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Abstract

Recent multi-view stereo methods have achieved promis-
ing results with the advancement of deep learning tech-
niques. Despite of the progress, due to the limited fields
of view of regular images, reconstructing large indoor en-
vironments still requires collecting many images with suf-
ficient visual overlap, which is quite labor-intensive. 360◦

images cover a much larger field of view than regular im-
ages and would facilitate the capture process. In this paper,
we present 360MVSNet, the first deep learning network for
multi-view stereo with 360◦ images. Our method combines
uncertainty estimation with a spherical sweeping module
for 360◦ images captured from multiple viewpoints in or-
der to construct multi-scale cost volumes. By regressing
volumes in a coarse-to-fine manner, high-resolution depth
maps can be obtained. Furthermore, we have constructed
EQMVS, a large-scale synthetic dataset that consists of
over 50K pairs of RGB and depth maps in equirectangu-
lar projection. Experimental results demonstrate that our
method can reconstruct large synthetic and real-world in-
door scenes with significantly better completeness than pre-
vious traditional and learning-based methods while saving
both time and effort in the data acquisition process.

1. Introduction

Multi-view stereo (MVS) is a classic computer vision
problem that aims to estimate the dense representation of a
scene given multi-view images and calibrated cameras. Af-
ter decades of research, traditional methods have achieved
good results on surfaces with rich textures and Lambertian
materials by combining hand-crafted similarity metrics with
engineered regularization [34, 15, 14]. Recently learning-
based methods [44, 19, 29, 45, 20, 41] further improved the
overall reconstruction quality with better completeness by
relaxing the restrictions of surface appearance.

While these works generate promising results in 3D re-
construction, most of them use normal field-of-view (FoV)

Figure 1: Comparison of the reconstruction results using
our method, COLMAP [34] and MVSNet [44]. (a) The vi-
sualization of camera distribution. In this scene, COLMAP
and MVSNet use 300 perspective cameras with 70◦ Field-
of-View (red points) and our method uses 25 360◦ images
(blue points). (b), (c), and (d) are the reconstruction results
of our method, COLMAP, and MVSNet, respectively. We
show the scores of completeness/overall quality underneath
each method’s result (lower is better). Our method boosts
the reconstruction completeness while saving 12× efforts.

images as input, thus requiring densely distributed captur-
ing with enough overlaps. For large indoor scenes, collect-
ing the input images become very labor-intensive. People
have to capture several hundreds of photos to cover the spa-
tial and angular information of a single room. As demon-
strated in Figure 1, even with three hundred input images,
the results reconstructed by neither a traditional method
COLMAP [34] nor a learning-based method MVSNet [44]
achieve satisfactory completeness.

At the same time, the fast improvement of consumer-
level 360◦ cameras has made 360◦ images a popular data
source for autonomous driving systems, virtual reality, and
robotics. 360◦ images can provide broader coverage of a
scene in a single shot than the normal FoV ones, thus requir-
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ing fewer shots and less effort on matching image pairs with
enough overlaps. Unfortunately, to the best of our knowl-
edge, no existing learning-based MVS methods use 360◦

images as input. Although it is possible to warp the 360◦

images to multiple perspective view images and then apply
classic MVS methods, it is suboptimal as it ignores the con-
tinuous geometry information within the 360◦ images.

In this paper, we present the first multi-view stereo deep
network for reconstructing 3D scene structure using 360◦

images. Similar to other depth-map-based MVS meth-
ods [38, 3, 15, 34, 44], our network takes one reference im-
age and several source images as input at a time and infers
the depth map for the reference image. All the estimated
depth maps are then merged together to produce the final
point cloud. The core of our method is a spherical sweep-
ing module for constructing a cost volume with 360◦ images
captured from multiple viewpoints. The depth map for the
reference image is then estimated by regressing the cost vol-
ume. To better preserve scene details, we predict the depth
map in a coarse-to-fine manner by combining uncertainty
estimation. Figure 1(b) shows that with only a tiny fraction
of input images, our method significantly outperforms pre-
vious methods (Figure 1(c,d)) in terms of completeness and
overall quality.

Our second contribution is to provide EQMVS, a large-
scale synthetic MVS dataset of 360◦ images. By utilizing
recent large-scale 3D scanned datasets of indoor environ-
ment [2, 5], we generate more than 50K RGB images with
paired ground truth depth maps in equirectangular projec-
tion using a path tracing engine [10]. We believe this dataset
can benefit future research on MVS using 360◦ images.

