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Figure 1. Visualized comparison of (a) a conventional two-stream VOS network and (b) our proposed motion-as-option network.

Abstract

Unsupervised video object segmentation (VOS) aims to
detect the most salient object in a video sequence at the
pixel level. In unsupervised VOS, most state-of-the-art
methods leverage motion cues obtained from optical flow
maps in addition to appearance cues to exploit the prop-
erty that salient objects usually have distinctive movements
compared to the background. However, as they are overly
dependent on motion cues, which may be unreliable in some
cases, they cannot achieve stable prediction. To reduce
this motion dependency of existing two-stream VOS meth-
ods, we propose a novel motion-as-option network that op-
tionally utilizes motion cues. Additionally, to fully exploit
the property of the proposed network that motion is not al-
ways required, we introduce a collaborative network learn-
ing strategy. On all the public benchmark datasets, our
proposed network affords state-of-the-art performance with
real-time inference speed. Code and models are available
at https://github.com/suhwan-cho/TMO.

1. Introduction
Video object segmentation (VOS) is a fundamental com-

puter vision task that aims to detect an object or objects
in a given video sequence at the pixel level. Owing to its
powerful applicability in real-world applications, such as

robotics, video editing, and autonomous driving, it is widely
used in many vision systems. Based on the guidance on the
object to segment, VOS can be divided into many subcat-
egories, such as semi-supervised VOS (initial mask guid-
ance), unsupervised VOS (no guidance), weakly-supervised
VOS (initial box guidance), interactive VOS (human guid-
ance), and referring VOS (language guidance). This study
focuses on unsupervised VOS, which is also known as zero-
shot VOS, where no manual annotation about the target ob-
ject to be segmented is provided. As no clear guidance is
provided about the object, the aim is to automatically define
the salient object of a given video sequence and consistently
segment that object for the entire frame.

Inspired by the observation that a salient object usually
has distinctive movements compared to the background,
recent approaches for unsupervised VOS utilize motion
cues obtained from optical flow maps as well as appear-
ance cues obtained from RGB images. Appearance and
motion cues are fused during the feature embedding pro-
cess to provide mutual guidance, as shown in Figure 1 (a).
MATNet [41] comprises a deeply-interleaved encoder ar-
chitecture for hierarchical interaction between the object
appearance and motion. FSNet [7] comprises a relational
cross-attention module for mutual correction and bidirec-
tional interaction. Additionally, AMC-Net [35] has a multi-
modality co-attention gate to integrate cross-modality fea-
tures into unified feature representations. Although these
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methods achieve remarkable performance, they are suscep-
tible to low-quality optical flow maps as they are strongly
dependent on motion cues.

To overcome this limitation, we design a novel network
that operates regardless of motion availability, termed as a
motion-as-option network, as shown in Figure 1 (b). The
proposed network is based on simple encoder–decoder ar-
chitecture. The encoder extracts semantic features from an
RGB image and an optical flow map, while the decoder gen-
erates an object segmentation mask by fusing and decoding
those features. In contrast to the existing two-stream VOS
methods such as MATNet, FSNet, and AMC-Net, we sepa-
rately encode the respective cues and fuse them via simple
summation after the feature embedding process. Further-
more, the motion stream is adaptively turned on or off, mak-
ing it less dependent on motion cues. If the motion stream
is turned on, motion cues are added to the appearance cues
to construct the final cues, and if it is turned off, only the ap-
pearance cues are used to construct the final cues (RGB im-
ages are used as input of the motion encoder). The proposed
motion-as-option network has two main advantages over the
existing two-stream methods: 1) it is robust against low-
quality optical flow maps as the network is learned while
treating motion as option; and 2) it can run without opti-
cal flow maps during inference, which greatly increases its
applicability and usability.

To fully exploit the properties of the proposed motion-
as-option network, we also propose a collaborative network
learning strategy. As motion cues are optionally adopted in
the proposed network, both training samples with and with-
out optical flow maps need to be provided in the training
stage to meet our network design goal. A straightforward
approach to obtain these training samples is intentionally
and randomly discarding optical flow maps in VOS training
samples. However, to better exploit the advantage that opti-
cal flow maps are not always needed, we additionally adopt
salient object detection (SOD) training samples to provide
large-scale data. When the motion stream is turned on, VOS
training samples are used and optical flow maps are fed into
the motion encoder as input. When the motion stream is
turned off, SOD training samples are used and RGB images
are fed into the motion encoder as input.

