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Abstract

This work presents a novel self-supervised pre-training
method to learn efficient representations without labels on
histopathology medical images utilizing magnification fac-
tors. Other state-of-the-art works mainly focus on fully su-
pervised learning approaches that rely heavily on human
annotations. However, the scarcity of labeled and unlabeled
data is a long-standing challenge in histopathology. Cur-
rently, representation learning without labels remains unex-
plored in the histopathology domain. The proposed method,
Magnification Prior Contrastive Similarity (MPCS), en-
ables self-supervised learning of representations without la-
bels on small-scale breast cancer dataset BreakHis by ex-
ploiting magnification factor, inductive transfer, and reduc-
ing human prior. The proposed method matches fully super-
vised learning state-of-the-art performance in malignancy
classification when only 20% of labels are used in fine-
tuning and outperform previous works in fully supervised
learning settings for three public breast cancer datasets, in-
cluding BreakHis. Further, It provides initial support for
a hypothesis that reducing human-prior leads to efficient
representation learning in self-supervision, which will need
further investigation. The implementation of this work is
available online on GitHub1.

Keywords: self-supervised learning, contrastive learn-
ing, representation learning, breast cancer, histopathologi-
cal images, transfer learning, medical images

1. Introduction

Cancer diagnosis by analyzing histopathological whole-
slide images (WSI) is an active research field in machine
learning [33].

1https://github.com/prakashchhipa/
Magnification-Prior-Self-Supervised-Method/

Figure 1: The proposed approach comprises three steps:
(1) Parameters initialization with supervised ImageNet
weights. (2) Self-supervised pre-training on unlabeled
BreakHis histopathology images using proposed method
Magnification Prior Contrastive Similarity to provide
positive pairs by exploiting supervision signal, e.g., mag-
nification from data and reducing human prior. (3) Fine-
tuning on histopathology images for the downstream task.

A challenge for the supervised learning approaches ap-
plied to histopathological WSI is the scarcity of labeled
data. Furthermore, label information for digital WSI is also
limited and does not provide details of the affected region at
different magnifications, as in dataset BreakHis [52]. Rep-
resentations learned through supervised learning might suf-
fer as such methods typically require a large amount of la-
beled data. This can lead to sub-optimal performance on
downstream tasks.

Exploring efficient representation learning on small-
scale histopathological WSI data using objectives that do
not require labels is a promising approach as it requires a
lower amount of labeled data needed to learn successful
downstream models.

This work proposes a novel self-supervised learning
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(SSL) method based on contrastive joint embedding called
Magnification Prior Contrastive Similarity (MPCS), to learn
efficient representations without labels. The proposed
method uses a magnification factor (a signal from data) to
construct positive pairs for contrastive similarity. MPCS
uses magnification factors to enable SSL on the small-scale
dataset. This work also hypothesizes that reducing hu-
man inducted prior in SSL methods enhances representation
learning.

The proposed method MPCS conducts self-supervised
pre-training on histopathological WSI on the BreakHis [52]
dataset with two different backbone encoders Efficient-
net [55] and dilated ResNet-50 [61], pre-trained on Ima-
geNet [15]. The effectiveness of the learned representa-
tions is assessed by fine-tuning for the downstream task
of malignancy classification on multiple public datasets
e.g. BACH [2], Breast Cancer Cell Dataset [18] includ-
ing BreakHis dataset. The complete approach is depicted
in Figure 1. Following are the main contributions:

1. Enables self-supervised learning on small-scale
histopathology dataset by exploiting a data prior

2. Hypothesizes a relation between human inducted prior
and data prior for self-supervised representation learn-
ing

With contributions mentioned above, this work demon-
strates significantly improved performance on downstream
tasks on three public datasets. It provides preliminary em-
pirical support that 1) reducing human-prior leads to effi-
cient representation learning and 2) learning being magnifi-
cation invariant by cross-magnification evaluation.

2. Related Work
Most efforts in machine learning for histopathological

analysis have been using supervised learning. However,
current supervised learning methods struggle when labeled
data is scarce [33]. Other methods, e.g. pseudo-label and
transfer learning, are often used with supervised learning
to make up for the lack of labeled data. Examples of such
methods are augmentation [37] for the first category and
feature-extraction and selection [50, 58] for the second.

One public histopathological image dataset that
poses such a challenge of data- and label scarcity is
BreakHis [52]. Many different methods have been applied
to the BreakHis [52] dataset, most of which utilize a
Convolutional Neural Network (CNN) in conjunction with
one or both of the methods for handling data scarcity above.

