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Abstract

Machine learning-based algorithms using fully convolu-
tional networks (FCNs) have been a promising option for
medical image segmentation. However, such deep networks
silently fail if input samples are drawn far from the train-
ing data distribution, thus causing critical problems in au-
tomatic data processing pipelines. To overcome such out-
of-distribution (OoD) problems, we propose a novel OoD
score formulation and its regularization strategy by apply-
ing an auxiliary add-on classifier to an intermediate layer
of an FCN, where the auxiliary module is helfpul for an-
alyzing the encoder output features by taking their class
information into account. Our regularization strategy train
the module along with the FCN via the principle of outlier
exposure so that our model can be trained to distinguish
OoD samples from normal ones without modifying the orig-
inal network architecture. Our extensive experiment results
demonstrate that the proposed approach can successfully
conduct effective OoD detection without loss of segmenta-
tion performance. In addition, our module can provide rea-
sonable explanation maps along with OoD scores, which
can enable users to analyze the reliability of predictions.

1. Introduction

Machine learning (ML)-based medical image segmenta-

tion algorithms using fully convolutional networks (FCNs),

e.g., U-Net [39], have shown remarkable segmentation re-

sults, which can be comparable to manual annotation of do-

main experts [28]. Therefore, ML-based segmentation algo-

rithms can be employed in data processing pipelines which

aim to automatically localize sub-regions of interest. How-

ever, it has been widely known that deep neural networks

(DNNs) silently fail for out-of-distribution (OoD) data [16].

In other words, DNNs tend to produce over-confident pre-

dictions even when samples are drawn far from the training

data distribution so that predictive confidence cannot be in-

formative to quantify their reliability. Such OoD issues can

cause dire consequences in safety-critical tasks.

In classification tasks, a number of OoD detection tech-

niques [18, 25, 24, 31] have been developed by assuming

that latent feature vectors of in-distribution (InD) samples

(extracted by classifiers) are clustered in a class-wise man-

ner. Under such a class-wise cluster assumption, latent fea-

tures located far from the InD clusters or near the class de-

cision boundaries can be determined as OoD. Most of OoD

detection techniques investigated in classification applica-

tions cannot be directly applicable to segmentation tasks as

they were designed in the presence of image-level classes,

which are not available in segmentation. Instead of image-

level assessment, previous studies [26, 46, 8, 5] usually fo-

cused on detecting unexpected objects by interpreting seg-

mentation tasks as pixel-level classification problems.

Although medical image segmentation, whose input im-

ages should contain pre-defined classes and the correspond-

ing anatomical structures, requires image-level OoD anal-
yses rather than unexpected object detection, relevant tech-

niques have received little attention [35, 22]. In automatic

medical image segmentation pipelines, test images are of-

ten drawn far from the training data distribution, since test

data distribution can easily be shifted by various factors,

e.g., incorrect pre-processing, and data variance across pa-

tients, devices, and imaging protocols [34]. Also, training

data usually fail to represent the real-world data distribu-

tion as a significant amount of time and human efforts are

required to collect sufficient images and manually annotate

them. As real-world medical applications can be vulnerable

to OoD data issues, FCNs should reject problematic data

items to enhance the reliability of medical image segmenta-

tion algorithms and downstream clinical tasks.

To simultaneously conduct segmentation and sample as-

sessment, Mehrtash et al. [35] computed pixel-wise uncer-

tainty measures in segmentation predictions (decoder out-

put logit maps) via Bayesian-inspired techniques such as

Monte Carlo dropout (MCDO) [13] or deep ensemble [23].

Afterwards, they aggregated the measures, which aim to de-
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tect decoder pixel embeddings located near the class deci-

sion boundaries, over the foreground pixels to assess the

OoD-ness of each image. However, such strategy may show

limited OoD detection accuracy [22, 3, 1]. In [37], Ouali et
al. demonstrated that it is more appropriate to analyze class-
wise features and clusters at the encoder side of FCNs than

the decoder side. In addition, in comparison with simple un-

certainty scores, OoD measures based on distance or prob-

ability density can be more effective to detect outliers by

considering class-wise clusters of InD features [24, 31].

Recently, previous studies [14, 32] attempted to analyze

encoder pixel-embeddings instead of decoder outputs. Gon-

zalez et al. [14] proposed to apply the Mahalanobis distance

analysis [24] in patch-based U-Net encoders by modifying

the original multi-class setting to a single-class version (nor-

mal vs anomaly), i.e., they modeled feature distribution as

a unimodal Gaussian distribution. However, since the pixel

embeddings (latent features) of FCNs contain class infor-

mation (e.g., foreground vs background or multi-class prob-

lems), such one-class anomaly detection setting cannot ana-

lyze the intermediate features by taking account of the class

information, thus yielding inaccurate results.

