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Figure 1: Results are shown for embedding five transformations in four different autoencoder-based photorealistic style transfer models:
WCT2 [31], PhotoWCT (PhWCT) [16], PhotoWCT2 (PhWCT2) [6], and a distilled model (PCA-d) [7]. Our new transformation leads
to a better balance between content preservation and style transfer than existing transformations. Compared to AdaIN [10], ZCA [15],
OST [20], and MAST [11], our LS-FT can preserve better content with PhotoWCT and PCA-d, boost the stylization strength of WCT2,
and reach a better content-style balance with PhotoWCT2.

Abstract

Photorealistic style transfer is the task of synthesizing
a realistic-looking image when adapting the content from
one image to appear in the style of another image. Mod-
ern models commonly embed a transformation that fuses
features describing the content image and style image and
then decodes the resulting feature into a stylized image. We
introduce a general-purpose transformation that enables
controlling the balance between how much content is pre-
served and the strength of the infused style. We offer the
first experiments that demonstrate the performance of ex-
isting transformations across different style transfer mod-
els, and demonstrate how our transformation performs bet-
ter in its ability to simultaneously run fast, produce con-
sistently reasonable results, and control the balance be-
tween content and style in different models. To support re-
producing our method and models, we share the code at

https://github.com/chiutaiyin/LS-FT.

1. Introduction
Photorealistic style transfer is an image editing task that

renders a content image with the style of another image,
which we call the style image, such that the result looks like
a realistic photograph to people. In this paper, we tackle a
key challenge of how to preserve the content while ensuring
strong adoption of the style.

The state-of-the-art approaches for photorealistic style
transfer consist of an autoencoder with feature transforma-
tions [16, 31, 1, 6, 7]. Such approaches are advantageous
in that they can transfer style from any arbitrary style im-
age (i.e., are universal), are fast since they predict in a sin-
gle forward pass, and do not involve training on any style
images (i.e., are style-learning-free). The basic model con-
tains an encoder to extract the features of the content and
style images, a feature transformation to adapt the content
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feature with respect to the style feature, and a decoder to
convert the adapted feature to the stylized image (exem-
plified in Fig. 2(a)). More advanced models embed multi-
ple transformations to achieve better aesthetic results (e.g.,
PhotoWCT2 [6] exemplified in Fig. 2(b)).

A limitation of advanced models is the lack of a
general-purpose, stable, one-size-fits-all transformation that
yields content-style balance across all models, as exem-
plified qualitatively in Fig. 1. The most commonly used
transformations in photorealistic style transfer models are
AdaIN [10] and ZCA [15]. Yet, both AdaIN and ZCA
can fail to faithfully reflect the style of style images when
embedded in WCT2 and do not preserve content well
when embedded in PhotoWCT (Fig. 1). When embedded
in PhotoWCT2, AdaIN can suffer insufficient stylization
strength while ZCA can introduce artifacts that ruin the pho-
torealism. When embedded in PCA-d, ZCA and AdaIN can
lead to severe artifacts, as will be shown in Sec. 4.2.

Recently, an iterative feature transformation [5] (IterFT)
was proposed which has a control knob to tune between
content preservation and style transferal and so can adap-
tively address the limitation of content-style imbalance
across different models. However, as will be explained in
Sec. 3.1 and Sec. 3.2, this transformation in practice is un-
stable as it often produces poor results. Additionally, it is
relatively slow.

In this work, we provide several contributions. We ex-
pose the problem that existing transformations do not gen-
eralize well when used with different photorealistic style
transfer models through extensive experiments. We address
the limitations of existing transformations by introducing
a new transformation, which we call LS-FT. Our experi-
ments show that it consistently achieves a better balance of
content preservation and stylization strength by permitting
tuning between these two competing aims. Additionally,
our experiments show that it runs 8x faster and consistently
produces more reasonable results than the only other trans-
formation that can tune between content preservation and
stylization strength: IterFT. Ablation studies reveal the key
mechanisms behind our transformation’s improved perfor-
mance: introduction of two steps to IterFT (centralization
and decentralization) and line-search based optimization.

2. Related Works

Photorealistic style transfer models. DPST [21] is the
first deep neural network-based model for photorealistic
style transfer. However, DPST is slow since it needs hun-
dreds of times of feed-forward and back-propagation to ren-
der an image. To solve this issue, most modern photore-
alistic style transfer models use autoencoders to render an
image in a single forward pass.1

1An exception is [30] which learns affine mappings to alter pixel values.