We demonstrate the effectiveness of the proposed model
with both synthetic and real-world data. The experimen-
tal results show that our method significantly outperforms
previous traditional and learning-based methods, especially
in aspect of completeness on the synthetic testing datasets.
More importantly, our method only needs a tiny fraction
of input images than previous methods, thus saving lots of
efforts on data acquisition. We also demonstrate that our
model trained on the synthetic dataset could generalize well
to real-world scenes without any finetuning.

2. Related works
Traditional multi-view stereo. Traditional multi-view
stereo methods use hand-crafted similarity metrics and en-
gineered regularizations to analyze the photo consistency
over image patches. They can be roughly categorized by
their output representation of the scene, including vox-
els, point clouds, and depth maps. Voxel-based meth-
ods [11, 26, 35] divide the space into voxels and determine
whether a voxel is on the surface or not. Point cloud based
methods [27, 14] directly reconstruct a sparse point cloud of
a scene with spatial consistency assumption, then gradually

densify the results. Approaches with depth map representa-
tion [22, 25, 3, 15, 38] estimate the depth map of each view
given a few source images and merge multiple depth maps
into the final point cloud with a specific fusion scheme.
Depth map based methods are popular due to its flexibil-
ity and scalability for processing large-scale scene data and
reconstructing fine-grained surface details [13]. Kang and
Szeliski [21] proposed a multi-view stereo method using
360◦ images as its inputs. This method, however, does not
exploit the advantages of deep learning.
Deep learning multi-view stereo. Traditional methods
usually fail to match image pairs for textureless regions
and shiny surfaces, leading to incomplete reconstructions.
Recently, deep neural networks have improved the perfor-
mance of these cases by building up learnable image fea-
tures. Ji et al. [20] presents the first learning-based method
in MVS using voxel color cube as scene representation and
learn to predict the probabilities of whether a voxel belongs
to a surface. Learnt Stereo Machine [23] uses differentiable
unprojection operation to form the cost volume and regular-
ize by 3D CNN to generate the result voxel grids.

MVSNet [44] adopts depth map representation and pro-
pose an end-to-end deep network for dealing with large-
scale scene reconstruction. They first extract learnable fea-
tures and apply a plane sweeping process to form a sin-
gle cost volume. After that, per-view depth map is esti-
mated by applying 3D CNNs to regularize the cost vol-
ume. Finally, all depth maps are fused togehter to infer the
3D geometry of the scene. Later methods [16, 43, 7, 6]
employ coarse-to-fine architecture to solve the problem of
large memory consumption in cost volume regularization
and produce higher-resolution depth maps. Unlike these
methods that take normal FoV images as input, we intro-
duce 360◦ images into MVS, significantly boosting the re-
construction quality while requiring fewer input images.
Omnidirectional depth estimation and stereo matching.
Several works have been proposed for solving the stereo
problem with fisheye or 360◦ images. Previous works fo-
cus on stereo matching algorithm for fisheye image [28, 17]
and video [18] by supporting spherical projection. More
recently, deep learning based methods are proposed to es-
timate depth for a single 360◦ image [40, 42, 47, 39, 41].
Even though the estimated depth from a 360◦ image pair has
been greatly improved, these works often use fixed camera
setting [40, 41] or limited number of input images [47, 39].
Compared to these methods, we propose a spherical sweep-
ing algorithm for 360◦ images captured from several differ-
ent viewpoints in order to reconstruct the scene geometry,
and our method has no assumption on camera setting.

Several spherical convolution methods have been pro-
posed to tackle the problem of distortion in omnidirectional
images [36, 37, 8, 12], while they focus on object detection
instead of depth estimation.
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Figure 2: The network architecture of our proposed 360MVSNet. Taking 360◦ equirectangular images as input, our
360MVSNet constructs the multi-scale cost volumes by warping the features of the source views onto the virutal sphere
of the reference view using the 360 spherical sweeping module. It then uses 3D CNNs to regularize the cost volumes and
regresses to the estimated depth maps. In the last two stages, we use the uncertainty estimated from the previous probability
volume to create spatially-varying depth hypotheses.