In this paper, we design a novel OoD detection method,

which analyzes the encoder output features of FCNs with

the principle of open-set recognition and regularizes them

for better rejection accuracy. Since medical images consist

of a fixed number of anatomical classes (closed-set), we as-

sume that each pixel-embedding, which contains local in-

formation of each image, should belong to one of the class-

wise clusters. For the analysis, we apply an auxiliary pro-
totypical classifier to the encoder output features to com-

pute local distance-based measures (instead of uncertainty

measures) by considering their class information and define

our OoD score by aggregating the local measures. The pro-

posed add-on module can be easily applicable to various

widely-used FCNs without modifying the architectures. To

further enhance the OoD detection accuracy of our method,

we train our OoD score by employing the strategy of outlier

exposure [19], which aims to contrast the scores of training

data and auxiliary outliers (surrogate of OoD data).

In addition to the limitations we mentioned, patch-based

analysis [14] or Bayesian-inspired [35] methods may have

limited performance, since they are trained solely based on

InD training data. Although previous studies enhanced the

OoD detection accuracy of segmentation models by lever-

aging large-scale external outliers [4, 9], reasonable large-

scale auxiliary data are unlikely to be available in the medi-

cal domain. Therefore, we design an outlier exposure strat-

egy suitable for our auxiliary prototypical classifier by using

transformed version of InD data as auxiliary outliers, where

such methods achieved successful OoD detection with suf-

ficient generalizability [15, 44, 32]. If our OoD score is suc-

cessfully trained, the pixel embeddings of anomalies should

be located far away from those of normal samples. Thus,

one can examine anomalous regions by analyzing local dis-

tance measures, which is not available in previous OoD de-

tection methods for medical image segmentation.

Focusing on medical image segmentation tasks, we con-

duct extensive experiments with various datasets consist of

images and their multi-class segmentation masks. In OoD

detection, we compare our method to previous OoD detec-

tion approaches. The results show that our method outper-

forms the previous methods in OoD detection, by success-

fully detecting various categories of OoD data items. Also,

we show that our model can provide reasonable explana-

tion maps along with OoD scores, which enable users to

further investigate images and their anomalous regions. In

comparison with the previous methods, it is noteworthy that

our model conducts effective OoD detection while keeping

robust segmentation accuracy, by favor of our carefully de-

signed OoD scores. Thus, we expect that our auxiliary clas-

sifier can be a simple add-on module for enhancing reliabil-

ity in automatic medical image segmentation pipelines.

2. Preliminaries and Our Contributions
In this section, we introduce two preliminary studies of

prototypical classifiers [43] and fully convolutional data de-

scription (FCDD) [41]. Based on the preliminaries, we sum-

marize our proposed OoD detection approach.

2.1. Prototypical Classifiers

For few-shot classification tasks, Snell et al. [43] pro-

posed prototypical classifiers, which compute the posterior

probability of an input x belonging to the k-th class by

P (y = k|x) = exp (−DE(v(x), k))∑K
t=1 exp (−DE(v(x), t))

, (1)

where v is a feature extractor producing v(x) ∈ R
N for x,

DE(v(x), k) = (v(x) − μk)
T (v(x) − μk), and μk ∈ R

N

is a class mean vector of the k-th class.

Since one can easily limit the class-wise latent feature

space for InD data items and then reject test samples outside

the limited spaces in the distance-based scheme, prototyp-

ical classifiers have been employed in open-set recognition
problems, which aims to reject samples not belonging to the

pre-defined classes. Recently, Liu et al. [30] used prototyp-

ical classifiers for few-shot open-set applications by using

the Mahalanobis distance as their distance measure, i.e.

P (y = k|x) = exp (−DM (v(x), k))∑K
t=1 exp (−DM (v(x), t))

, (2)

where DM (v(x), k) = (v(x)−μk)
TΣ−1

k (v(x)−μk) with

Σk = diag(σk,1, · · · , σk,cg ) can be more suitable for re-

flecting class-wise distributions of latent features.
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Figure 1. An overall training procedure of our proposed framework. Left: An example of data flow in our model. For simplicity, we present

the gray-colored images of xb and A(xb) behind the images of x and A(x,y), respectively, where the corresponding notations are omitted

in the figure. Also, Lseg is connected to ŷ with a slight abuse of notation. Right: A visualization of the feature space of the projection head

g. For simplicity, we present an example with 3 classes, where we conduct 4-class segmentation in our experiments.