Figure 2: Autoencoder-based algorithms for photorealistic
style transfer. (a) The basic model with a feature transfor-
mation (red box) at the bottleneck takes as input a content
image Ic and a style image Is and produces a stylized im-
age Isty . (b) PhotoWCT2 [6] with multiple transformations
embedded in the decoder sequentially adapts the relu4 1 to
the relu1 1 content features.

Some of these autoencoder models [14, 13, 3, 9] are
trained on style images. Yet, these have not emerged
as state-of-the-art for a variety of reasons. For instance,
some only work for low resolution input images, such as
DTP [13] which supports only 256×256 resolution. Oth-
ers often produce unrealistic results, as exemplified for
LST [14] and DSTN [9] in the Supplementary Materials.

The other models are style-learning-free autoencoders.
To achieve stylization, they embed transformations, which
are the focus of our work. These models come with nu-
merous advantages including the flexibility to embed dif-
ferent transformations to achieve different purposes, such as
fast speed, strong stylization strength, and better photoreal-
ism. Style-learning-free models include PhotoWCT [16],
WCT2 [31], PhotoNAS [1], PhotoWCT2 [6], and PCA-
d [7]. However, a lingering challenge lies in knowing what
transformations to embed in style transfer architectures. For
example, many popular models use ZCA as the feature
transformation, yet prior work [6] has shown it leads to
weaker style effects for WCT2 and PhotoNAS.

We introduce the first study where we pair popular
transformations with multiple style transfer architectures.2

We demonstrate limitations of existing transformations and
show that our new transformation, LS-FT, generalizes better
due to its ability to balance content preservation and styliza-
tion strength while also running fast.

Feature transforms for photorealistic style transfer.
Recently, numerous transformations have been proposed.
AdaIN [10] is the simplest, which adapts the content fea-
ture to match the standard deviation vector and the mean
vector of the style feature. Extending AdaIN, ZCA [15, 4]
considers the cross correlation between channels and trans-
forms the content feature to match the mean and covariance
of the style feature. Experimentally [15, 16, 1], ZCA re-
sults in stronger stylization strength than AdaIN. OST [20]
further modifies the covariance matching operation of ZCA
to better preserve the content while maintaining stronger

2PhotoNAS is excluded from the main paper since its model size is too
large to even handle the small HD image resolution on the GPU.
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AdaIN ZCA OST MAST IterFT LS-FT

Fast ✓ ✓ ✓ ✗ ✗ ✓

Consistent Results ✓ ✓ ✓ ✓ ✗ ✓

Content-Style Control ✗ ✗ ✗ ✗ ✓ ✓

Table 1: Comparison of our LS-FT to existing transforma-
tions. Our LS-FT is the only one that simultaneously real-
izes three beneficial properties.

stylization strength. However, the improvement in content
preservation is limited. A limitation across all these trans-
formations is they lack a way to control the balance between
content preservation and style transferal.

To address the limitations of prior transformations, iter-
ative feature transformation (IterFT) [5] was proposed. Its
main advantage over its prior work is that it supports tuning
between content preservation and style transferal to meet
the needs of each model. Yet, our experiments show this
transformation often produces unreasonable results. Addi-
tionally, it is relatively slow. To overcome these shortcom-
ings of IterFT while taking advantage of its ability to be
tuned to the needs of different models, we extend it and pro-
pose a new transformation dubbed LS-FT. Our experiments
demonstrate that LS-FT not only realizes model adaptive-
ness in practice, but consistently produces reasonable re-
sults while performing 8x faster than IterFT.

Of note, a recently proposed transformation MAST [11]
takes a different approach from the aforementioned trans-
formations and our LS-FT. Specifically, while most trans-
formations adapt the content feature as a whole, MAST
adapts each content feature pixel with respect to the style
feature pixels that are semantically close. Yet, as shown in
Fig. 1, MAST can only weakly stylize content images.

We summarize the properties of each transformation in
Tab. 1, demonstrated by our experiments. Our transforma-
tion improves upon prior work by simultaneously being fast
(e.g., faster or comparable speed to ZCA in Tab. 2), render-
ing consistently good results (Fig. 3 and Fig. 9 in the Sup-
plementary Materials), and achieving content-style control
(Fig. 5 and Figs. 6-7 in the Supplementary Materials).