We validate our proposed approach on the public bench-
mark datasets for unsupervised VOS, DAVIS 2016 [21] val-
idation set, FBMS [19] test set, and YouTube-Objects [22]
dataset, by quantitatively and qualitatively comparing it
to other state-of-the-art methods. On all the benchmark
datasets, our proposed method outperforms the existing
methods while maintaining an exceptionally-fast inference
speed of 40+ fps on a single GeForce RTX 2080 Ti GPU.
We believe that our simple, fast, and strong solution takes
a meaningful step toward efficient and applicable VOS, and
can serve as a solid baseline for future research.

Our main contributions can be summarized as follows:

• We introduce a novel motion-as-option network that op-
tionally leverages motion cues and a collaborative net-
work learning strategy that maximizes the advantage of
the proposed network.

• The proposed motion-as-option network performs
strongly against low-quality optical flow maps and can
even run without optical flow maps.

• On public benchmark datasets, the proposed network
achieves state-of-the-art performance, with a G score of
86.1% on the DAVIS 2016 validation set, a J score of
79.9% on the FBMS test set, and a J score of 71.5% on
the YouTube-Objects dataset.

• In contrast to other recent methods that are designed
with complex architectures, our method is designed with
a simple encoder–decoder architecture, which enables a
real-time inference speed of 40+ fps.

2. Related Work
Temporal coherence. A key property of videos is that
different frames of the same video sequence share similar
content that are highly related to each other. In unsuper-
vised VOS, some methods have exploited this locality of
a video, i.e., the observation that salient objects appear in
every frame of a video. COSNet [17] emphasizes the inher-
ent correlation among video frames from a holistic view-
point. It adopts a global co-attention mechanism to cap-
ture the frequently-reappearing salient object in a video.
AGNN [30] solves the problem of the reappearance of the
salient object by regarding each frame as node and the re-
lations between the frames as edges. Through iterative in-
formation fusion over the frames, a complete understanding
of the video content can be obtained. DFNet [40] obtains
the inherent long-term correlation between different frames
of a video by learning discriminative representation from
a global perspective. AD-Net [36] and F2Net [16] recon-
sider long-term temporal dependencies in a video by estab-
lishing dense correspondences between pixel embeddings
of the reference and query frames. As these methods re-
quire multiple frames for calculating coherence, each sepa-
rate frame in a video cannot be independently inferred.
Motion information. To leverage the property that salient
objects usually have distinctive motion that can be dis-
tinguished from the background, some methods have ex-
ploited the short-term motion information obtained from
pre-trained optical flow estimation models. MATNet [41]
has a two-stream encoder that employs RGB images and
optical flow maps to separately treat appearance and mo-
tion, which was performed for the first time. RTNet [23] fo-
cuses on the problem that motion information is sometimes
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Figure 2. Architecture of our proposed network. Appearance and motion features are separately extracted from an RGB image and either an
RGB image or an optical flow map, respectively. If the motion stream is turned on, both appearance and motion cues are leveraged, whereas
if the motion stream is turned off, only appearance cues are leveraged. The fused features after the appearance and motion embedding are
gradually decoded by the decoder to predict the final binary segmentation mask.

too noisy, which results in misguidance about the object.
To solve this, a reciprocal transformation network is pro-
posed to correlate the intra-frame contrast, motion cues, and
temporal coherence of recurring objects. FSNet [7] intro-
duces a full-duplex strategy to better exchange useful cues
between appearance and motion information. It comprises
a relational cross-attention module to realize bidirectional
message propagation across embedding subspaces. Trans-
portNet [38] establishes the correspondence between ap-
pearance and motion cues while suppressing the distracting
noises via optimal structural matching using Sinkhorn lay-
ers. AMC-Net [35] modulates the weights of appearance
and motion features and suppresses the redundant and mis-
leading information by evaluating the importance of each
modality. As each frame is separately processed in these
two-stream methods, only an RGB image and an optical
flow map are required to infer each frame. However, since
they are highly dependent on the quality of optical flow
maps (susceptible to low-quality optical flow maps), stable
and reliable prediction cannot be achieved.