Table 1 contains a summary of a few such approaches
along with some of the strategies used on BreakHis [52].
In the table, custom means a specialized or novel method
introduced. Simple augmentations refer to one or more op-
erations among rotation, flipping, cropping, shifting, and

Table 1: Methodologies Used on the BreakHis Dataset.
Work Model Augmented Extra Training Ensemble Evaluation

Deep [51] AlexNet [35] variant No No No 5 trials
MI [6] Custom CNN Simple Custom No 5-fold

GLPB [3] TCNN [1] Custom No No 5-fold
MIL [53] Various MIL [31] No No 5 trials

A-MIL [42] Custom CNN Simple No No Unclear
MRN [24] ResNet [27] variant Simple No No Unclear
MV [21] Various No No Voting 5 trials
SM [22] DenseNet [29] Simple Pretrained XGBoost [10] 3 trials
PI [23] ResNet [27] Simple Pretrained Custom 3 trials
TL [16] AlexNet [35] & VGG16 [48] No Pretrained Two networks 5-fold

RPDB [39] DenseNet [29] Simple AnoGAN [45] No 5-fold CV
MIM [7] Various Simple Pretrained No Unclear
MPCS Efficient-net b2 [55] Simple Custom No 5-fold stratified CV

zooming. Another breast cancer dataset is BACH [2], on
which previous works in transfer learning TL [57], patch-
based PT [44], and hybrid networks HN [60] shows per-
formance improvements. Further, the small-scale dataset
Breast Cancer Cell Dataset [18] is also being evaluated for
binary tasks in various previous works based on shearlet
transform ST [43] and attention methods are ATN [30] and
MATN [34].

Another learning paradigm to effectively counter ear-
lier stated data scarcity challenges is self-supervised learn-
ing. Representation learning from self-supervised learning
paradigms for computer vision can be categorized majorly
as (i) Joint Embedding Architecture & Method (JEAM)
([11, 20, 9, 62]), (ii) Prediction Methods ([56, 41, 17]), and
loosely (iii) Reconstruction Methods ([32, 19]). Specifi-
cally, JEAM can be divided further with each subdivision
providing many interesting works; (i) Contrastive Methods
(PIRL [40], SimCLR [11], SimCLRv2 [12], MoCo [26]),
(ii) Distillation (BYOL [20], SimSiam [13]), (iii) Quanti-
zation (SwAV [9], DeepCluster [8]), and (iv) Information
Maximization (Barlow Twins [62], VICReg [5]). Of these
divisions, this work focuses on contrastive methods.

Recently, contrastive JEAM has been tailored for med-
ical images. Contrastive learning on digital pathology
DPCL [14] applies contrastive learning and shows improve-
ment in the breast cancer dataset [2]. In MICLe [4],
which is based on SimCLR [11], multiple instance con-
trastive learning is applied by enabling input views from
several image instances of the same patient. Another work
from contrastive methods on histopathology is DRL [59].
Other applications making use of contrastive JEAM are
chest X-rays [49, 38], CT scans for COVID-19 [28], 3d-
Radiomic [36], and Radiograph [63]. A work using con-
trastive JEAM on the BreakHis dataset is SMSE [54], which
trains the network using pair and triplet losses. SSL meth-
ods including JEAM require large-size data. Thus applying
the contrastive JEAM paradigm on small datasets with the
reduced human dependency of prior is an open challenge
and interest of this work.

3. Methodology

The primary focus of this work is to introduce a novel
self-supervised pre-training method with the aim is to learn
representations from data without labels, while using su-
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pervision signals from data, e.g., magnification factor and
using inductive transfer from ImageNet [15] pre-trained
weights.

3.1. Inductive Transfer Learning

Given the fact that BreakHis [52] is a small-scale and
class-imbalanced dataset, this work hypothesizes a con-
straint case of inductive transfer for representation learning
by initializing encoder ImageNet [15] pre-trained weights.
In this work, the inductive transfer (i) helps to obtain im-
proved performance on the downstream task of malignancy
classification and (ii) enables self-supervised pre-training
using the proposed method on the small-scale dataset.

3.2. Self-supervised Method - Magnification Prior
Contrastive Similarity

Magnification Prior Contrastive Similarity (MPCS)
method formulates self-supervised pre-training to learn rep-
resentations on microscopic Histopathology WSI without
labels on small-scale data. The main objective of MPCS is
to lower the amount of labeled data needed for the down-
stream task to address challenges in supervised learning.

MPCS construct pairs of distinct views considering char-
acteristics of microscopic histopathology WSI (H-WSI) for
contrastive similarity-based pre-training. Microscopic H-
WSI structural properties are different from natural visual
macroscopic images [15] (vehicles, cats, or dogs) in terms
of location, size, shape, background-foreground, and con-
crete definition of objects. Unlike SimCLR [11] where
pairs of distinct views from the input image is constructed
by human-centered augmentations, MPCS constructs pair
of distinct views using pair sampling methods based on
the signal from data itself i.e. magnification factor in
BreakHis [52]. Two H-WSI from different magnifica-
tion factors of the same sample makes a pair. Utilizing
prior from data (magnification factor) enables meaningful
contrastive learning on histopathology H-WSI and reduces
dependency over human inducted prior. Further, tumor-
affected regions in H-WSI are characterized by format and
highly abnormal amounts of nuclei. Such affected regions
are promising in all the H-WSIs of different magnification
for the same sample. Thus, affected regions being common
and size invariant in positive pair of a sample allow learning
contrastive similarity by region attentions.