Image translation. Image translation [2, 18, 24, 23, 12,
19, 26, 22] models are trained to render images from one
domain in the style of another domain (ex: day → night)
and so are able to adapt image style. Unlike photorealis-
tic style transfer, image translation is not universal meaning
that we need to retrain the models when the domains of in-
terest change. Image translation goes beyond style transfer
by also altering content (ex: straight hair→ curly hair).

3. Method
We now introduce our feature transformation that we de-

signed for general-purpose use across multiple style trans-

fer architectures. We begin by describing in Section 3.1
the iterative feature transformation (IterFT) we redesign.
Then we introduce the two key ingredients that enable
the strengths of our transformation compared to IterFT: a
modification that leads to consistently high quality results
(Sec. 3.2) and a line search-based feature transformation
(LS-FT) which enables faster speeds (Sec. 3.3).

3.1. Background - iterative feature transformation

Recall that IterFT is a feature transformation for style
transfer that has been shown to support controlling the bal-
ance between content preservation and style transferal. It
does so by making the final feature’s second-order statis-
tic resemble that of the style feature while maintaining its
proximity to the content feature.

Formally, following Fig. 2(a), we let Ft be the feature
transformed from the content feature Fc with reference to
the style feature Fs. For simplicity, a feature F, which is
a tensor of shape C ×H ×W (C, H , W : channel length,
height, width of F) when produced from a neural network
layer, is reshaped to a matrix of shape C × HW . Iterative
feature transformation (IterFT) [5] makes the second-order
statistic, Gram matrix 1

HcWc
FtF

T
t , of Ft close to that of Fs

while maintaining the proximity of Ft to the content feature
Fc. Letting nc =HcWc and ns =HsWs, IterFT solves the
optimization problem in Eq. 1 for Ft using gradient descent
with the analytical gradient dl

dFt
in Eq. 2.

min
Ft

l(Ft) = min
Ft

||Ft−Fc||22+λ|| 1
nc

FtF
T
t −

1

ns
FsF

T
s ||22, (1)

dl

dFt
= 2(Ft − Fc) +

4λ

nc
(
1

nc
FtF

T
t −

1

ns
FsF

T
s )Ft, (2)

where λ > 0 is the coefficient controlling the balance be-
tween content preservation and style transferal. With Ft

initialized to Fc, the final feature Ft is produced from nupd

iterations of the update rule: Ft ← Ft − η dl
dFt

, where η is
the learning rate.

Advanced photorealistic style transfer models often em-
bed multiple feature transformations. This is exemplified in
Fig. 2(b) for PhotoWCT2 [6], which has four IterFTs. The
first IterFT adapts the relu4 1 content feature with respect to
the relu4 1 style feature for nupd iterations, followed by the
second IterFT which adapts the relu3 1 content feature with
respect to the relu3 1 style feature for nupd iterations until
the last IterFT finishes adapting the relu1 1 content feature
with respect to the relu1 1 style feature.

3.2. Modified iterative feature transformation

Our first modification is motivated by the observation
that IterFT fails to stably produce reasonable results. This
is exemplified in Fig. 3.

We hypothesize that IterFT’s failures stem from the fact
that it relies on only one step (i.e., second-order statistic
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matching) rather than the three steps (i.e., centralization,
second-order statistic matching, and decentralization) con-
sistently employed by prior transformations [10, 15, 20] that
stably produce reasonable results. Accordingly, we intro-
duce centralization and decentralization before and after the
second-order statistic matching. Our experimental results
will validate the importance of these two steps by showing
their addition to IterFT enables the resulting transformation
to stably generate reasonable results (Sec. 4.2) and their re-
moval from existing transformations (i.e., AdaIN [10] and
ZCA [15]) lead to quality degradation in synthesized im-
ages (shown in the Supplementary Materials). We suspect
that the theory motivating the benefit of this modification
is closely related to mean vector matching. While prior
works [8, 17] focus on explaining the reason of matching
second-order statistics between style and stylized features
for style transfer, we conjecture that matching first-order
mean vectors is also important, and this is supported by cen-
tralization and decentralization. We explain how it is sup-
ported in the Supplementary Materials using the algorithm
of the prior transformations [10, 15, 20].

