheme
that takes as input a black sketch and a style image.
We retrain the model by replacing the input style im-
ages with a colored stroke image, and computing the
regression loss between the real image and the autoen-
coder output.

• SDEdit [17] is a diffusion-based algorithm for the
stroke-to-image generation task. To involve the sketch
guidance, we retrain the model to take the sketch as
the conditional signal by concatenating the sketch im-
age with the original input of the U-Net network.

4.1. Qualitative Evaluation
Adaptively-realistic image generation from sketch and
stroke . We present the qualitative comparisons between
the proposed DiSS and other methods in Figure 3. Com-
pared to the other frameworks, the proposed DiSS approach
produces more realistic results on the object-level (cats and
flowers) and scene-level (landscapes) datasets. Moreover,

†Source from https://thenounproject.com/icon/cat-975212/
‡Source from https://freesvg.org/kocka
§Source from https://free-vectors.net/nature/green-field-vector

Table 1: Quantitative comparisons. We use the FID (↓)
metric to measure the generated image quality, and the
LPIPS (↓) score to evaluate the consistency between the
synthesized images and the input sketches.

AFHQ-cat Flowers LHQ

FID LPIPS FID LPIPS FID LPIPS

U-GAT-IT 24.75 0.185 74.27 0.207 36.93 0.188
SSS2IS 85.48 0.23 275.24 0.227 62.25 0.143
SDEdit 30.55 0.178 138.97 0.196 84.67 0.15

Ours 15.27 0.148 83.12 0.125 38.83 0.117

the images generated by our scheme faithfully correspond
to the input contour and color information. It is also note-
worthy that our method is robust to different levels of details
provided by the contour image. For example, in the second
row of Figure 3, the proposed DiSS still synthesizes photo-
realistic result even the contour image does not indicate the
eye position of the cat. Finally, we demonstrate the varia-
tion produced by changing the three controllable scales in
Figure 1 (sketch/stroke), Figure 7 (realism), and Figure 8
(sketch/stroke).
Multi-modal multi-domain translation. As the input
only contains rough contour and colored stroke informa-
tion, our DiSS approach is capable of synthesizing multi-
ple (i.e. multimodal) image generation results (based on
different initial randomly-drawn noises xT and stochastic
sampling procedure). The results are shown in Figure 4.
Note all the images (cats, dogs, and wild animals) are syn-
thesized from the same trained model. This suggests that
the proposed model is able to understand the implicit cate-
gory information from the input sketches. In addition to the
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Original Input Multimodal Results

(a) Multi-conditioned local editing.

Input Multimodal Results

(b) Region-sensitive stroke-to-image.

Figure 5: Applications. (a) By drawing the new contour
or color on an existing image, the proposed model enables
the mask-free image editing. (b) With the partial colored
stoke as the input, the proposed method synthesizes more
diverse contents in the non-colored region. Here we use a
cat contour† and hand-drawing flowers as examples.

diverse generation results, since the input sketch and stroke
images are not extracted from the same source image, we
demonstrate that our method is also robust to the un-aligned
sketch-stroke input data.

Applications. The proposed DiSS approach not only of-
fers the three-dimensional control over the generation pro-
cess, but also enables two interesting applications: multi-
conditioned local editing and region-sensitive stroke-to-
image generation. Note that we do not retrain our model,
but only design a specific inference algorithm for these two
applications. We provide the details in the supplementary
document. First, we present the visual editing results in

Figure 6: User preference study. We conduct the study that
asks participants to select results (based on images gener-
ated from AFHQ-cat and Landscapes datasets) that are more
realistic. The number indicates the percentage of preference
for that particular pair-wise comparison.

Figure 5 (a). Our model enables flexible local manipulation
on an existing image, which refers to both the hand-drawn
contour and colored strokes. Secondly, we demonstrate the
region-sensitive stroke-to-image generation results in Fig-
ure 5 (b). The proposed approach can take partial-sketch as
input and produces results that 1) match the appearance in
the region of partial-sketch and 2) exhibit multiple plausible
contents in the non-colored region.

4.2. Quantitative Evaluation
Image quality and correspondence to input sketch. We
use the Fréchet Inception Distance (FID) [7] to measure
the realism of the generated images. To evaluate whether
the synthesized images correspond to the input sketch,
we compute the Learned Perceptual Image Patch Similar-
ity (LPIPS) [24] score on the sketch level. Specifically,
we calculate the similarity between the input sketch and
the sketch inferred from the generated image (via Photo-
sketching [13]). Lower FID and LPIPS values indicate
better perceptual quality and correspondence, respectively.
The quantitative results in Table 1 show that our method
performs favorably against other representative approaches.

User preference study. To further understand the visual
quality of images generated from sketches and strokes, we
conduct a user study (with more than 80 candidates in total)
by pairwise comparison. We use the results generated from
the AFHQ-cat and Landscapes datasets. Given a randomly-
swapped pair of images sampled from real images and im-
ages generated from various methods, we ask the partici-
pants to choose the image which is more realistic. Figure 6
presents the statistics of users’ preferences. The results val-
idate the effectiveness of the proposed approach.

Realism vs. correspondence to input guidance. Fig-
ure 7 demonstrates the trade-off between the generated im-
age realism and the correspondence between the generated
image and the input guidance. We change the realism scale
from low (0.0) to high (1.0) in this experiment.
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Input Realism = 1.0 Realism = 0.8 Realism = 0.6 Realism = 0.4 Realism = 0.2 Realism = 0.0

LPIPS 0.509 0.451 0.417 0.400 0.348 0.310

LPIPS 0.421 0.364 0.271 0.232 0.190 0.158

Figure 7: Trade-off between realism and consistency to image guidance. We demonstrate the trade-off between the image
realism and the correspondence to the input guidance, where the realism scale is varied from low (0.0, right) to high (1.0,
left). We also show the LPIPS scores between the generated image and the input guidance. Both the object-level (a cat
drawing‡) and scene-level (a landscape painting§) input guidance images are used in this experiment.
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Figure 8: Qualitative results of using different stroke and
sketch scales. The top-left corner show the results gener-
ated without guidance. Stronger scale values lead to results
which are more consistent to the input guidance.

Controlling stroke and sketch scales. We conduct an
ablation study to understand the impact of using different
stroke and sketch scales. Figure 8 shows the qualitative re-
sults, and Figure 9 reports the FID scores computed using
the AFHQ-cat dataset. The results show that we can obtain
the best generated image quality by setting the sketch and
stroke scale values in the interval of [1.5, 2.5]. More abla-
tion study results about stroke, sketch and realism scales are

Figure 9: Impact of various stroke and sketch scales on
generated image quality. We report the FID scores to in-
dicate the generated image quality. The results suggest that
setting the stroke and sketch scale values to be in interval of
[1.5, 2.5] lead to the best image quality.

provided in the supplementary document.

5. Conclusion
In this work, we introduce DiSS, a versatile and flexible

framework that synthesizes photo-realistic images from the
sketch and colored stroke guidance. Our method uses 1)
two-directional classifier-free guidance and 2) iterative la-
tent variable refinement to offer the three-dimensional con-
trol (sketch, colored stroke, realism) over the image gen-
eration process. Extensive experimental results verify the
effectiveness of the proposed approach against several rep-
resentative schemes. Furthermore, we demonstrate that the
proposed DiSS framework enables more interesting appli-
cations, such as mask-free local editing and region-sensitive
stroke-to-image generation.
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