Current work also hypothesizes that reduced human-
prior in the pre-training method provides an enhanced de-
gree of freedom to the method that can increase the po-
tential of the network to learn efficient representations in
a self-supervised approach. To investigate, three strategies
for pair sampling are formulated based on inducted human
prior. The number of human decisions defines the level of
inducted human-prior (HP) during pair sampling. As ex-
plained in Figure 3, in Fixed Pair, decisions to choose mag-

Figure 2: Magnification Prior Contrastive Similarity
method explained

Figure 3: Strategies for pair sampling based on inducted
Human Prior(HP). Added measure to prevent mode collapse
in pre-training by 1stview ̸= 2ndview in all strategies.

nification factor for both views are by human, thus mak-
ing strong human-prior. In Ordered Pair, only the second
view of the pair is chosen by a human using a look-up table,
making weaker human prior. In Random Pair, no human
prior inducted and magnification factor for both views are
sampled randomly. Further, Figure 4 demonstrates the De-
gree of Freedom (DoF) for the method where the Fixed Pair
strategy provides no DoF, Order Pair provides one DoF, and
Random Pair provides 2 DoF to the method.

In MPCS, to formulate a batch of 2N views, ran-
domly sampled batch of N sets of input X =
{X(1), X(2), ..., X(N)} are considered where each set of
input X(i) = {x(i)

40 , x
(i)
100, x

(i)
200, x

(i)
400} contains the images

corresponding to four magnification factors. Positive pair
of views is constructed based on a selection strategy of pair
sampling which contains two views from the same example
of different magnification. Further, similarity maximizes
(loss minimizes) by an objective defined by the contrastive
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loss in Eq. 1). MPCS is demonstrated in Figure 2 and com-
ponents are explained below.

Figure 4: Relation between inducted Human Prior (HP) of
magnification and Degree of Freedom (DoF) for method

• A domain specific human prior module Ph(X →
XMF): X = {x40, x100, x200, x400} that exploits su-
pervision signal from data i.e. magnification and sam-
ples the two views XMF =(xMF1, xMF2) of differ-
ent magnifications to construct pair based on employed
strategy of pair sampling shown in step 1 of Figure 2.

• A uniform stochastic transformation based module
TU (XMF → X̃MF) that uniformly transforms both
views from XMF =(xMF1, xMF2) to X̃MF = (x̃MF1,
x̃MF2) of positive pair by sampled augmentation trans-
formations scheme shown in step 2 of Figure 2.

• A neural network base encoder f (·) which yields rep-
resentations from transformed views of pair. It obtains
hMF1 = f (x̃MF1) = encoder-network(x̃MF1) and hMF2

= f (x̃MF2) = encoder-network(x̃MF2) where hMF1,
hMF2 ∈ Rd are the output after the respective average
pooling layers, shown in step 3 of Figure 2.

• A small-scale MLP projection head g(·) that maps rep-
resentations to the latent space where contrastive loss
is applied, shown in step 4 of Figure 2. A multi-layer
perceptron with single hidden layer to obtain zMF1 =
g(hMF1) = W (2)σ(W (1)hMF1) and zMF2 = g(hMF2) =
W (2)σ(W (1)hMF2) where σ is ReLU.

• A contrastive loss function, normalized temperature-
scaled cross entropy loss (NT-Xent) from SimCLR is
defined for a contrastive prediction, shown in step 5 of
Figure 2. For given a set x̃k including a positive pair
examples x̃MF1 and x̃MF2, the contrastive prediction
task tends to find x̃MF2 in {x̃k}k ̸=MF1 for the given
x̃MF1.

The loss function for a positive pair of examples (MF1,
MF2) is defined as

LMF1,MF2 = − log
exp(sim(zMF1, zMF2)/τ)∑2N

k=1 1[k ̸=MF1]exp(sim(zMF1, zk)/τ)
(1)

In Eq. (1), where 1[k ̸=MF1] ∈ 0, 1 is an indicator evalu-
ating to 1 if k ̸= i.

4. Experimental Evaluations
This section investigates the representation learning ca-

pabilities of the proposed method MPCS on two encoder
networks with experimentation on three public datasets.