Formally, let F̄ = F − µ(F) denote the centralized fea-
ture of F, where µ(F) is the mean vector across the HW
columns of F and the matrix-vector subtraction in F - µ(F)
is done by array broadcasting. The algorithm applied by
prior transformations [10, 15, 20] is as follows: (1) Central-
ization: centralize Fc and Fs to be F̄c and F̄s. (2) Second-
order statistic matching: alter F̄c to be F̄t such that for
AdaIN [10] the variances of F̄s and F̄t are equal, and for
ZCA [15] and OST [20] the covariances of F̄s and F̄t are
equal. (3) Decentralization: add µ(Fs) to F̄t to derive the
transformed feature Ft.

We modify IterFT to apply centralization before and de-
centralization after the iterative feature update. Mathemati-
cally, with the centralized content and style features F̄c and
F̄s, the modified optimization problem is written as Eq. 3,
where the constraint µ(F̄t) = 0⃗ requires F̄t to be central-
ized. With F̄t initialized as F̄c, the centralized feature F̄t

can be solved using gradient descent3 in Eq. 4 with the an-
alytical gradient dl

dF̄t
in Eq. 5.

min
F̄t

l(F̄t) =min
F̄t

||F̄t − F̄c||22 + λ|| 1
nc

F̄tF̄
T
t − 1

ns
F̄sF̄

T
s ||22

subject to µ(F̄t) = 0,
(3)

F̄t ← F̄t − η
dl

dF̄t

, F̄t ← F̄t − µ(F̄t), (4)

dl

dF̄t

= 2(F̄t − F̄c) +
4λ

nc
(
1

nc
F̄tF̄

T
t −

1

ns
F̄sF̄

T
s )F̄t. (5)

3While Quasi-Newton methods seem plausible, they are impractical
here since they are memory-intensive due to computing Hessian matrices;
e.g., for FHD input (1920x1080), the Hessian matrix of the loss function
in Eq. 3 has (64x1920x1080)2 = 1.76e16 elements at the relu1 1 layer.

Figure 3: Qualitative results exemplify our modification to IterFT
overcomes the instability of IterFT in producing reasonable styl-
ized images. These results are produced by embedding the trans-
formations in the PhotoWCT2 model.

The final resulting feature Ft is F̄t decentralized by µ(Fs):
F̄t + µ(Fs). We exemplify the improved quality resulting
from our modification compared to IterFT in Fig. 3.

Notice that the constraint that µ(F̄t) = 0⃗ is always sat-
isfied while gradient descent minimizes the loss value. This
can be shown by first assuming the current F̄t is central-
ized. With this, we have µ(F̄t−η dl

dF̄t
) = µ(F̄t)−ηµ( dl

dF̄t
)

= −ηµ( dl
dF̄t

). This implies the updated feature is central-

ized if µ( dl
dF̄t

) = 0⃗, which can be shown as follows: µ( dl
dF̄t

)

= 2(µ(F̄t)− µ(F̄c)) + µ(SF̄t) = µ(SF̄t) = Sµ(F̄t) = 0⃗.
Therefore, with F̄t initialized as F̄c, which is centralized,
the sequels of the updated F̄t’s are all centralized.

3.3. Line search-based feature transformation

An issue that remains in our Modified IterFT is that the
algorithm requires multiple iterations to update the feature,
which is slow. In practice, the values of the learning rate η
and the number of iterations nupd are empirically set to be
0.01 and 15, respectively, in [5]. However, intuitively, the
learning rate η should be dynamically determined such that
η is larger in the beginning iterations to accelerate the con-
vergence and smaller in the later to fine-tune the solution.4