3. Method
Our goal is to reconstruct a 3D scene structure from a

set of 360◦ images. Simlar to previous approaches [44], our
method runs over the images and predicts their depth maps
one at a time. Each time, our method picks up a reference
image and estimates its depth map using N nearby source
images. After all depth maps are estimated, they are merged
together to produce the final scene point cloud.

Figure 2 depicts our network architecture for predicting
the depth map for a reference image with a set of source im-
ages. To generate a high-resolution depth map, our model
works in a coarse-to-fine fashion. It consists of three stages
at different scales and starts from the coarsest stage. In
each stage, our method first extracts features for all input
360◦ images (Section 3.1). It then warps the source feature
maps onto multiple virtual spheres centered at the reference
view using the proposed 360◦ spherical sweeping algorithm
(Section 3.2) and constructs a cost volume (Section 3.3).
Finally, the cost volume is regressed into a predicted depth
map (Section 3.4).

3.1. Feature Extraction

Our first step is to extract the feature maps {Fi}Ni=0 of the
N+1 input images {Ii}Ni=0, where I0 is the reference image
and the rest {Ii|i = 1, · · · , N} are source images. To cap-
ture information at different resolutions, we employ a U-Net
structure [33] with skip connections to form a multi-scale
feature extractor. To be specific, the encoder comprises a
set of convolutional layers, each of which is followed by a
batch normalization and a ReLU activation layer. Convolu-
tion with stride 2 is used to progressively downsample the
spatial dimension of the feature maps. The decoder layers

upsample the features and concatenate with features from
skip connection. The transposed convolution is then applied
to gradually recover the image information.

For the i-th source image Ii, the feature extractor extracts
its feature maps Fi = (F 1

i , F
2
i , F

3
i ) at three different scales.

The resolution of the three feature maps are W
4 × H

4 , W
2 ×

W
2 , and W × H , where (W,H) is the width and height of

the input 360◦ image.

3.2. 360 Spherical Sweeping

We propose a novel 360 spherical sweeping module that
considers the geometry information from 360◦ images. Our
module is inspired by the plane sweeping [9, 44, 19] and
fish-eye spherical sweeping algorithms [18, 17, 42, 41]. It
warps feature maps of equirectangular images onto virtual
spheres of the reference view with different radii to form the
cost volumes. The module is fully differentiable. Thus we
can seamlessly integrate it into our training process.

The major differences between our method and previous
spherical sweeping algorithms are twofold. First, our net-
work uses 360◦ images as input. Second, previous methods
aim to estimate the omnidirectional depth map from a single
viewpoint, while we adhere to the convention of most MVS
methods and reconstruct the scene geometry with images
captured from several different viewpoints. As a conse-
quence, when estimating the depth map of a reference view,
our 360◦ spherical sweeping algorithm needs to derive the
relationship between two viewpoints and then build the cost
volume based on the two 360◦ images.
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3.2.1 Preliminary: Spherical coordinates

Mapping between spherical and camera coordinates.
Figure 3 (a) defines the spherical camera model used in this
paper. In the 3D camera coordinate system of a 360◦ cam-
era, a point P (X,Y, Z) can be represented by the normal-
ized spherical coordinate (R,Θ,Φ), where R, Θ and Φ are
the distance to the origin, elevation angle, and azimuthal an-
gle, respectively. We can transform the point from the 3D
camera coordinate system to the normalized spherical coor-
dinate by calculating:

R =
√
X2 + Y 2 + Z2 (1)

Φ =


π − tan−1(X/Z), if X > 0 & Z < 0

−π − tan−1(X/Z), if X < 0 & Z < 0

tan−1(X/Z), otherwise
(2)

Θ = sin−1(Y/R) (3)

Specifically, Θ ∈ (−π
2 ,+

π
2 ) and Φ ∈ (−π,+π). We

can also map the normalized spherical coordinate to the 3D
camera coordinate by:

P = (R sinΦ cosΘ, R sinΘ, R cosΦ cosΘ)
⊺
. (4)

Mapping between image and spherical coordinates. We
use an equirectangular image with a latitude-longitude pro-
jection to store the scene information captured by a 360◦

camera. The mapping from a pixel (x, y) in the equirect-
angular image with resolution W ×H to its corresponding
unit vector in spherical coordinate can be written as:

Φ =
(x+ 0.5)

W
× 2π − π (5)

Θ =
(y + 0.5)

H
× π − π

2
(6)

Mapping between 3D and image coordinates. The pro-
jection f(P ) of a 3D point P (X,Y, Z) in the camera
cooridinate to a 2D pixel p(x, y) in equirectangular image
coordinate can be obtained by introducing the elevation and
azimuthal angles:[

p
1

]
= f(P ) =

Φ ·W/2π − 0.5
Θ ·H/π − 0.5

1

 , (7)

where the elevation and azimuthal angles can be calculated
by Eq. 2 and Eq. 3.