Network learning strategy. As the amount of training data
for unsupervised VOS is not sufficient compared to that for
other vision tasks, existing methods have adopted various
network learning strategies for effective network training.
AGS [31] exploits two image SOD datasets, DUT [34] and
PASCAL-S [14], both of which provide static gaze data and
segmentation annotations for use as external data. COSNet
and AGNN use pre-trained segmentation models that are
trained on MSRA10K [2] and DUT, and fine-tune the net-
works on the DAVIS 2016 [21] training set. RTNet and FS-
Net pre-train the appearance stream on DUTS [29] before
the main training on videos. IMP [13] adopts a pre-trained
semi-supervised VOS model trained on large datasets, such
as COCO [15] and YouTube-VOS 2018 [33].

3. Approach
3.1. Problem Formulation

Unsupervised VOS aims to predict binary segmentation
masks O := {O0, O1, ..., OL−1} using input RGB images
I := {I0, I1, ..., IL−1}, where L is the length of a given
video sequence. To leverage motion as well as appearance
information, optical flow maps F := {F 0, F 1, ..., FL−1}
are generated using a pre-trained optical flow model and are
used as input after transforming 2-channel motion vectors
to 3-channel RGB values. Following existing two-stream
VOS methods, such as MATNet [41], FSNet [7], and AMC-
Net [35], an input video is processed frame-by-frame in our
method. When inferring Oi, only Ii and F i are required.

3.2. Motion-as-Option Network

To reduce motion dependency of existing two-stream
methods, which are susceptible to low-quality optical flow
maps, we propose a novel motion-as-option network that
flexibly leverages motion cues to reduce motion depen-
dency. Figure 2 displays the architecture of our proposed
motion-as-option network.

Separate encoders. Considering that appearance and mo-
tion cues have different advantages that can complement
each other, existing two-stream methods employ strongly-
connected encoders. After every encoding block, appear-
ance and motion features exchange their information, im-
posing constraints on each other. As the appearance and
motion encoders cannot be separated, they can be regarded
as a single encoder with an RGB image and an optical flow
map as its input. Therefore, existing two-stream VOS meth-
ods are very dependent on motion cues extracted from op-
tical flow maps, which results in critical errors when low-
quality optical flow maps are used as input.
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Unlike the existing two-stream methods, we use two sep-
arate encoders to embed appearance features and motion
features independently. Let us denote appearance features
as {Ak}Kk=1 and motion features as {Mk}Kk=1, where K is
the number of blocks in the encoder and a higher k value
indicates higher-level features. The appearance features
are extracted from RGB images, whereas the motion fea-
tures are obtained from either RGB images or optical flow
maps. After blending appearance features and motion fea-
tures, fused features {Xk}Kk=1 can be defined as

Xk = Ak +Mk . (1)

As appearance features and motion features are separately
embedded and then fused, the separation of appearance and
motion cues can be easily achieved. This makes our net-
work robust against inaccurate motion cues, as the network
becomes less dependent on the motion stream. Addition-
ally, considering both RGB images and optical flow maps
are used as input of the motion encoder during network
training, network overfitting to explicit motion cues can be
prevented. This also greatly increases usability and applica-
bility of the motion-as-option network as it does not neces-
sarily need optical flow maps during inference.
Decoder. The decoder refines the fused features and gen-
erates binary segmentation masks. To yield high-resolution
masks, the fused features are gradually refined using decod-
ing blocks that are designed similar to those of TBD [4].
Each decoding block comprises a convolutional layer that
blends different features, a CBAM layer [32] that reinforces
both channel and spatial feature representations, and an up-
sampling layer that increases the spatial size of the features.
Assuming Ψk indicates the k-th decoding block, where a
higher k value indicates higher resolution, decoded features
{Dk}Kk=1 can be obtained as

Dk =

{
Ψk(XK−k+1) k = 1

Ψk(Dk−1 ⊕XK−k+1) otherwise ,
(2)

where ⊕ indicates channel concatenation. After K decod-
ing blocks, the final segmentation mask O can be defined
after value quantization using an argmax operation. The
first and second channels denote the background and fore-
ground segmentation maps, respectively.

3.3. Collaborative Learning Strategy

The key property of the proposed motion-as-option net-
work is that it optionally leverages optical flow maps. To
train the network in accordance with our network design
goals, training samples with and without optical flow maps
are required during the network training. A simple approach
for accomplishing this is intentionally and randomly dis-
carding optical flow maps of VOS training samples. How-
ever, instead, we adopt SOD training samples to fully ex-
ploit the advantage of the proposed network that optical

flow maps are not always required. When VOS samples are
adopted, optical flow maps are used as input of the motion
encoder, whereas when SOD samples are adopted, RGB im-
ages are used as input of the motion encoder.