4.1. Datasets

4.1.1 BreakHis

BreakHis [52] dataset consists of 2,480 benign and 5,429
malignant histopathological microscopic images from 82
patients at four magnification levels (40×, 100×, 200×,
400×). Each image in the BreakHis dataset is of size
700×460, stained with hematoxylin and eosin (HE). Fol-
lowing the previous works, two evaluation metrics are
used, image-level accuracy(ILA) and patient-level accuracy
(PLA). PLA shows patient-wise classification performance,
calculated as the mean over total no. of patients using
patient-score. Patient-score is correctly classified images
of the patient over a total number of images of that patient.
ILA disregards patient-level details and thus serves as stan-
dard image classification accuracy.

4.1.2 BACH

The second dataset, Breast Cancer Histology Images
(BACH) [2] is from the ICIAR2018 Grand Challenge and
contains 400 histopathology slides. The BACH dataset has
four classes, normal, benign, in-situ, and invasive. The slide
size is relatively large, 2048 × 1536 pixels; thus, patches
of size 512x512. Two evaluation metrics, patch-wise ac-
curacy and image-wise accuracy, are used, whereas image-
wise accuracy is calculated based on majority voting over
the patches of the respective image.

4.1.3 Breast Cancer Cell Dataset

The third dataset, Breast Cancer Cell Dataset [18] is from
the University of California, Santa Barbara Biosegmen-
tation Benchmark. This dataset contains 58 HE-stained
histopathology 896x768 size images of breast tissue, of
which 26 are malignant, and 32 are benign. Patches of size
224x224 were created, and image-wise accuracy was calcu-
lated using majority voting over patches of the image.

4.2. Encoder Architectures

In this current work, the proposed method MPCS inves-
tigated two different CNN encoder architectures. ResNet-
50 [61] and Efficient-net b2 [55] are used for pre-training
and fine-tuning. SSL-specific MLP projection head used
for Efficient-net b2 is three layers network of 2048-1204-
128 units, whereas ResNet-50 is the most common back-
bone encoder, used projection head adapted from SimCLR,
having 1024-128 units. encoder and projection heads are
demonstrated in Fig. 2.
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4.3. Training Protocol

This section shares parameter configurations used in pre-
training and fine-tuning.

4.3.1 SSL pre-training

Self-supervised pre-trainings of both encoders take place on
the BreakHis dataset for 1000 epochs with temperature pa-
rameter 0.01, learning rate 1e-05, and a set of augmenta-
tions such as color-jitter, flip, and rotation. Efficient-net b2
encoder pre-trained using Adam optimizer with a batch size
of 128 and image input of (341, 341). However, ResNet-50
adapted standard configurations of self-supervised practices
and pre-trained using the LARS optimizer with a batch size
of 1024 and input image size of 224x224.

4.3.2 Fine-tuning

The common training configurations across datasets for
both encoders are learning rate of 2e-05, batch size of 32,
image input of 224x224, augmentations i.e. random crop,
flip, affine, rotation, and color-jitter, and using adam as opti-
mizer. A dropout of 0.3 is used in the fully connected layer.

4.4. Experimentation Details

To ensure the reliability and consistency of the models,
this work follows 5-cross validation data split scheme. This
is applied to all three datasets in which each fold contained
20% data, following class distribution from whole data.
Four out of five folds are used for training & validation, and
the remaining one for testing. Thus all the results reported
are in terms of mean value with standard deviation. In
the above-stated 5-cross validation settings, both backbone
encoders, ResNet-50 and Efficient-net b2, are being pre-
trained on the first dataset BreakHis with all three variants
(ordered pair, random pair, and fixed pair) of the proposed
SSL method MPCS for learning domain-specific represen-
tations. Further, downstream-task-specific fine-tuning ex-
periments are carried out to investigate the impact of learned
representations for all three datasets e.g., BreakHis, BACH,
and Breast Cancer Cell. Following are the details of exper-
imentation for each dataset. Table 2 describes fine-tuning
experiments for the first dataset BreakHis. All the men-
tioned experiments for malignancy classification are con-
ducted for both encoders, Efficient-net b2 and ResNet-50
for all four magnifications (40X, 100X, 200X, and 400X).
Experiments (Exp-1 to Exp-4) in Limited Labeled Data Set-
ting evaluate model performance while using only 20% la-
bels, whereas experiments (Exp-5 to Exp-8) in Fully Super-
vised Setting use all labels. The sole objective is to compare
the performance of models pre-trained on proposed MPCS
methods against ImageNet [15] pre-trained model to ana-
lyze the effect of learned representations. Preferred names

Table 2: Experiment details for BreakHis dataset

No. Pre-training Method BreakHis data
(%)for SSL

Finetuning on
BreakHis Dataset

Train (%) Test (%)
Limited Labeled Data Setting

Exp-1 ImageNet - 20% 20%
Exp-2 ImageNet → MPCS-Fixed Pair 60% 20% 20%
Exp-3 ImageNet → MPCS-Ordered Pair 60% 20% 20%
Exp-4 ImageNet → MPCS-Random Pair 60% 20% 20%