Given the depth value d of a 2D pixel p(x, y), we can
also back-project p from image coordinate to its corre-
sponding 3D coordinate P (X,Y, Z) with the inverse func-
tion of f(P ):

P = f−1(

[
p
1

]
, d) = (d sinΦ cosΘ, d sinΘ, d cosΦ cosΘ, 1)⊺,

(8)

where Φ and Θ can be calculated with the image resolution
by Eq. 5 and Eq. 6. Note that the depth value we estimate
in spherical coordinates is the distance between the point
and the origin of the sphere (i.e. R) rather than that in the
conventional pinhole camera.

3.2.2 Feature map warping

To construct the cost volume, our 360 spherical sweeping
warps the feature map of a source image onto a series of
virtual spheres cenered at the reference view with different
radii based on the depth hypotheses (Figure 3 (b)). We use
the extrinsic parameters to connect the local camera coor-
dinates of the reference view and source views. The pro-
jection Mi for projecting a point from the reference view
to the ith source view can be obtained by concatenating the
matrix P−1

0 for transforming a point from the local camera
coordinate of the reference view to world coordinate and the
matrix Pi for transforming a point from world coordinate to
the local camera coordinate of the source ith view:

Mi = PiP
−1
0 , (9)

where Pi is the full rank 4 × 4 camera matrix of the ith

view constructed by Pi =

[
Ri ti
0T 1

]
, where Ri and Ti are

the rotation matrix and translation vector of the ith view,
respectively.

We now can warp the ith source features onto the kth

virtual sphere with radius rk centered at the reference view
using the following inverse warping process: for each pixel
p(x, y) in the warped feature map , we first transform it to
spherical coordinate and project to the 3D camera space of
the reference view with the depth hypothesis rk. The 3D
point is then transformed to the camera coordinate of the
ith source camera using Eq. 9. Finally, we project the 3D
point onto the feature map of the ith source view and get the
source location pik(x

i
k, y

i
k), then resample the feature map

with bilinear interpolation. The calculation of the source
location for the warped feature map can be written as:[

pik
1

]
= f(Mi(f

−1(

[
p
1

]
, rk))). (10)

It is worth noting that our work and OmniMVS [41] deal
with different scenarios. The goal of OmniMVS is to es-
timate an omnidirectional depth map from “a single view-
point.” They use the information gathered from a rig of four
fisheye cameras to predict a 360◦ depth map. In contrast,
adhering to the convention of most MVS methods, we aim
to reconstruct the geometry of an entire scene by using mul-
tiple 360◦ images captured from “multiple different view-
points.” Therefore, when estimating the depth map of a ref-
erence view, our 360◦ spherical sweeping algorithm needs
to derive the relationship between two viewpoints and then
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Figure 3: (a) Illustration of the spherical coordinate system in our work. (b) Illustration of the 360◦ spherical sweeping
algorithm. We warp the feature map of a source view to a set of concentric virtual spheres centered at the reference view for
cost volume construction.

construct the cost volume based on these two 360◦ images.
This is not the case for the methods proposed by OnmiMVS
and SweepNet [40].

3.3. Multi-scale Cost Volume

After warping the feature maps of the source views to
the virtual spheres of the reference view using 360 spheri-
cal sweeping, we aggregate the warped feature maps to con-
struct a cost volume with a variance-based cost metric. In-
spired by the recent multi-scale MVS work [7, 16, 43], the
cost volume is built in a coarse-to-fine fashion for storing
adaptive information of depth hypotheses.

As shown in Fig. 2, the three stages construct the cost
volumes using a predefined number of depth hypotheses:
D1, D2, and D3. In the first stage (the coarsest one), we
uniformly sample D1 depth hypotheses within a predefined
depth interval [dmin, dmax] because at this time we do not
have any information about the scene depth.