Although providing training samples in a collaborative
manner sounds reasonable as it maximizes the efficacy of
the proposed network, it cannot be simply implemented on
GPU devices due to the different formats of VOS and SOD
data. To enable batch training to accelerate network training
and ensure stability, we use a simple indexing trick. First,
training data samples are generated from a dataset compris-
ing VOS and SOD training samples. For each VOS training
sample, an RGB image, an optical flow map, and a ground
truth segmentation mask are loaded. In contrast, for each
SOD training sample, an RGB image and a ground truth
segmentation mask are loaded. Then, to ensure that the
samples have the same format, void tensors are generated
and regarded as optical flow maps for the SOD samples. To
verify the validity of optical flow maps, a motion validity
index is allocated for each training sample. For VOS and
SOD samples, it is set to 1 and 0, respectively. Using the
generated indices, feature fusion process is implemented as
shown in Code Listing 1.

# A: appearance features
# M: motion features
# X: fused features
A, M, X = {}, {}, {}

# image:(Bx3xHxW), RGB images
# extract appearance features
a = image
for k in K:

A[k] = app_block_k(a)
a = A[k]

# i:(Bx1x1x1), motion validity indices
# flow:(Bx3xHxW), optical flow maps
# extract motion features
m = i * flow + (1 - i) * image
for k in K:

M[k] = mo_block_k(m)
m = M[k]

# generate fused features
for k in K:

X[k] = A[k] + M[k]

Code Listing 1. Feature fusion process for batch training.

3.4. Implementation Details

Optical flow map. To leverage motion information as well
as appearance information, we extract semantic motion cues
from optical flow maps. To generate the flow map at frame
i, we consider frame i as the starting frame and frame i+ 1
as the target frame. If i is the last frame of a video, i.e.,
L−1, we regard i−1 as the target frame. As the optical flow
estimation network, we use RAFT [28] pre-trained on the
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Sintel [1] dataset. Optical flow map generation is performed
without changing the original resolution of the VOS data
samples. To reduce redundant training and testing times, we
generate and save the optical flow maps in advance, instead
of calculating them immediately in the middle of inference.

Encoder. Following most existing approaches for unsuper-
vised VOS, such as COSNet [17], AD-Net [36], and MAT-
Net [41], we adopt ResNet-101 [5] as our backbone en-
coder. It comprises total four blocks, i.e., K = 4. The fea-
tures extracted from the k-th block have the scale of 1/2k+1

compared to the input resolution. To preserve rich feature
representations learned from the large number of training
samples, we initialize both appearance and motion encoders
with ImageNet [12] pre-trained version.

3.5. Network Training

Data preparation. To obtain training data diversity, we
adopt both VOS and SOD datasets, as described in Sec-
tion 3.3. As the VOS training dataset, DAVIS 2016 [21]
training set is employed. Note that FBMS [19] also has a
training set but is not adopted for network training follow-
ing the common protocol in unsupervised VOS. As the SOD
training dataset, DUTS [29] is adopted. We use both DUTS
training and test sets as our training dataset. The training
data are randomly sampled from VOS and SOD samples
with fixed probabilities of 25% and 75%, respectively.

Training details. During all the training stages, we re-
size the RGB images, optical flow maps, and segmentation
masks to 384×384 resolution. We use bicubic interpolation
to resize RGB images and optical flow maps, while the near-
est interpolation is used for segmentation masks to sustain
the values to either 0 or 1. For network optimization, we
use cross-entropy loss and the Adam optimizer [10]. The
learning rate is set to 1e-5 without learning the rate decay,
and the batch size is set to 16. Following existing semi-
supervised VOS algorithms, such as STM [20], KMN [25],
CFBI [37], and BMVOS [3], we freeze all batch normaliza-
tion layers [6] during training. Network training is imple-
mented on two GeForce RTX 2080 Ti GPUs and takes less
than 20 hours.

4. Experiments

In this section, we first describe the datasets used in this
study in Section 4.1. Evaluation metrics for quantitatively
evaluating the method performance are described in Sec-
tion 4.2. The quantitative and qualitative comparison of our
approach to other state-of-the-art methods is presented in
Section 4.3 and Section 4.4, respectively. Finally, we thor-
oughly validate the effectiveness of our proposed approach
by conducting an extensive analysis in Section 4.5. Our
method is abbreviated as TMO.