Fully Supervised Data Setting
Exp-5 ImageNet - 80% 20%
Exp-6 ImageNet → MPCS-Fixed Pair 60% 80% 20%
Exp-7 ImageNet → MPCS-Ordered Pair 60% 80% 20%
Exp-8 ImageNet → MPCS-Random Pair 60% 80% 20%

Table 3: Experiment details for BACH dataset

Fine-tuning on BACH datasetNo. Pre-training
method/weights Labels(%) from Train Data Test data (%)

Exp-9 ImageNet [57]-re-implement 100% ( 80% train data) 20%
Exp-10 MPCS-Fixed Pair (BreakHis) [5%, 10%, 20%, 40%, 60%, 80%, 100%] 20%
Exp-11 MPCS-Ordered Pair(BreakHis) [5%, 10%, 20%, 40%, 60%, 80%, 100%] 20%
Exp-12 MPCS-Random Pair(BreakHis) [5%, 10%, 20%, 40%, 60%, 80%, 100%] 20%

Table 4: Experiment details for Breast Cancer Cell Dataset

Fine-tuning on
Breast Cancer Cell Dataset

Linear-evaluation on
Breast Cancer Cell DatasetNo. Pre-training

method/weights Train data(%) Test data (%) Train data(%) Test data(%)
Exp-13 MPCS-Fixed Pair (BreakHis) 80% 20% 80% 20%
Exp-14 MPCS-Ordered Pair(BreakHis) 80% 20% 80% 20%
Exp-15 MPCS-Random Pair(BreakHis) 80% 20% 80% 20%

in discussion used as MPCS-X for ImageNet → MPCS-
X. Experiments(Exp-9 to Exp-12) for the second dataset
BACH [2] are described in Table 3 based on the ResNet-
50 encoder. All the images are divided into 512X512
size patches; thus, performance is measured patch-wise
and image-wise (using majority voting suggested in [57]).
The major objectives are 1) evaluating pre-trained mod-
els from the proposed method against the ImageNet-based
transfer learning approach [2] 2) evaluating the ability to
learn downstream tasks with limited labels ranging from
5% to 100% of labels from the train data portion. Finally,
to evaluate the effect of learned domain-specific represen-
tations on small-scale data, a series of fine-tuning (all lay-
ers trained) and linear evaluation experiments (only fully-
connected layers trainable) Exp-13 to Exp-16 are conducted
Breast Cancer Cell dataset and described in Table 4. Similar
to BACH dataset, images for this dataset were also divided
into sizes 224X224 for training and test, and performance
was measured likewise.

5. Results & Discussions

The quantitative results and qualitative analysis from ex-
tensive experiments on three datasets validate the efficiency
of learned representations for the proposed self-supervised
pre-training method MPCS. Preliminary investigation on
data prior also supports the hypothesis of reducing human
prior in self-supervised representation learning.

Results on BreakHis dataset for the experiments Exp-1
to Exp-4 in Table 2 in limited labels setting (20% labels
only) are described in Table 5. It shows that all the vari-
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Table 5: Performance evaluation of the proposed methods in limited labelled data setting when fine-tuning only on 20%
labeled data. (across magnification, p <0.05 for all three self-supervised methods for PLA). Ablation results for 40%, 60%,
and 80% labels are provided in supplementary content.

Encoder Metric Method 40X 100X 200X 400X Mean
ImageNet 86.36±6.13 87.80±4.15 86.82±5.74 84.98±6.05 86.49±5.63
FixedPair 87.26±4.46 87.45±2.35 89.38±2.18 88.12±3.84 88.05 ±3.20

Ordered Pair 87.40±3.73 89.30±2.74 90.50±2.19 88.35±3.30 88.89±2.99
Image Level

Accuracy
Random Pair 86.21±4.20 89.55±2.84 89.18±4.05 87.34±3.44 88.07±3.63

ImageNet 86.13±5.15 87.76±6.03 85.79±4.10 85.51±5.27 86.30±5.14
FixedPair 86.90±4.14 87.64±3.05 89.60±3.28 88.26±3.05 88.10 ±3.38

Ordered Pair 87.19±3.20 88.86±2.58 90.20±3.26 88.96±3.22 88.80±3.07

Efficient-net b2

Patient Level
Accuracy

Random Pair 87.17±3.88 88.36±2.84 88.58±4.01 88.66±3.13 88.19±3.48
ImageNet 87.40±4.88 86.22±5.71 86.02±4.74 85.30±5.95 86.24±5.32
FixedPair 86.69±3.96 86.94±3.05 88.76±2.28 88.81±2.77 87.68 ±3.01