In the second and the third stages, for each pixel in the
warped feature map, we set its range of the sphere radius for
depth hypothesis according to the uncertainty of the depth
probability volume (discussed in Section 3.4) regularized
from the previous stage. Assuming the depth values have a
Gaussian distribution, we can estimate a per-pixel degree of
uncertainty of the depth probability volume by calculating
the standard deviation σ at pixel x in the stage s:

σs(x) =

√√√√ Ds∑
j=1

P j
s · (djs(x)− d̂s(x))2, (11)

where P j
s , djs(x), and d̂s(x) denote the probability volume

of the jth depth hypothesis sphere, the predicted depth of

the jth hypothesis sphere, and the jth depth hypothesis, re-
spectively. Ds denotes the number of hypothesis spheres.

By utilizing the distribution of the depth values estimated
in the previous stage, we progressively narrow down the hy-
pothesis range of the incoming stage based on the idea of
confidence interval. We set the hypothesis range Rs(x) in
stage s for pixel x in the depth map:

Rs(x) = [ds−1(x)− λσs−1(x), ds−1(x) + λσs−1(x)].

The value of λ is set to 1.5 for all results in this paper. We
observed that the results are not sensitive to the value of
λ because the model would learn to adjust the uncertainty
intervals through training. With the spatially varying uncer-
tainty estimation, we can efficiently narrow down the depth
interval and reduce the number of depth samples .

3.4. Depth Regression and Loss Function

We apply 3D CNNs to regularize the cost volumes and
generate the probability volumes [24, 44]. Specifically,
the regularization network is a 3D U-Net that consists of
a series of downsampling and upsampling layers that take
features in different resolutions into account. After the
convolutional layer, a softmax operation is applied on the
probability volume along the depth direction. Finally, the
our network outputs the estimated depth value as the ex-
pected value computed from all depth hypotheses: D =∑dmax

d=dmin
d× P (d), where dmin and dmax denote the min-

imum and maximum depth samples, respectively.
Following previous works [24, 44], we consider depth

estimation as a multi-class regression problem, and our loss
function use the l1 norm to measure the difference between
the ground truth depth and the estimated depth. Because
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the cost volumes in three stages are regularized separately,
the total loss is the weighted sum of the l1 loss in the three
stages:

L(D,DGT ) =

3∑
s=1

λs · (
∑

p∈Pvalid

∥Ds
GT (p)−Ds(p)∥1),

(12)

where D = {Ds}Ns=1, DGT = {Ds
GT }Ns=1, Pvalid is the

set of valid pixels in the ground truth depth, and λs is the
weight for sth stage.

4. Synthetic Dataset: EQMVS
To train our 360MVSNet with supervised learning, a

dataset for multi-view stereo with equirectangular projec-
tion is indispensable. However, the existing multi-view
stereo datasets such as DTU [1] contains only object-centric
scenes with perspective images. To address this problem,
we generate a large-scale synthetic dataset EQMVS of in-
door scene images in the equirectangular format.

4.1. Data Acquisition

Similar to previous work [47], we leverage the tex-
tured meshes from two large-scale real-world indoor scene
datasets: Stanford2D3D [2], and Matterport3D [5]. We use
a physically-based path tracer renderer (the Cycles renderer
from Blender software [10]) to render the 360◦ images. We
split each indoor scene in the original 3D dataset into mul-
tiple smaller scenes according to the provided semantic la-
bels. Thus, each scene in our dataset is a single room or
region. For each scene, we render a set of RGB images
and ground truth depth maps by placing panoramic cam-
eras with equirectangular projection at multiple locations
inside the scene. To address holes in the original 3D scene
mesh, we also generate a corresponding mask for labeling
the invalid pixels and exclude them in the training and test-
ing process. To generate more dense viewpoints in a single
scene, we interpolate the camera position from the original
data of the 3D dataset to create a sufficient number of data.

Our EQMVS dataset comprises 1, 014 scenes, repre-
sented by 53, 114 triplets of RGB images, depth maps, and
masks in total. We also include the camera positions for ren-
dering the images. Compared to the previous perspective
multi-view stereo datasets, we introduce a more challeng-
ing scene data with a large variety of indoor environements,
rather than a single object captured by controlled camera
trajectory. Our dataset can be used as a new benchmark for
indoor scene reconstruction using 360◦ images.