2.2. Fully Convolutional Data Description

For anomaly detection, Ruff et al. [41] introduced hy-

persphere classifiers (HSCs), which aim to determine each

sample as anomalous if its latent feature vector is located far

away from a center vector (a zero vector for simplicity) in

terms of the Euclidean distance. An FCDD model employed

the principle of HSCs in an FCN encoder e, which produces

e(x) ∈ R
h×w for each 2D image x ∈ R

H×W×C , by defin-

ing a map F (x) with F (x)[i, j] =
√

e(x)[i, j]2 + 1− 1.

Employing ||F (x)||1 as an image-level anomaly score,

the loss function of the FCDD model can be computed by

Lfcdd =
1

na

na∑
t=1

1

hw
||F (xt)||1

− 1

nb

nb∑
s=1

log

(
1− exp

(
− 1

hw
||F (xb

s)||1
))

,

(3)

where na images {xt}na
t=1 and nb images {xb

s}nb
s=1 are sam-

pled from the training dataset Dtrain and an auxiliary outlier

set Dout at each training iteration, respectively. As long as

the FCDD model successfully learns its image-level score

||F (x)||1, each F (x)[i, j] assesses the corresponding sub-

region of x based on the principle of HSCs, thereby F (x)
can highlight anomalous sub-regions of x.

2.3. Our Contributions

The preliminary studies of Sections 2.1 and 2.2 provides

frameworks for analyzing and regularizing the class-wise

features of FCNs in a distance-based manner, respectively.

Based on the preliminaries, this paper proposes a novel OoD

detection approach for medical image segmentation appli-

cations. Our method is summarized as follows:

• Although FCDD is suitable for anomaly detection and

explanation, elements of its score map represent dis-

tances from a single center point without considera-

tion of class information. As intermediate FCN fea-

tures should preserve class information in segmenta-

tion, we propose a novel approach to define our OoD

score map via an auxiliary classifier. (Section 3.1)

• To train robust OoD scores, we design a regularization

loss function suitable for our prototypical networks,

where transformation techniques are applied to train-

ing images to generate auxiliary outliers. (Section 3.2)

• By using distance-based analyses in the latent feature

space of our auxiliary classifier, we present a visualiza-

tion method that can highlight regions, which are erro-

neous in the perspective of our model. (Section 3.3)

• Through extensive experiments, we demonstrate that

our proposed method conducts reliable OoD detection

while keeping high segmentation accuracy. Also, we

present explanation map visualization results, which

enable users to qualitatively analyze OoD detection re-

sults by highlighting erroneous regions. (Sections 4)

3. Proposed Method
Overview. This section describes our proposed OoD de-

tection method for medical image segmentation task. In seg-

mentation, we use an FCN encoder-decoder architecture f
that takes 2D gray-scale images x ∈ R

H×W as input data

and produces a logit map f(x) ∈ R
H×W×K . Each train-

ing image x has its label y ∈ {1, · · · ,K}H×W , where K is

the number of classes (1, · · · ,K−1: foreground classes, K:

background class). Each entry of ŷ, an estimate of y, can be

obtained by ŷ[i, j] = argmaxk∈{1,··· ,K}f(x)[i, j, k]. Also,

we compute a probability map P (x) ∈ R
H×W×K by taking

the softmax function to each output logit vector f(x)[i, j, :].
By employing the pixel-wise CE loss function as Lseg, we

train f based on the pairs of (x,y) (Fig. 1 (a)).
To analyze the pixel-embeddings of f , we apply an add-

on module to an intermediate layer fint. Specifically, we use

an auxiliary prototypical classifier to enable distance-based
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feature analyses in the latent space. Defining our OoD score

by using the prototypical classifier, we design a regulariza-

tion loss function Lout for our score to obtain high OoD de-

tection accuracy, i.e., our total loss function is

L = Lseg + λLout, (4)

where λ is a hyper-parameter. Afterwards, we introduce a

qualitative (visual) analysis method for each OoD detection

result in our method. We provide in-depth details about each

component in the following subsections.

3.1. Out-of-Distribution Score Formulation by Us-
ing Auxiliary Prototypical Networks

To define an OoD score, we apply a projection head g to

fint(x) ∈ R
h×w×c (h ≤ H , w ≤ W ), an intermediate (en-

coder) layer of x in f , where we denote r(x) = g(fint(x)) ∈
R

h×w×cg (cg ≤ c) and employ each r(x)[i, j, :] as an input

of an auxiliary prototypical classifier (Fig. 1 (b)). For an

auxiliary vector v ∈ R
cg and its class y ∈ {1, · · · ,K}, our

prototypical classifier can be defined by

P (y = k|v) = exp (−DM (v, k))∑K
t=1 exp (−DM (v, t))

, (5)

where we employ DM (v, k) instead of DE(v, k) to reflect

class-wise pixel distributions, since there may exist imbal-

ance issues between foreground and background-class pix-

els. As in [30], we formulate Σk = diag(σk,1, · · · , σk,cg ),
where each diagonal element σk,i is a learnable parameter.