Ordered Pair 87.56±3.48 88.60±3.01 89.77±2.19 87.61±3.48 88.38±3.04
Image Level

Accuracy
Random Pair 87.06±3.40 87.96±3.44 88.55±3.15 86.64±2.98 87.55±3.24

ImageNet 87.10±4.80 88.06±5.11 84.19±4.28 85.01±5.27 86.09±4.86
FixedPair 87.45±3.96 86.38±3.12 88.18±3.00 88.89±2.98 87.72 ±3.27

Ordered Pair 87.88±2.89 88.21±3.21 89.52±3.26 87.90±3.03 88.38±3.09

ResNet-50

Patient Level
Accuracy

Random Pair 87.17±2.98 87.96±3.02 88.76±3.55 88.06±3.00 87.99±3.14

Table 6: Comparison of proposed methods with state-of-the-art methods on downstream task of classifying histopathological
images at different magnification factors in fully supervised setting(using 100% train set labels). RN-50 indicates ResNet-50
and Eff-net b2 indicates Efficient-net b2 encoder. Also, OP indicates Ordered Pair, FP indicates Fixed Pair, and RP indcates
Random Pair.

Patient Level Accuracy (RR) Image Level AccuracyMethod 40X 100X 200X 400X Mean 40X 100X 200X 400X Mean

Original-GLCM[51] 74.7±1.0 78.6±2.6 83.4±3.3 81.7±3.3 79.60±2.55 - - - - -
PFTAS[25] 83.80±2.0 82.10±4.9 85.10±3.1 82.30±3.8 83.33±3.45 - - - - -

MIL-NP[53] 92.1±5.9 89.1±5.2 87.2±4.3 82.7±3.0 87.77±4.6 87.8±5.6 85.6±4.3 80.8±2.8 82.9±4.1 84.28±4.20
SW[51] 88.6±5.6 84.5±2.4 85.3±3.8 81.7±4.9 85.02±4.17 89.6±6.58 85.0±4.8 84.0±3.2 80.8±3.1 84.85±4.42
MI[6] 83.08±2.08 83.17±3.51 84.63±2.72 82.10±4.42 83.25±3.18 - - - - -

Deep[50] 84.0±6.9 83.9±5.9 86.3±3.5 82.1±2.4 84.07±4.67 84.6±2.9 84.8±4.2 84.2±1.7 81.6±3.7 83.80±3.13
MILCNN[53] 86.9±5.4 85.7±4.8 85.9±3.9 83.4±5.3 85.47±4.85 86.1 ± 4.28 83.8±3.0 80.2±2.6 80.6±4.6 82.68±3.62

GLPB[3] 84.5±4.2 83.5±2.0 89.6±5.0 88.2±4.0 86.45±3.8 82.1±6.4 81.4±4.8 88.4±5.0 87.2±4.5 84.78±5.18
RPDB[39]∗ 92.02±0.9 90.21±2.40 81.94±1.70 80.09±0.70 88.06±1.4 94.26±3.2 92.71±0.4 83.90±2.8 82.74±1.5 88.40±1.98
SMSE[54] 87.51±4.07 89.12±2.86 90.83±3.31 87.10±3.80 88.64±3.51 - - - - -

ImageNet (Eff-net b2) 91.91±4.25 91.93±4.20 91.46±5.17 88.10±3.88 90.85±4.36 92.12±4.18 92.66±4.20 91.83±4.55 88.35±5.21 91.24±4.54
MPCS-FP (Eff-net b2) 92.23±3.50 92.72±3.68 91.94±3.80 88.40±3.26 91.33±3.56 92.23±3.80 93.57±3.23 92.23±2.98 88.40±3.90 91.61±3.48
MPCS-OP (Eff-net b2) 92.45±3.25 93.47±2.98 92.44±3.30 89.00±3.05 91.84±3.15 92.67±3.36 93.63±3.38 92.72±2.80 88.74±3.90 91.94±3.36
MPCS-RP (Eff-net b2) 93.26±3.48 93.57± 3.36 92.23±3.21 89.57±3.79 92.15±3.46 93.45±3.55 93.38±2.80 92.28±3.49 89.81±3.15 92.23±3.24

ImageNet (RN-50) 91.46±4.30 91.24±5.1 90.72±4.68 87.90±4.12 90.33±4.55 91.83±5.12 92.23±4.15 91.61±4.00 87.88±4.80 90.89±4.52
MPCS-FP (RN-50) 91.83±3.88 92.67±2.72 91.61±3.40 89.00±3.15 91.28±3.29 92.24±3.48 92.66±3.88 91.91±3.68 88.40±3.66 91.30±3.68
MPCS-OP (RN-50) 93.00±3.66 93.26±3.08 92.28±2.88 88.74±3.60 91.82±3.31 93.26±3.40 93.45±2.89 92.45±3.77 89.57±2.96 92.18±3.26
MPCS-RP (RN-50) 92.72±3.50 93.57± 2.88 92.23±3.90 88.40±3.05 91.73±3.33 92.72±3.38 92.72±4.02 91.91±3.21 88.56±3.89 91.48±3.66

Table 7: Performance comparison of proposed method
MPCS (ResNet-50 encoder) on BACH dataset with other
state-of-the-arts for four class classification. RN-50 indi-
cates ResNet-50.