With a dynamic η, the number of iterations nupd can then
be greatly reduced. To dynamically determine the value of
η for a new iteration with the latest F̄t from the last iteration
and the derivative dl

dF̄t
calculated from Eq. 5, we solve the

following line search optimization problem:

min
η

l(F̄t − η
dl

dF̄t

) subject to η > 0, (6)

where the loss function l is defined in Eq. 3, and the con-
straint η > 0 forces F̄t to move toward the descent direction.
The meaning of Eq. 6 is that we start from the point F̄t and
search in the opposite direction of dl

dF̄t
, i.e. the descent di-

rection, to find a new point F̄t − η dl
dF̄t

which minimizes

4While a trivial solution to accelerate convergence for existing methods
could be to simply increase the learning rate, this is insufficient since we
can’t know how much to increase the rate. We discuss this in Supplemen-
tary Materials.
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the loss function. With the substitution of dl
dF̄t

in Eq. 6 with
Eq. 5 and some arithmetic with calculus (detailed derivation
is provided in Supplementary Materials), we can show that
the optimal η should be a solution to this cubic equation:

aη3 + bη2 + cη + d = 0, (7)

with the coefficients defined as follows:

a =
2λ

n2
c

tr[D2D2], b = −6λ

n2
c

tr[DFD2], d = −1

2
tr[D2], (8)

c = tr[D2]+
2λ

nc
tr[D2S]+

2λ

n2
c

(
tr[DFDF]+tr[DFD

T
F]
)
, (9)

where D2 ≡ DDT, DF ≡ DF̄T
t , D ≡ dl

dF̄t
and S ≡

1
nc
F̄tF̄

T
t − 1

ns
F̄sF̄

T
s .

Although Eq. 8 and Eq. 9 may look intimidating at the
first glance, Eq. 7 can actually be solved efficiently for the
following reasons. First, D and its sub-term S already must
be computed for the gradient descent calculation in Mod-
ified IterFT, and so do not introduce extra overhead when
line-searching η. Second, since all coefficients are rooted in
only two repeated terms D2 and DF, we need to compute
D2 and DF just once to derive all coefficients. Third, the
matrix multiplications D2 and DF and the trace operation
tr[AB] of two matrices A and B can be computed in paral-
lel with a GPU. Finally, with the coefficients computed, we
can solve the cubic function in Eq. 7 in constant time using
the cubic formula [29]5.

To comply with the constraint η > 0, we have to ensure
that there is at least one positive solution to Eq. 7. We prove
this in Supplementary Materials.

In summary, our line search-based feature transforma-
tion (LS-FT) produces the transformed feature Ft with the
content and style features Fc and Fs in four steps:

1. Centralize the content and style features to be F̄c and
F̄s and initialize F̄t to be F̄c.

2. Calculate the gradient from Eq. 5 and the learning rate
η from Eq. 7.

3. Update F̄t according to Eq. 4 and iterate from the step
2 if needed.

4. Decentralize F̄t by adding the mean µ(Fs) of the style
feature.

We will show in Sec. 4.1 that, unlike Modified IterFT, itera-
tion in step 3 is not necessary and one feature update is suf-
ficient for LS-FT. To balance the magnitude of the content
loss ||F̄t − F̄c||22 and style loss λ|| 1nc

F̄tF̄
T
t − 1

ns
F̄sF̄

T
s ||22

in Eq. 3, it is best to have the value of λ close to the ratio

5Eq. 6 is a quartic function of η. If there are three positive solutions
to Eq. 7, they correspond to a local minimum, a local maximum, and the
global minimum of Eq. 6. Therefore, we just plug the solutions to Eq. 6 to
see which one results in the lowest value and that is the one we pick.

||F̄t−F̄c||22
|| 1

nc
F̄tF̄T

t − 1
ns

F̄sF̄T
s ||22

. However, since F̄t is unknown, we

replace it with 0 and set λ to be ||F̄c||22
|| 1

ns
F̄sF̄T

s ||22
for content-

style balance.
For tuning the content style balance (i.e., determined by

the value of λ), we introduce a coefficient α such that λ =

α
||F̄c||22

|| 1
ns

F̄sF̄T
s ||22

. Varying α in turn supports boosting the styl-

ization strength or content preservation. We show results in
the main paper for fixed α’s and expanded analysis of the
effect of α in the Supplementary Materials.

4. Experiments
We now evaluate our transformation’s ability to gener-

alize in establishing a style-content balance across multiple
photorealistic style transfer architectures (Sec. 4.2) and its
improved computational efficiency (Sec. 4.3).

4.1. Convergence of line search optimization

We first describe our analysis to establish how many iter-
ations to use for our line search optimization in our LS-FT
transformation, by embedding it in four style transfer archi-
tectures: WCT2, PhotoWCT, PhotoWCT2, and PCA-d.