4.1. Datasets

To validate the effectiveness of our proposed approach,
we use four datasets that are widely adopted for unsuper-
vised VOS. For network training, DUTS [29] and DAVIS
2016 [21] are used. For network testing, DAVIS 2016,
FBMS [19], and YouTube-Objects [22] are used.

DUTS. DUTS is the largest SOD dataset, comprising
10,553 training images and 5,019 test images, each with
densely-annotated ground truth segmentation masks.

DAVIS 2016. DAVIS 2016 is one of the most popular
datasets for VOS tasks. It contains 30 training video se-
quences and 20 validation video sequences that only contain
single-object scenarios.

FBMS. FBMS comprises 59 video sequences, and a total
of 720 frames are annotated. In some sequences, multiple
objects are annotated as salient objects.

YouTube-Objects. YouTube-Objects dataset constitutes
videos collected from YouTube and contains 10 object
classes. Each class contains between 9 and 24 video se-
quences. As there is no training set / test set separation, it is
only used for network validation.

4.2. Evaluation Metrics

The performance of the unsupervised VOS methods can
be quantitatively evaluated using a protocol similar to that
for the general image segmentation tasks. Usually, two
kinds of measurements are adopted: J and F . J is a metric
that measures the region accuracy. It is equal to a normal
intersection-over-union (IoU) metric, which can be repre-
sented as

J =

∣∣∣∣Mgt ∩Mpred

Mgt ∪Mpred

∣∣∣∣ , (3)

where Mgt and Mpred denote the ground truth and pre-
dicted binary segmentation masks, respectively. Contour
accuracy F is a metric that is also based on IoU, but it is
calculated only for the object boundaries as

Precision =

∣∣∣∣Mgt ∩Mpred

Mpred

∣∣∣∣ , (4)

Recall =
∣∣∣∣Mgt ∩Mpred

Mgt

∣∣∣∣ , (5)

F =
2× Precision × Recall

Precision + Recall
. (6)

G metric, which is the average of J and F , is also a widely-
used metric for evaluating VOS performance.
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Table 1. Quantitative evaluation on the DAVIS 2016 validation set and FBMS test set. OF and PP indicate the use of optical flow estimation
models and post-processing techniques, respectively.

DAVIS 2016 FBMS
Method Publication Resolution OF PP fps GM JM FM JM

PDB [27] ECCV’18 473×473 ✓ 20.0 75.9 77.2 74.5 74.0
MOTAdapt [26] ICRA’19 - ✓ - 77.3 77.2 77.4 -
AGS [31] CVPR’19 473×473 ✓ 10.0 78.6 79.7 77.4 -
COSNet [17] CVPR’19 473×473 ✓ - 80.0 80.5 79.4 75.6
AD-Net [36] ICCV’19 480×854 ✓ 4.00 81.1 81.7 80.5 -
AGNN [30] ICCV’19 473×473 ✓ 3.57 79.9 80.7 79.1 -
MATNet [41] AAAI’20 473×473 ✓ ✓ 20.0 81.6 72.4 80.7 76.1
WCS-Net [39] ECCV’20 320×320 33.3 81.5 82.2 80.7 -
DFNet [40] ECCV’20 - ✓ 3.57 82.6 83.4 81.8 -
3DC-Seg [18] BMVC’20 480×854 ✓ 4.55 84.5 84.3 84.7 -
F2Net [16] AAAI’21 473×473 10.0 83.7 83.1 84.4 77.5
RTNet [23] CVPR’21 384×672 ✓ ✓ - 85.2 85.6 84.7 -
FSNet [7] ICCV’21 352×352 ✓ ✓ 12.5 83.3 83.4 83.1 -
TransportNet [38] ICCV’21 512×512 ✓ 12.5 84.8 84.5 85.0 78.7
AMC-Net [35] ICCV’21 384×384 ✓ ✓ 17.5 84.6 84.5 84.6 76.5
D2Conv3D [24] WACV’22 480×854 - 86.0 85.5 86.5 -
IMP [13] AAAI’22 - 1.79 85.6 84.5 86.7 77.5

TMO 384×384 ✓ 43.2 86.1 85.6 86.6 79.9

Table 2. Quantitative evaluation on the YouTube-Objects dataset. Performance is reported with the J mean.