Image-wise accuracy Patch-wise accuracyMethod validation test validation test
PT [44] - 90.00 - 77.40

HN [60] (RN-50) - 81.60 - -
HN [60] - 91.30 - 82.10

DPCL [14] - 87.00 - -
ImageNet [57]
re-implement 92.40±2.04 90.50±2.10 80.56±3.06 80.00±2.64

MPCS-FP 92.50±1.90 90.55±2.05 84.25±1.88 82.79±2.05
MPCS-OP 93.31±1.85 91.85±1.77 83.90±1.89 83.13±2.00
MPCS-RP 93.00±1.88 91.00±2.32 83.78±2.09 82.90±2.10

ants (ordered pair, random pair, and fixed pair) of MPCS
pre-trained models obtain significant (across magnification,

Table 8: Performance evaluation (image-wise accuracy and
f1 score) of proposed method MPCS on BACH dataset for
limited label range for ResNet-50 encoder.

Label(%) from
train data F1 score (test data) Accuracy (test data)

MPCS-FP MPCS-OP MPCS-RP MPCS-FP MPCS-OP MPCS-RP
5% 0.50±0.05 0.50±0.05 0.51±0.05 51.25±5.02 50.00±4.80 53.00±5.06

10% 0.60±0.05 0.61±0.04 0.61±0.05 60.50±4.88 61.75±3.93 62.50±4.60
20% 0.65±0.03 0.70±0.04 0.68±0.02 69.25±2.92 71.00±3.90 69.00±2.89
40% 0.79±0.04 0.81±0.04 0.80±0.03 80.75±3.40 81.75±3.52 81.50±3.05
60% 0.87±0.03 0.87±0.03 0.86±0.03 87.70±3.48 87.75±3.10 86.50±3.00
80% 0.89±0.03 0.90±0.02 0.89±0.02 89.25±3.02 90.75±2.17 89.75±0.02

100% 0.90±0.02 0.91±0.02 0.90±0.02 90.55±2.05 91.85±1.77 91.00±2.32

p <0.05) improvement (1.55 ∼ 2.52)% over the ImageNet
transfer learning model for all four magnifications and re-
sults are competitive with other state-of-the-art methods
that have been trained in the fully supervised setting us-
ing all labels. Further, Table 6 compares the performance
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Table 9: Performance measure of proposed method MPCS
(ResNet-50 encoder) on Breast Cancer Cell Dataset

Fine-tuned Linear-evaluationMethod accuracy precision recall accuracy precision recall
ST [43] 86.00±3.00 - 1.0 - - -

MATN [34] 91.70 - - - - -
ATN [30] 75.50±1.60 0.73±0.01 0.73±0.04 - - -
MPCS-FP 98.14±2.05 0.99±0.01 0.98±0.01 96.29±1.90 0.97±0.01 0.96±0.01
MPCS-OP 98.18±1.80 0.99±0.01 0.98±0.01 96.36±1.88 0.97±0.01 0.96±0.01
MPCS-RP 98.10±2.00 0.985±0.01 0.98±0.01 96.22±2.02 0.965±0.01 0.96±0.01

of experiments Exp-5 to Exp-8 in Table 2 in the fully su-
pervised setting (using all labels). The MPCS pre-trained
models outperform several state-of-the-art methods with
(3.5 ∼ 8.0)% higher accuracy in malignancy classification.
Both encoder architectures, Efficient-net b2 and ResNet-50
perform consistently. The t-SNE visualization of the pre-
trained ResNet-50 encoder in Figure 9 and class activation
maps (CAM) [46] in Figure 5 show robust representation
learning in the pre-tuning and fine-tuning phases, respec-
tively. Additionally, cross-magnification evaluation is also
performed as suggested in previous work [21] and [47], re-
sults support performance generalization across magnifica-
tions, and results can be found in the supplementary mate-
rial. MPCS pre-trained ResNet-50 models on the BreakHis

Figure 5: Comparing CAM from ImageNet and MPCS-OP
on BreakHis dataset. Only OP variant CAM is shown for
space constraint. Activation - red (darker) color
dataset are further evaluated on two additional datasets. Re-
sults on the BACH dataset for the experiments Exp-9 to
Exp-12 in Table 3 are described in Table 7 and 8. Results
in Table 7 show the performance improvement on four-class
classification on image-wise and patch-wise accuracy while
comparing with other state-of-the-arts for the ResNet-50 en-
coder and other architectures. Specifically, compared with
other recent work based on contrastive learning-based self-
supervised method DPCL [14], the proposed method MPCS
consistently outperforms over a varying range of label usage
as shown in Figure 8 and obtains an improvement of 4.85%
when using 100% labels. To compare with ImageNet pre-
trained ResNet-50 encoder in identical settings, the method
suggested in [57] is re-implemented and results are reported
in Table 7 for comparison and qualitative analysis through
CAM is also shown for samples from the BACH dataset in
Figure 6. Results on the third Breast Cell Cancer dataset for