Implementations. The baseline is Modified IterFT,
which we accelerate by introducing line search optimiza-
tion to it. Modified IterFT follows IterFT [5] to adopt 0.01
as the learning rate and 15 as the number of iterations for
each layer. We want to know how many iterations are re-
quired for LS-FT to outperform the performance of Modi-
fied IterFT after 15 iterations.

Dataset. We use the PST dataset [30], which is the largest
dataset for photorealistic style transfer evaluation. It con-
sists of 786 pairs of a content image and a style image.

Metric. Recall that both Modified IterFT and LS-FT it-
eratively adapt the content feature with respect to the style
feature at each reluN 1 layer for 15 iterations to minimize
the loss value defined in Eq. 3. We monitor the loss value af-
ter each iteration of a transformation. Specifically, for each
transformation there is a series of 15 loss values calculated
for each reluN 1 layer. Taking all input pairs into account,
we have 786 series of 15 loss values at each reluN 1 layer.
We compute the mean and standard deviation across the 786
series and plot the mean series as a curve and the standard
deviation series as a shaded area around the curve.

Results. Mean loss curves and associated standard devia-
tions are shown in Fig. 4 for each of the four reluN 1 layers
for PhotoWCT2. Due to limited space and similar findings,
results for WCT2, PhotoWCT, and PCA-d are provided in
the Supplementary Materials.

When comparing LS-FT to Modified IterFT, we observe
LS-FT converges much faster. For example, observing the
mean curves at the relu4 1 layer, LS-FT converges in only
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Figure 4: Convergence comparison between Modified IterFT and LS-FT. Here Modified IterFT and LS-FT are tested on the PhotoWCT2

model [6] which applies feature transformations at the bottleneck (relu4 1 layer) and the relu3 1, relu2 1, relu1 1 layers in the decoder.
For a content-style input pair, a loss value is calculated according to Eq. 3 after each iteration of Modified IterFT or LS-FT at each layer,
resulting in a series of 15 loss values for 15 iterations. A curve shows the mean series across 786 series from all 786 input pairs. The
surrounding shaded area indicates the region within one standard deviation. It is observed that LS-FT converges faster than Modified
IterFT and only one iteration is sufficient for LS-FT to outperform Modified IterFT at each layer.

two iterations with the second iteration slightly improving
from the first while Modified IterFT slowly converges over
all iterations. Moreover, the loss value of LS-FT after the
first iteration is already lower than that of Modified IterFT
after 15 iterations, suggesting that one iteration is sufficient
for LS-FT at the relu4 1 layer. Note that the smaller stan-
dard deviation of LS-FT than that of Modified IterFT at each
iteration implies the faster convergence of LS-FT is univer-
sal across the dataset. We notice the same phenomenon oc-
curs at the other three layers, suggesting one feature update
is enough for LS-FT at these layers as well.

4.2. Content preservation and stylization strength

To evaluate our feature transformation’s ability to
achieve a better balance between content preservation
and stylization strength than prior transformations, we
benchmark multiple transformations embedded in four
autoencoder-based style transfer models: WCT2 [31], Pho-
toWCT [16], PhotoWCT2 [6], and PCA-d [7].

Dataset. We again test with the PST dataset [30], which
consists of 786 pairs of a content image and a style image.

Our Implementations. We again evaluate our LS-FT and
Modified IterFT (i.e., our stable IterFT [5]).

Baselines. For comparison, we evaluate ZCA [15],
OST [20], AdaIN [10], and MAST [11]. IterFT [5] is not
used for comparison since it results in many unreasonable
results, as is shown in the Supplementary Materials.

Metrics. For each model-transformation pair, we com-
pute the mean content loss and mean style loss across all
stylized images by computing for each stylized image Isty ,
its content loss from the content image Ic and style loss
from the style image Is. To define the losses, we let F̄k,N

∈ CN ×Hk,NWk,N (N = 1, 2, 3, 4) denote the centralized
reluN 1 feature of the image Ik (k ∈ {c, s, sty}). Following
NST [8], which uses the relu4 1 layer to represent content
and multiple layers (e.g. reluN 1, N = 1, 2, 3, 4) to repre-
sent style, we define the content loss as ||F̄sty,4 − F̄c,4||22,

and the style loss as
∑4

N=1 ||
1

Hc,NWc,N
F̄sty,N F̄T

sty,N −
1

Hs,NWs,N
F̄s,N F̄T

s,N ||22.
Then, we evaluate the quality of stylized images using

image quality assessment metrics: SSIM [28], FSIM [32],
and NIMA [27]. SSIM and FSIM assess the structural sim-
ilarity between a stylized image and its source content im-
age, while NIMA evaluates the stylized image as a stan-
dalone photo without referencing to the content image.