5. Experiments and Results
5.1. Implementation Details

Training. Our network was implemented using the Py-
Torch [32] framework and trained on a single NVIDIA

Table 1: Equal-effort qualitative results of accuracy, com-
pleteness and overall quality on the EQMVS testing set. We
compared to traditional methods (COLMAP [34] and open-
MVS [4]) and a learning method (MVSNet [44] trained on
(1) BlendedMVS [46], and (2) DTU [1]).

Methods Acc.↓ Comp.↓ Overall↓
COLMAP[34] 0.1040 0.1173 0.1107
openMVS[4] 0.0339 0.3799 0.2069
MVSNet [44] (1) 0.3205 0.0926 0.2065
MVSNet [44] (2) 0.4644 0.1376 0.3010
Ours 0.0810 0.0579 0.0694

Quadro RTX8000 GPU. Following MVSNet [44], the num-
ber of input images is set to N = 3 with 1 reference image
and 2 source images. We adopt a three-scale cost volume,
and the number of depth hypotheses for each stage is 160,
32, and 8. We split the scenes in EQMVS into the training
set containing 825 scenes and the testing set containing the
remaining 189 scenes.
Post-processing. Similar to previous depth-map-based
MVS methods [34, 44, 4], our method requires a post-
processing step for converting the predicted depth maps to
a point cloud. Because there are no existing depth fusion
methods for 360◦ images, we apply simple filtering rules
to remove outliers when merging the depth maps. We con-
sider the photometric and geometric consistencies between
the predicted depth maps: For photometric consistency, we
filter out the pixel with a probability lower than 0.3. For
geometric consistency, we mututally project the pixels be-
tween the views to ensure the depth values are consistent.
Please refer to supplementary materials for more implemen-
tation details.

5.2. Performance

Equal-effort quantitative evaluation. We follow the stan-
dard evaluation metrics proposed by the DTU dataset [1]
to compute the accuracy and completeness of the recon-
structed point clouds. The accuracy metric measures the
distance from the estimated point clouds to the ground truth
point clouds. And the completeness metric measures the
distance from the ground truth point clouds to the estimated
point clouds. We also evaluate the overall score introduced
by MVSNet [44] which takes the average of accuracy and
completeness.

We compare our methods against both traditional
geometry-based methods [34, 4] and a learning-based
methods, MVSNet [44], over the EQMVS test set. We
do not compare with the later methods built on MVS-
Net [16, 43, 7, 6] because they focus on reducing the mem-
ory consumption. We do not compare our method with Om-
niMVS [41] and SweepNet [42] because the objectives are
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Figure 4: Equal-effort qualitative comparisons on example test scenes of EQMVS. We use 25 360◦ images to reconstruct
scene (a)-(d) and 49 images for scene (e). For COLMAP, openMVS, and MVSNet, we convert each 360◦ image into six
normal FoV images using cubemap projection. We report the accuracy/completeness/overall scores under each image.
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Figure 5: Our method (the red diamond) outperforms traditional methods, (COLMAP [34] and openMVS [4]), and deep
learning-based method [44] in completeness and overall score using smaller number of input images (25 v.s. 100-500). To
achieve similar completeness score, previous method (openMVS [4]) requires 20× input images.

different. In this experiment, we use input images captured
at the same locations for all methods, meaning it takes sim-
ilar efforts to collect the input data. Because our method
is the first learning-based method using 360◦ images as in-

put, in order to conduct a fair comparison, the input test im-
ages are warped from equirectangular projection to cube-
map projection for previous methods to avoid distortion
since previous works are all designed for normal FoV im-
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Figure 6: Qualitative comparison of a real-world scene. We compared results generated by our method and other methods
on a real-world scene. Our method uses only 11 equirectangular 360◦ images to reconstruct the scene, while other methods
use 66 images. Compared to other methods, our method reconstructs the scene more completely.

ages. We chose the cubemap projection because it is the
most commonly used representation in computer graphics
for representing spherical data with perspective images. As
shown in Table 1, our method outperforms all the other
methods in terms of completeness and overall score.