Also, each initial μk is randomly sampled from the standard

Gaussian distribution by following the approach of [20] and

then trained along with our model parameters. (For the def-

initions of DM (v, k) and DE(v, k), see Section 2.1.)

Before we define our OoD score function, we formulate

a distance map A(x,y) ∈ R
h×w to examine each training

data item, where A(x,y)[i, j] = DM (r(x)[i, j, :],y′[i, j])
and y′ ∈ {1, · · · ,K}h×w is a downsampled version of y
(Fig. 1 (c)). Each element of A(x,y) measures the distance

between the corresponding pixel embedding and its class

prototype so that it is desirable to have low values for all

the elements of A(x,y). Note that A(x,y) can investigate

anomalous regions of each training image in the presence

of the ground-truth (GT) segmentation label. As such GT

segmentation labels are not available when assessing test

images, we define a distance map A(x) ∈ R
h×w, and then

use A(x) and ||A(x)||1 as our score map and image-level
OoD score, respectively, where each entry A(x)[i, j] is

A(x)[i, j] = min
t∈{1,··· ,K}

DM (r(x)[i, j, :], t). (6)

In summary, our auxiliary classifier defines K class-wise

HSCs [41] in the encoder feature space of f , where the k-

th HSC assesses whether fint(x)[i, j, :] belongs to the k-th

class with DM (r(x)[i, j, :], k). We use Eq. (6) to determine

fint(x)[i, j, :] as anomalous if r(x)[i, j, :] is located far from

the closest HSC, where ||A(x)||1 assesses each input image.

3.2. Training Out-of-Distribution Scores

In the previous section, we define our OoD score via an

auxiliary classifier, which models pixel embeddings by con-

sidering their class information, in the intermediate feature

space of f . To produce effective OoD scores, we train the

classifier by using the principle of outlier exposure [19]. As

a supervision of large-scale external outlier datasets, e.g.,

80 Million Tiny Images [45] or ImageNet [12], is unlikely

to be possible in the medical domain, we generate synthetic

ones via transformation techniques as in [32, 44]. At each

training iteration, na images and their segmentation labels

{xt,yt}na
t=1, and nb outliers {xb

s}nb
s=1 are sampled from the

training dataset Dtrain and its transformed one T (Dtrain), re-

spectively. We describe more details of T in Section 4.

For the images x and xb, it is intuitive to reduce the score

||A(x,y)||1 (reduce the distance between pixel embeddings

and their class prototypes) while increasing ||A(xb)||1. To

achieve the objective while reserving sufficient class-wise

feature spaces for InD features, we adapt an outlier expo-

sure method suitable for prototypical classifiers [10], which

uses the principle of probability of inclusion [21, 2, 40].

Under the assumption that each class-k latent feature vector

is drawn from a unimodal Gaussian distribution, the Maha-

lanobis distance, can be assumed to follow the Chi-square

distribution. Then, we define the probability of inclusion

PI (D) = 1−
∫ D

2

0

t
N
2 −1

Γ
(
N
2

) ·exp (−t) dt =
Γ
(
N
2 ,

D
2

)
Γ
(
N
2

) , (7)

where Γ(·) and Γ(·, ·) are the Gamma and the upper incom-

plete Gamma functions, respectively, and D is the Maha-

lanobis distance measure DM in Eq. (5). For more general

concepts of PI , readers are referred to [42] and [10].

In Eq. (7), PI is a radial-basis decaying function de-

signed by considering the class-wise feature distributions of

pixel-embeddings. As the function reserves sufficient latent

feature spaces for InD data by building class-wise explicit

boundaries (PI ≈ 1) and rapidly decays from 1 to 0 as DM

gets larger near the boundary, it can be an effective tool for

distinguishing the features of x and xb. Thus, we design a

loss for regularizing prototypical classifiers (Fig. 1 (d))

Lout =− 1

na

na∑
t=1

log

(
1

hw
||Ap(xt,yt)||1

)

− 1

nb

nb∑
s=1

log

(
1− 1

hw
||Ap(x

b
s)||1

) (8)

as our outlier exposure loss function, where Ap(x)[i, j] =
PI(A(x)[i, j]) and Ap(x,y)[i, j] = PI(A(x,y)[i, j]) are

scaled versions of A(x)[i, j] and A(x,y)[i, j] via PI .
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In the right plane of Fig. 1, we illustrate the effect of Lout

with a 3-class classification example. Our proposed Lout for-

mulates class-wise elliptical boundaries (gray regions) via

the probability of inclusion and then makes the pixel em-

beddings of auxiliary outlier data (negative features) to be

located far away from the closest boundary. As Lout also

manipulates the positive features to be located inside the

class-wise boundaries, it increases the distance gap between

the positive and negative features.