Results. Fig. 5(a) shows the overall distribution of
mean content-style losses resulting from different model-
transformation pairs. We observe that MAST results in
the weakest style effects across all models, which is rein-
forced by qualitative results shown in Fig. 6. Consequently,
for our fine-grained analysis with respect to each model
(Fig. 5(b,c,d)), we exclude MAST from the analysis.

As shown in Fig. 5(b,c,d), our Modified IterFT and LS-
FT have similar performance and consistently lead to a
better balance between content preservation and stylization
strength than prior transformations for all four style transfer
architectures. For WCT2, its low content losses in Fig. 5(a)
come from its model design while it relies on a transfor-
mation to boost its stylization strength to faithfully reflect
the style. We observe that LS-FT with α = 10 success-
fully boosts the stylization strength of WCT2 compared to
other transformations (Fig. 5(b)), with AdaIN resulting in
a 30.7% greater style loss, and ZCA resulting in a 6.8%
greater style loss. Their worse style losses are also reflected
in the qualitative results. As exemplified in the first row of
Fig. 6, while AdaIN poorly transfers the red leaf effect and
ZCA transfers it more strongly, LS-FT improves upon ZCA
by rendering more red color to the leaves.

The PhotoWCT model is designed to reflect the style
well and so have lower style losses, as demonstrated in
Fig. 5(a). Consequently, it needs a transformation to boost
its content preservation. Quantitatively, our transformations
(e.g., LS-FT with α = 0.2) result in the lowest content loss
compared to other transformations (Fig. 5(c)), with ZCA
resulting in a 62.1% greater content loss, and AdaIN result-
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Figure 5: Mean content losses vs. mean style losses of stylized images for different model-transformation pairs. Unlike other
transformations, our Modified IterFT (M-IterFT) and LS-FT boosts WCT2’s stylization strength, enhances PhotoWCT and
PCA-d’s content preservation, and reaches a good balance between style strength and content preservation for PhotoWCT2.

Figure 6: Examples of a better content-style control from our transformations: Modified IterFT (M-IterFT) and LS-FT. Unlike
other transformations, Modified IterFT and LS-FT can generalize to different models to achieve content-style balance.

ing in a 21.9% greater content loss. Qualitatively, if we take
the first row of the PhotoWCT panel in Fig. 6 for example,
62.1% greater content loss of ZCA results in severe artifacts
(uneven reflection of sunlight on the ground), while 21.9%
greater content loss of AdaIN makes it fail to preserve the
finer content (less realistic sunset in the background).

The PhotoWCT2 model is designed to improve the
content preservation from PhotoWCT and the stylization
strength from WCT2. However, it does not always pre-
serve content well and transfer enough style effects, as men-
tioned before in Fig. 1 where it transfers insufficient style
effects with AdaIN and introduces artifacts that ruin the
content with ZCA. Thus, it needs a transformation to re-
sult in stronger stylization strength than AdaIN and bet-

ter content preservation than ZCA. We observe our LS-FT
with α = 1 can achieve this requirement by reducing the
style loss of AdaIN by 6.2% and the content loss of ZCA
by 36.4% (Fig. 5(d)). As exemplified in the first row of
the PhotoWCT2 panel in Fig. 6, our LF-FT preserves better
content than ZCA and transfers stronger style than AdaIN.

PCA-d is an improved version of PhotoWCT2 in that it
is lightweight and achieves better content-style balance than
PhotoWCT2. While [7] shows that PCA-d produces realis-
tic results and reflects good style effects when ZCA is used
as the transformation, our experiment shows that ZCA can
still produce slight artifacts (unnatural sunlight in the first
row of the PCA-d panel in Fig. 6) and severe artifacts occa-
sionally (misty artifacts on the lake in the second row). As
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Figure 7: Quality assessment of stylized images resulting from different model-transformation pairs. For each model, compared to the
popular AdaIN and ZCA, our Modified IterFT and LS-FT can result in a score that is comparable to that of AdaIN and higher than that of
ZCA. Note that the dash line in (d) indicates the average NIMA score for content imges in the PST dataset.

shown in Fig. 5(e), AdaIN performs even worse than ZCA
with worse content and style losses. Our LS-FT, in contrast,
mitigates the artifacts by reducing the content loss of ZCA
by 13.5%, as exemplified in Fig. 6.