We present the qualitative results in Figure 4. Due to
space limitations, we can only present the reconstruction
results from one perspective here. The supplementary ma-
terials provide the full 3D point clouds. Compared to other
methods, our method is less sensitive to the areas of visual
overlapping regions due to its broad FoV and continuous
information within a single 360◦ image. In contrast, other
methods struggle to reconstruct the entire environment and
often only recover a small region of the scene.
Evaluation on the number of cameras. The experiment
in Figure 5 reveals that previous methods reguire about 500
images to achieve similar completeness and overall quality
scores as our method, which only uses 25 images. This
suggests that the user has to spend about 20× efforts on
collecting data for previous methods. Our method is less
impressive in terms of accuracy score. The reason is that
we only apply simple filtering rules when merging the depth
maps due to the lack of depth fusion algorithms for 360◦

images. As a result, we cannot weed out the outliers in
a robust way as other methods do. We leave it as a future
work. Nevertheless, it is worth noting that previous methods
fail to reconstruct the scene with only 25 images.
Qualitative results for real-world 360◦ images. To
demonstrate the generalization ability of our proposed
model, we test our model with real-world images in
equirectangular format from [30]. The camera positions
of the images are recovered by OpenMVG [31]. Figure 6
shows the comparisons with other methods on a scene. Our
method can reconstruct most of the scene by using only 11

360◦ images, while other methods use 66 images but can
only reconstruct small fractions of the scene. Although our
model is trained on the synthetic images, without any fine
tuning to the real-world data, it shows high robustness on
the real-world scenes.

6. Conclusions and Future Works

In this paper, we propose 360MVSNet, a deep learning-
based multi-view stereo method that can reconstruct the 3D
structure of an indoor scene from 360◦ images. We pro-
pose a novel 360 spherical sweeping module and use it to
construct multi-scale cost volumes. High-resolution depth
maps can be obtained by regressing the cost volumes. We
then merge the depth maps of all views together to recon-
struct the final scene point cloud. We also present a large-
scale synthetic dataset, EQMVS for training 360MVSNet.
We demonstrated that our methods achieve the best recon-
struction results among all the compared methods.

There are a number of limitations that deserve further
investigation. First, our method requires estimating cam-
era parameters for the input 360◦ images, while the struc-
ture from motion (SfM) methods for 360◦ images are not
as robust as the ones for normal FoV images. Similarly,
there are no existing depth map fusion algorithms for 360◦

images. We would like to explore SfM and depth fusion
algorithms for 360◦ images. Another problem is the lack
of a real-world indoor environment database with 360◦ im-
ages for multi-view stereo. In the future, we would love to
capture more real-world scenes with multiple 360◦ images.
Acknowledgments. This work was supported in part by the
Ministry of Science and Technology (MOST) under grants
110-2634-F-002-051. It was also funded in part by JSPS
KAKENHI Grant Number JP21F20075.

3064



References
[1] Henrik Aanæs, Rasmus Ramsbøl Jensen, George

Vogiatzis, Engin Tola, and Anders Bjorholm Dahl.
Large-scale data for multiple-view stereopsis. Interna-
tional Journal of Computer Vision, pages 1–16, 2016.

[2] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio
Savarese. Joint 2d-3d-semantic data for indoor scene
understanding. arXiv preprint arXiv:1702.01105,
2017.

[3] Neill DF Campbell, George Vogiatzis, Carlos
Hernández, and Roberto Cipolla. Using multiple hy-
potheses to improve depth-maps for multi-view stereo.
In Proc. European Conference on Computer Vision
(ECCV), pages 766–779. Springer, 2008.

[4] Dan Cernea. OpenMVS: Multi-view stereo recon-
struction library. 2020.

[5] Angel Chang, Angela Dai, Thomas Funkhouser, Ma-
ciej Halber, Matthias Niessner, Manolis Savva, Shuran
Song, Andy Zeng, and Yinda Zhang. Matterport3D:
Learning from rgb-d data in indoor environments. In-
ternational Conference on 3D Vision (3DV), 2017.

[6] Rui Chen, Songfang Han, Jing Xu, and Hao Su. Point-
based multi-view stereo network. In Proc. IEEE/CVF
International Conference on Computer Vision (ICCV),
pages 1538–1547, 2019.

[7] Shuo Cheng, Zexiang Xu, Shilin Zhu, Zhuwen Li,
Li Erran Li, Ravi Ramamoorthi, and Hao Su. Deep
stereo using adaptive thin volume representation with
uncertainty awareness. In Proc. IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 2524–2534, 2020.

[8] Taco S Cohen, Mario Geiger, Jonas Köhler, and
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