3.3. Qualitative Analysis via Visual Explanations

In our method, test images drawn far from the training

data distribution tend to yield high ||A(x)||1 so that one can

easily reject the images and notice their problems. Further-

more, the OoD score can be employed to quantify the relia-

bility of each prediction even for test samples near the train-

ing data distribution. For instance, if a test sample received a

higher score than the others, our framework can alarm users

to review the image and the corresponding segmentation re-

sults. When reviewing test images having high OoD scores,

A(x) can highlight anomalous regions of the images in the

perspective of segmentation model, as F (x) of FCDD pre-

sented reasonable explanations when detecting anomalies

in natural images or defects in manufacturing. By analyzing

high-score regions in score maps A(x), whose pixel embed-

dings are located far from the closest class means (anchors),

the users are able to characterize under-represented image

patterns or textures that can confuse our model in segmenta-

tion. Through the analyses, they can also avoid making con-

fident segmentation predictions for regions having potential

errors and then refine their datasets to improve robustness.

As we discussed, A(x) can be an effective tool for pro-

viding visual explanation of OoD detection in f . However,

pixel embeddings located far from in-distribution features

may yield significantly large distance values in A(x), thus

dominating all the other elements of A(x). Therefore, a di-

rect visualization of A(x) can be insufficient to accurately

distinguish anomalous sub-regions from the other regions.

To overcome this problem, we additionally provide a scaled

version of A(x), whose entries are effectively scaled to the

range of [0, 1]. Since the probability of inclusion reserves

feature spaces for InD features via compact boundaries and

rapidly decays near the boundaries to reject features located

outside the spaces, we use the concept to scale A(x). To

formulate a reasonable probability of inclusion, we fit a

Weibull distribution on A(x)[i, j] values for all i, j, and

x of hold-out validation data. Then, we formulate Aξ(x), a

scaled version of the score map A(x), with

Aξ(x)[i, j] = WeibullCDF(A(x)[i, j]), (9)

where the Aξ(x)[i, j] value rapidly changes from 0 to 1 near

the boundary between normal and anomalous regions.

Note that we also use the notion of the probability of in-

clusion at training time based on the formulation of Eq. (7).

However, PI is likely to be inaccurate for test data, since it

is formulated under an assumption that r(x)[i, j, :] is drawn

from a unimodal Gaussian distribution. Therefore, we fit a

Weibull distribution, which is suitable for modeling the tail

of a distribution [42, 21, 2], to the real validation data points.

4. Experiments
This section describes our experimental settings and the

corresponding results in multi-class medical image segmen-

tation tasks. Through our extensive experiments, we aim to

show that our proposed auxiliary module can assign a valid

OoD score and a reasonable explanation score map to each

input sample, while keeping segmentation performance.

4.1. Experimental Settings

Evaluation protocol. Considering the nature of medical

image data and image acquisition processes, Cao et al. [7]

categorized medical OoD data types. Similarly, we used the

following OoD classes: C1) data from another domain, C2)

in-domain data acquired in a different viewpoint, and C3)

images related to the training data but having unseen con-

ditions. In real-world applications, OoD detection systems

alarm users to check data samples with potential errors. Af-

terwards, the users can take different actions depending on

their categories. For instance, if detected images are relevant

to the targat task, the users can manually refine the segmen-

tation results or investigate their characteristics to refine the

original training set for better generalization. Otherwise, the

users can simply reject irrelevant test data samples.

To quantitatively analyze our proposed system, our ex-

periments follow a conventional evaluation protocol of OoD

detection [18, 25, 24, 31], where we report OoD detection

accuracy for distinguishing OoD data of classes C1-3 from

InD test dataset, and segmentation results. Note that we do

not consider rejecting samples in the original InD test sets.

Datasets. We employed datasets including magnetic res-

onance (MR) images and their multi-class segmentation la-

bels, where we conducted segmentation of 4 classes includ-

ing background class (class 0) for in-distribution datasets.