Method Aeroplane Bird Boat Car Cat Cow Dog Horse Motorbike Train Mean

PDB [27] 78.0 80.0 58.9 76.5 63.0 64.1 70.1 67.6 58.4 35.3 65.5
AGS [31] 87.7 76.7 72.2 78.6 69.2 64.6 73.3 64.4 62.1 48.2 69.7
COSNet [17] 81.1 75.7 71.3 77.6 66.5 69.8 76.8 67.4 67.7 46.8 70.5
AGNN [30] 71.1 75.9 70.7 78.1 67.9 69.7 77.4 67.3 68.3 47.8 70.8
MATNet [41] 72.9 77.5 66.9 79.0 73.7 67.4 75.9 63.2 62.6 51.0 69.0
WCS-Net [39] 81.8 81.1 67.7 79.2 64.7 65.8 73.4 68.6 69.7 49.2 70.5
RTNet [23] 84.1 80.2 70.1 79.5 71.8 70.1 71.3 65.1 64.6 53.3 71.0
AMC-Net [35] 78.9 80.9 67.4 82.0 69.0 69.6 75.8 63.0 63.4 57.8 71.1

TMO 85.7 80.0 70.1 78.0 73.6 70.3 76.8 66.2 58.6 47.0 71.5

4.3. Quantitative Results

We quantitatively evaluate the performance of our
method and compare it with that of other state-of-the-art
methods on three popular benchmark datasets for unsuper-
vised VOS: DAVIS 2016 [21] validation set, FBMS [19] test
set, and YouTube-Objects [22] dataset.

DAVIS 2016. In Table 1, we evaluate the performance of
our method on the DAVIS 2016 validation set. For a fair
comparison, we also report the use of post-processing tech-
niques, such as fully connected CRF [11] and instance prun-
ing proposed in AD-Net [36], which have heavy compu-
tational burden. In addition, to consider the efficiency of
each method, the inference time is reported for the meth-
ods whose fps is publicly available. Note that both the
post-processing time and optical flow map generation time
are not considered. The table shows that D2Conv3D [24]

achieves a notable performance with a G score of 86.0%,
but as it is based on 3D convolutional layers, it requires con-
siderable network pre-training data, such as Kinetics400 [9]
and Sports-1M [8]. IMP [13] also exhibits remarkable per-
formance with a G score of 85.6%, but as it requires global
observation on all the frames of a video to select the optimal
starting frame, it cannot run in an online manner. Unlike the
methods that sacrifice applicability to obtain higher accu-
racy, WCS-Net [39] is quite practical with a relatively-fast
inference speed of 33.3 fps. However, its performance is
not comparable to those of other state-of-the-art methods.
Even without post-processing techniques and maintaining
online availability, our method outperforms all other meth-
ods with a G score of 86.1% and an exceptionally-fast infer-
ence speed of 43.2 fps.

FBMS. Quantitative evaluation on the FBMS test set is also
presented in Table 1. Among the existing methods, Trans-
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Figure 3. Qualitative comparison of different methods on the DAVIS 2016 validation set.

portNet [38] achieves the best performance with a J score
of 78.7%. Performances of F2Net [16] and IMP are also
impressive, showing a J score of 77.5%. Our method sur-
passes all other methods with a J score of 79.9%.

YouTube-Objects. In Table 2, performance of the state-
of-the-art methods on the YouTube-Objects dataset is quan-
titatively compared. For the YouTube-Objects dataset, the
model performance is evaluated using class accuracy, which
denotes the mean score of the sequences in each class, and
overall accuracy, which denotes the mean score of all se-

quences in the entire dataset. TMO achieves the highest
overall accuracy of 71.5% J score. The performance on the
YouTube-Objects dataset demonstrates the effectiveness of
our approach for challenging scenarios.