The mean quality scores of stylized images resulting
from different model-transformation pairs reinforce our
aforementioned findings (Fig. 7). In particular, for Pho-
toWCT and PCA-d the quality scores of LS-FT and Mod-
ified IterFT are the highest of all transformations except
MAST due to the boost of content preservation, while in
the cases of the other two models, LS-FT, Modified IterFT,
and AdaIN have comparable quality scores which are higher
than those from ZCA and OST. Note that MAST tends to
have higher scores since it usually weakly adapts content.

4.3. Speed performance

We finally compare the speed of our LS-FT to other
transformations, when embedded in four style transfer ar-
chitectures: WCT2 [31], PhotoWCT [16], PhotoWCT2 [6],
and PCA-d [7]. All tests are conducted with an Nvidia-
1080Ti GPU with 11GB memory.

Our Implementations. We evaluate our LS-FT transfor-
mation and its ablated variant that lacks line search for the
speed up: Modified IterFT (stable IterFT [5]).

Baselines. We evaluate ZCA [15], OST [20], AdaIN [10],
and MAST [11].6

Dataset. We test on four resolutions: 1280 × 720 (HD),
1920 × 1080 (FHD), 2560 × 1440 (QHD), and 3840 ×
2160 (UHD or 4K). To collect images, we downloaded a 4K
video [25] from YouTube, sampled 100 frames, and down-
sampled each frame to the other lower resolutions. For each
model, the speed of a transformation for each resolution is
averaged across the total 100 images.

Results. Tab. 2 shows the stylization speeds. We report
results from PCA-d in another table in the Supplementary
Materials because PCA-d is a distilled model that produces
lightweight features leading to faster transformations and
because of limited space.

6IterFT has almost the same speed of M-IterFT and so is ignored here.

WCT2 /
PhotoWCT /
PhotoWCT2

Not Tunable Tunable

ZCA OST AdaIN MAST M-IterFT LS-FT

HD 0.18 / 0.37 / 0.13 0.18 0.27 0.01 0.60 0.29 0.04
FHD 0.59 / 0.63 / 0.24 0.20 0.29 0.02 1.14 0.73 0.09
QHD OOM / 0.98 / 0.40 0.24 0.33 0.06 2.15 1.27 0.17
UHD OOM / OOM / 0.88 0.33 0.40 0.13 5.02 2.84 0.34

Table 2: The speeds for stylization of images of different reso-
lutions using different transformations. For clarity, the time spent
on the model and the transformation is separated. The transforma-
tions are categorized into two groups based on whether they con-
sider model adpativeness or not. LS-FT is consistently 7-8x times
faster than Modified IterFT (M-IterFT) in all resolutions due to no
need of multiple iterations. LS-FT also runs faster than or compa-
rably to ZCA and OST. OOM: Out of Memory. Unit: Second.

Compared to its ablated variant Modified IterFT which
also controls the balance between stylization strength and
content preservation, LS-FT is consistently 7-8x times
faster due to no need of multiple iterations. For example,
it takes LS-FT 0.34 seconds to stylize a UHD image, which
is 8.35x faster than the 2.84 seconds for Modified IterFT.

When comparing LS-FT to the four baseline transforma-
tions lacking control over the balance between stylization
strength and content preservation, overall LS-FT is compet-
itive. For example, LS-FT is faster than OST and MAST in
all resolutions, while LS-FT is comparably fast to ZCA in
the UHD resolution case and faster than ZCA in the others.
The one exception is AdaIN, which is the fastest transfor-
mation. This is due to its simplest math formulation.

5. Conclusion

We derived a new line search-based feature transforma-
tion (LS-FT) for photorealistic style transfer. Experiments
show LS-FT with different style transfer architectures out-
performs existing transformations by either boosting styl-
ization strength, enhancing photorealism, or reaching a bet-
ter style-content balance, while running at a fast speed.
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