For cardiac segmentation, we used the M&Ms challenge

dataset [6], which consists of multiple sub-groups of ven-

dors (A–D). The subsets of A and B were employed as in-

distribution data, where each subset was split into training,

validation, and test sets. For each in-distribution subset, the

other subsets served as OoD data of C3. For OoD data of

C2, we used long-axis images in the M&Ms-2 dataset [6],

where our in-distribution samples are short-axis images. For

prostate zone segmentation, we used transversal T2w scans

in the PROSTATEx dataset [27]. For OoD data of C2 and

C3, sagittal-view images of PROSTATEx and images of the

PROMISE12 dataset [29] were employed, respectively.
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In-dist. Dataset OOD Dataset
AUROC (↑) FPR@TPR95 (↓)

MCDO Ensemble FCDD Ours MCDO Ensemble FCDD Ours

M&Ms A

M&Ms B 0.5042 0.5025 0.5350 0.6046 0.9433 0.9434 0.8462 0.7810
M&Ms C&D 0.6006 0.6108 0.6473 0.8319 0.8419 0.8312 0.8152 0.6549
M&Ms-2 LA 0.9403 0.9723 0.9363 0.9924 0.2083 0.0876 0.2457 0.0417

PROSTATEx (Trans.) 0.9851 0.9880 0.9804 0.9980 0.0534 0.0299 0.0801 0.0171

M&Ms B

M&Ms A 0.8644 0.9148 0.8822 0.9724 0.6380 0.4284 0.4888 0.1810
M&Ms C&D 0.7090 0.7892 0.7722 0.9045 0.7904 0.6247 0.8129 0.7147
M&Ms-2 LA 0.9791 0.9904 0.9772 0.9959 0.0593 0.0174 0.1186 0.0092

PROSTATEx (Trans.) 0.9844 0.9918 0.9997 1.0000 0.0348 0.0123 0.0000 0.0000

PROSTATEx

(Trans.)

PROMISE12 0.6884 0.7384 0.8425 0.9383 0.4677 0.7241 0.6585 0.4051
PROSTATEx (Sag.) 0.9742 0.9885 0.9661 1.0000 0.1149 0.0297 0.1549 0.0000

M&Ms A 0.8761 0.9813 0.9995 1.0000 0.4677 0.0810 0.0000 0.0000
M&Ms B 0.9789 0.9930 0.9884 1.0000 0.0841 0.0195 0.0677 0.0000

Table 1. OoD detection results in medical image segmentation, which were measured based on various medical InD and OoD datsets. For

the AUROC and FPR@TPR95 measures, ↑ and ↓ indicate that it is better to have larger and smaller values, respectively.

Dataset Methods Class 1 Class 2 Class 3 Total

M&Ms A
Baseline 0.9035 0.8121 0.7903 0.8353

Ours 0.9057 0.8104 0.7928 0.8363

M&Ms B
Baseline 0.9204 0.8713 0.8589 0.8835

Ours 0.9249 0.8765 0.8534 0.8849
PROSTATEx

(Trans.)

Baseline 0.7510 0.8336 0.8039 0.7962

Ours 0.7522 0.8332 0.8090 0.7981

Table 2. Medical image segmentation results (Dice coefficient).

As the first category OoD set in the cardiac and prostate

segmentation experiments, we used data from different do-

main (e.g., M&Ms vs PROSTATEx). In addition, imaging

conditions, e.g., imaging device vendors or clinical centers,

of the third category OoD data are different from those of

InD data. The following paragraphs provide in-depth details

about the InD datasets and our data pre-processing steps.

Cardiac dataset. For the cardiac segmentation, we used

the datasets released in the 2020 M&Ms [6] challenge. The

dataset consist of cardiac images and the corresponding seg-

mentation labels of 4 classes: left and right ventricle blood

pools (1 and 2), left ventricular myocardium (3), and back-

ground (4). All subjects were scanned in different clinical

centers using four different MR scanner vendors.

Prostate dataset. For the prostate segmentation tasks, we

used the T2-weighted MR images of the PROSTATEx chal-

lenge [27]. For each image, Meyer et al. [36] provided a 5-

class label: anterior fibromuscular stroma, peripheral zone,

transition zone, distal prostatic urethra, and background. To

conduct segmentation of 4 classes as in our cardiac segmen-

tation experiments, we combined the anterior fibromuscular

stroma and the transition zone into a single class.

Data pre-processing. To pre-process raw images in the

cardiac (M&Ms and M&Ms-2) and prostate (PROSTATEx

and PROMISE12) datasets, we resampled the images with

the in-plane resolutions of 0.6× 0.6 mm and 0.4× 0.4 mm,

respectively. After resampling the 3D images, each 2D slice

was center-cropped into the size of 224 × 224 pixels, and

then intensity-normalized with the range of [0, 1]. For each

dataset, we applied random rotation (≤ 15◦) and translation

(≤ 10 pixels) to the training data for data augmentation.

Compared models. Using the standard U-Net architec-

ture [39] as a baseline FCN f , we compared our framework

with the previous Bayesian-inspired methods, MCDO [13]

and deep ensemble (Ensemble) [23]. By following the ap-

proach of [35], we employed an entropy-based OoD score
1
|Ω|

∑
{i,j}∈Ω H(x)[i, j] for MCDO and Ensemble, where

Ω is a set of foreground pixel indices and H(x)[i, j] is the

information entropy [11] of P (x)[i, j, :]. When f does not

predict any pixel as foreground, we set the score to the max-

imum entropy for clear rejection. In MCDO and Ensemble,

we took 10 inferences of FCNs to compute uncertainty.