4.4. Qualitative Results

We qualitatively compare our method to state-of-the-
art MATNet [41] and FSNet [7] on the DAVIS 2016 [21]
validation set in Figure 3. For a fair comparison, we se-
lect the methods that leverage motion cues obtained from
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pre-trained optical flow estimation models as our proposed
method. As shown in the figure, MATNet and FSNet gen-
erate noisy results, especially when optical flow maps are
confusing or unclear, e.g., the third and fourth frames in
the lower sequence. In such cases, they cannot appropri-
ately deal with the error of the flow maps, as the network
is highly dependent on motion cues. Unlike those methods,
TMO can consistently generate fine and accurate segmenta-
tion masks even when the quality of the flow maps is low, as
the entire pipeline is learned by treating motion as option.
The qualitative results also demonstrate the superiority of
our approach for reliable and stable VOS compared to other
state-of-the-art VOS approaches.

4.5. Analysis

We conduct an ablation study on the network training
and testing protocols of our method in Table 3. Networks
trained with VOS samples, sequentially trained with SOD
and VOS samples, and collaboratively trained with VOS
and SOD samples are compared with and without the use
of the motion stream. As described in Section 3.5, we
use DAVIS 2016 [21] training set as VOS samples and
DUTS [29] training set and test set as SOD samples. For
network testing, G score is adopted for the DAVIS 2016
validation set, whereas for the FBMS [19] test set and
YouTube-Objects [22] dataset, J score is adopted.
Collaborative learning strategy. We validate the effective-
ness of our proposed collaborative network learning strat-
egy by comparing model I, model II, and model III. If only
the VOS sampels are adopted for network training, as in
model I, the performance is unsatisfactory due to the small
number of training samples in the DAVIS 2016 training
set. The low performance on all datasets shows that net-
work overfitting occurs. To prevent the overfitting problem,
existing two-stream methods, including COSNet [17] and
FSNet [7], pre-train the network on SOD datasets, such as
MSRA10K [2] and DUTS datasets, and then fine-tune it on
the DAVIS 2016 training set. To simulate this protocol for a
fair comparison, we first pre-train our network on the SOD
samples and then fine-tune it on the VOS samples, as in
model II. Although this method can relieve the overfitting
problem to some extent, the network is still overly fitted to
the training set. In contrast, if our proposed collaborative
network learning strategy is adopted, as in model III, the
model does not suffer from the overfitting problem as both
VOS and SOD samples are jointly used for network train-
ing. On all testing datasets, our approach outperforms other
training protocols, demonstrating the effectiveness of a col-
laborative network learning strategy.
Motion dependency. To determine to what extent each
training strategy makes a model dependent on motion cues,
we also report the performance when RGB images are fed
into the motion encoder. For model versions trained with

Table 3. Ablation study on network training and testing protocols.
Training indicates which training protocols are adopted for net-
work training. Testing indicates input of the motion encoder dur-
ing inference. D, F, and Y denote DAVIS 2016 validation set,
FBMS test set, and YouTube-Objects dataset, respectively.

Version Training Testing D F Y

I VOS Flow 76.5 59.2 57.2
II SOD → VOS Flow 82.1 74.7 63.0
III VOS & SOD Flow 86.1 79.9 71.5

IV VOS Image 63.7 52.8 52.6
V SOD → VOS Image 73.0 76.8 69.3
VI VOS & SOD Image 80.0 80.0 73.1

the VOS samples and sequentially trained with the SOD and
VOS samples, performance degradation when optical flow
maps are not available is substantial for the DAVIS 2016
validation set. However if the collaborative learning strat-
egy is adopted, the performance degradation is only 6.1%,
verifying that the collaborative learning strategy greatly re-
duces motion dependency of the network. Notably, com-
pared to the DAVIS 2016 validation set, the FBMS test
set and YouTube-Objects dataset seem to not be consid-
erably dependent on motion cues. Specifically, model VI
yields a higher score than model III on the FBMS test set
and YouTube-Objects dataset. This also supports the need
to treat motion as option for reducing motion dependency
since optical flow maps are not always reliable.

5. Conclusion
In unsupervised VOS, the combined use of appearance

and motion streams has been an effective and powerful
tool. However, as existing two-stream methods fuse ap-
pearance and motion cues in early stage, they are very de-
pendent on motion cues. This makes them susceptible to
low-quality optical flow maps, degrading their usability and
reliability. To relieve this concern, we propose a motion-as-
option network that is not highly dependent on motion cues
and can also operate only with appearance cues. Addition-
ally, to fully leverage this property, a collaborative network
learning strategy is proposed. On all the public benchmark
datasets, our approach affords a new state-of-the-art perfor-
mance with real-time inference speed. We believe that our
simple, fast, and strong approach can serve as a solid base-
line for future VOS research.
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