Figure 6: CAM from ImageNet and MPCS-RP, OP, FP on
BACH dataset (MPCS specifically learns to prevent activa-
tion on cells present on normal class images).

experiments Exp-13 to Exp-15 from Table 4 are compared
with other methods in Table 9, shows significant improve-
ment over other methods and obtains 98.18% in fine-tuning
and 96.36% in linear evaluation. CAM in Figure 7 also sup-
ports the method qualitatively. Reproducible source code
for all the results reported is added in supplementary con-
tent and shall be made available on GitHub.

Figure 7: Comparing CAM among MPCS-RP, OP, and FP
on Breast Cancer Cell dataset. Activation - red (darker)

5.1. Self-supervised method MPCS demonstrates
label efficiency

All three variants of the proposed method MPCS demon-
strate label efficiency on downstream tasks. Results in Ta-
ble 5 On BreakHis dataset, MPCS fine-tuned models ob-
tain (significant improvement p <0.01) proportionally big-
ger margins of improvement of (2.52±0.02)% over Ima-
geNet pre-trained model while only 20 % labels are used
for all magnification scales. These results match the perfor-
mance of other state-of-the-art methods mentioned in Ta-
ble 6 which have been trained on 100% labels. Follow-
ing the trend, MPCS pre-trained models consistently out-
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Figure 8: Comparison with DPCL [14] for label efficiency
on classification task on BACH dataset
perform on the BACH dataset compared with the recent
contrastive learning-based method DPCL [14] in a complete
range of labels from 5% to 100%, shown in Figure 8.

5.2. Data prior enables self-supervision on small-
scale datasets

The proposed MPCS method enables self-supervised
representation learning on the small-scale dataset by exten-
sively using a data prior (supervision signal from data) e.g.
magnification factors (40X, 100X, 200X, and 400x). It de-
creases the dependence on human-curated priors e.g. aug-
mentation choices during self-supervised pre-training.

5.3. MPCS learns robust self-supervised represen-
tations

Figure 9: tsne-visualization of the features from MPCS
model (on BreakHis) without fine-tuning. Blue(benign);
red(malignant).

Explicitly focusing on the robustness of learned repre-
sentations, Figure 9 strongly supports the fact that MPCS
pre-trained models can capture and learn discriminative
features across the classes during the self-supervised pre-
training phase itself without knowing about actual human-
provided labels. It is worth mentioning that data points of
different classes are easily separable by either linear or non-
linear boundaries for all four magnifications for all variants
of the MPCS method. The CAM of fine-tuned models de-
picted in Figures 5 and 6 also indicate that MPCS pre-

trained models activate regions of interest (dark red colors
show strong activation) more efficiently than the ImageNet
pre-trained model for BreakHis and BACH datasets.

5.4. Preliminary support for the hypothesis about
reducing human inducted priors

The MPCS-Ordered Pair inducts weaker human-prior in
pair sampling. Thus, the MPCS method obtains one DoF
for randomly choosing the first input view. In comparison,
the MPCS-Fixed Pair, which inducts stronger human prior
by choosing both views, 200x and 400x by human-prior,
gives zero DoF to the MPCS method. The MPCS-Random
Pair, in which the MPCS method obtains the highest de-
gree of freedom since the human-prior is absent. Figure 10

Figure 10: Comparison for human priors - Indicates weaker
human-prior(moderate DoF) outperforms stronger and no
human-prior during limited (20% labels) data
explains the trends when fewer labels are used, that both en-
coders that weaker human-prior based pair sampling tends
to outperform over extreme cases of stronger human prior or
the absence of it. However, it requires detailed explorations
of different datasets and tasks. Similar patterns were also
observed on the BACH dataset that the ordered pair outper-
forms over other two variants.

6. Conclusions
The novel MPCS method enables self-supervised pre-

training for comparatively small-scale breast cancer micro-
scopic image dataset BreakHis [52] for efficient represen-
tation learning by exploiting supervision signals from data.
Results on three public datasets have confirmed the excel-
lence of the MPCS method. MPCS learns better representa-
tions by exploiting magnification priors (OP is best among
all) and distinguishing among different cells in downstream
tasks. It could be better to investigate on a continuous
scale of magnification scales considered in this paper. In
the future, we intend to investigate magnification prior to
other self-supervised learning approaches focusing on re-
dundancy reduction and Siamese networks.
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