In addition to Ensemble and MCDO, we used the FCDD

model for comparison, since FCDD is a representative ap-

proach that applies the outlier exposure strategy to FCN en-

coder output features. We applied the method described in

Section 2.2 to the intermediate layer fint of f and exploiting

||F (x)||1 as OoD score. We describe in-depth details of the

compared models in the supplementary materials.

Training details. In f , which consists of encoder and de-

coder parts, we used output features of the encoder as fint,

whose pixel embeddings have 1024 dimension. Using a pro-

jection head g, which consists of a 1×1 convolutional filter

and an activation function, we squeezed the features of 1024

dimension into 256 dimensional features. For T , we utilized

conventional medical image transformation methods in the

TorchIO library [38] and distribution-shifting transforms,

which were also used in [15] and [44], respectively. We

randomly employed one of the following operations: 180◦

rotation, vertical flip, permutation, and random operations

of {Swap,Gamma,Deformation} in TorchIO. We de-

scribe more details about the transformation method and the
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Figure 2. Left: The subset A of the M&Ms dataset and its corresponding OoD data. Right: The PROSTATEx dataset and its corresponding

OoD data. In each image, Aξ(x) is overlaid on x, where high-valued regions (close to 1) in Aξ(x) are highlighted with red color. In other

words, the red-colored regions may have under-represented patterns. In the left and right planes, we depict (a) InD test images having no

anomalous regions, (b) InD test images having anomalous sub-regions, (c) OoD images of C3, and (d) OoD images of C1 and C2.

corresponding parameters in our supplementary material.

For L = Lseg + λLout, we set λ = 0.1, where we used

the AdamWR optimizer [33] for 150 epochs. For outlier ex-

posure, we employed the batch size of 8 for both training

samples and their transformed auxiliary outliers, where the

InD training, validation, and test sets were constructed by

splitting each medical image dataset with the ratio of 6:2:2.

4.2. Results

In our experimental results, all the reported values in the

tables were computed by averaging the results of five ran-

domized trials. At each trial, we selected a model having the

best validation accuracy in medical image segmentation.

4.2.1 Quantitative Results

To evaluate each model in OoD detection, we employed the

area under the receiver operating characteristic curve (AU-

ROC) and the false-positive rate at 95% true-positive rate

(FPR@TPR95) measures. In addition to the OoD detection

evaluation, we measured class-wise Dice coefficients to as-

sess the segmentation performance of each model. Also, we

reported total Dice coefficient values.

The OoD detection results of our approach and the previ-

ous methods are provided in Table 1. Although the MCDO

and Ensemble methods require multiple FCN inferences to

compute their entropy-based scores, such off-line analyses

were less effective than our method in OoD detection. Fur-

thermore, the table implies that although the FCDD and our

methods both leverage auxiliary outliers to train the cor-

responding OoD scores, it is important to consider class-

wise feature clusters and carefully design the corresponding

regularization loss function for outlier exposure. Also, it is

noteworthy that although our method is not designed to im-

prove segmentation results, our method can perform robust

OoD detection while maintaining high segmentation accu-

racy, which is shown in Table 2, i.e., our proposed auxiliary

module is an effective solution that can simultaneously con-

duct OoD detection and medical image segmentation.

4.2.2 Score Map Visualization

Through quantitative analyses, we showed that our method

effectively conducts OoD detection in medical image seg-

mentation, by assigning a robust OoD score to each sam-

ple. As we mentioned, the proposed auxiliary module pro-

vides score maps along with the corresponding OoD scores

so that users can investigate sub-regions which are anoma-

lous in the perspective of model. Through the analysis, the

users can avoid making confident segmentation predictions

for regions having potential errors and further improve the

robustness of segmentation models via dataset refinement,

which is related to the concept of active learning.

To show that our model provides reasonable score maps,

Fig. 2 depicts images x and their scaled score maps Aξ(x)
by using M&Ms (left plane) and PROSTATEx (right plane)

as in-distribution datasets. For each plane, we presented (a)

in-distribution test images having no anomalous regions, (b)

in-distribution test images having high-scored regions in the

score maps, (c) OoD images of C3, and (d) OoD images of

C1 and C2. For visualization, Aξ(x) is overlaid on x via

bilinear interpolation, where the blue and red colors of the

color map correspond to 0 and 1 values in Aξ(x), respec-

tively. In other words, red-colored regions can be anoma-

lous (having potential errors) in the perspective of f .

For (c) of the left plane in Fig. 2, we presented samples
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In-dist. Dataset
DeepLabV3 (FCDD / Ours)

AUROC (↑) FPR@TPR95 (↓)

M&Ms A 0.8517 0.8620 0.3842 0.3271
M&Ms B 0.9364 0.9423 0.2995 0.2624

PROSTATEx 0.9547 0.9592 0.2088 0.1799

Table 3. Averaged OoD detection results, which were computed

by using DeepLabV3 and various medical InD and OoD datsets.

from the vendors C and D of the M&Ms dataset (C3), while

images from the PROMISE12 dataset (C3) are depicted in

(c) of the right plane. In the figure, one can compare the im-

ages of (a) to those of (b) and (c) to recognize the character-

istics of highlighted region and investigate the behavior of

our scaled score map Aξ(x). Through the score map visu-

alization results of (b) and (c), we observed that our model

highlights sub-regions of images having under-represented

structures or textures in the training data. For instance, the

leftmost sample of (c) in the left panel has an irregular struc-

ture in the lower right corner, where the structure was cor-

rectly highlighted by our auxiliary classifier module.

In (d) of the left plane, we presented two samples from

the M&Ms-2 dataset (C2) and an image from the PROSTA-

TEx dataset (C1), where (d) of the right plane demonstrates

two sagittal-view images of the PROSTATEx dataset (C2)

and an image of the M&Ms dataset (C1). As shown in the

quantitative results of Table 1, OoD samples of C1 and C2

are easily distinguishable from in-distribution data, by re-

ceiving high OoD scores from our model. Thus, it is rea-

sonable that our model recognizes most of their sub-regions

as anomalous, which is shown in Fig. 2.

We provide more score map visualization results and the

corresponding analyses in our supplementary materials. For

the visualization results in the paper and supplementary ma-

terials, a medical domain expert reviewed the samples of (b)

and (c) in the figures. (The samples of (d) is irrelevant to the

InD data.) In addition to different imaging conditions, the

expert found that a majority of detected test samples in the

cardiac and the prostate test sets include the slices of api-

cal part and basal part, respectively. Since such slices take a

small portion in the original 3D MR images, they are highly

likely to be drawn far away from the training data distribu-

tion. Moreover, slices in such edge parts are likely to have

irregular structures and artifacts, which can make segmen-

tation algorithms produce wrong predictions. We found that

our visualization results are helpful for characterizing such

patterns under-represented in the original training data.

4.2.3 Application to Another Network Architecture

To show that our auxiliary network is applicable to other

standard FCN architectures, we used the DeepLabV3 archi-

tecture with a pre-trained ResNet-50 [17] backbone. As we

applied a projection head to the output features of the U-Net

Dataset Methods Class 1 Class 2 Class 3 Total

M&Ms A
Baseline 0.9054 0.8207 0.7900 0.8387

Ours 0.9021 0.8362 0.7910 0.8431

M&Ms B
Baseline 0.9207 0.8709 0.8483 0.8800

Ours 0.9163 0.8722 0.8579 0.8821
PROSTATEx

(Trans.)

Baseline 0.7559 0.8304 0.8011 0.7958

Ours 0.7560 0.8317 0.8018 0.7965

Table 4. Medical image segmentation results (DeepLabV3).

encoder, we squeezed 2048-dimensional output features of

the backbone into 256-dimensional features via a projection

head and then trained the network by using the same train-

ing process we used in the main experiments.

In Tables 3 and 4, we compared our proposed approach

and the FCDD method based on the DeepLabV3 architec-

ture, which showed robust OoD detection results in the U-

Net architecture by training the corresponding OoD scores.

Recall that our main experiments of Table 1 employed the

four OoD sets for each InD dataset. By taking the average

of the OoD detection performance measures for the four

sets, we report average AUROC and FPR@TPR95 values

for each InD set in Tables 3. The tables demonstrate that our

methods also achieve robust OoD detection performance in

another FCN. Furthermore, the proposed method achieved

high segmentation accuracy comparable to that of baseline.

The results verify that our OoD detection method using an

auxiliary network is also applicable to other standard FCNs

for robust OoD detection in medical image segmentation.

5. Concluding Remarks
Although DNN-based automatic segmentation can sig-

nificantly alleviate burden of clinicians in processing large-

scale medical images, DNNs can cause dire consequences

for OoD samples. To enhance the OoD robustness of seg-

mentation models, this paper proposes to analyze interme-

diate FCN latent features in a class-wise manner via add-on

prototypical classifiers and designed a loss function that can

regularize the classifiers with auxiliary outliers. Observing

promising empirical results in OoD detection and segmen-

tation, we hope that our approach be a simple yet effective

add-on technique to enhance the reliability of widely-used

segmentation models based on FCN architectures.
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