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Abstract

Due to the trending need for autonomous driving,
camera-based object detection has recently attracted lots
of attention and successful development. However, there
are times when unexpected and severe weather occurs
in outdoor environments, making the detection tasks less
effective and unexpected. In this case, additional sensors
like lidar and radar are adopted to help the camera work
in bad weather. However, existing multimodal detection
methods do not consider the characteristics of different
vehicle sensors to complement each other. Therefore, a
novel end-to-end multimodal multistage object detection
network called MT-DETR is proposed. Unlike the unimodal
object detection networks, MT-DETR adds fusion modules
and enhancement modules and adopts a hierarchical fusion
mechanism. The Residual Fusion Module (RFM) and
Confidence Fusion Module (CFM) are designed to fuse
camera, lidar, radar, and time features. The Residual
Enhancement Module (REM) reinforces each unimodal
branch while a multistage loss is introduced to strengthen
each branch’s effectiveness. The synthesis algorithm for
generating camera-lidar data pairs in foggy conditions
further boosts the performance in unseen adverse weather.
Extensive experiments on various weather conditions of
the STF dataset demonstrate that MT-DETR outperforms
state-of-the-art methods. The generality of MT-DETR has
also been confirmed by replacing the feature extractor in
the experiments. The code and pre-trained models are
available on https://github.com/Chushihyun/
MT-DETR.

1. Introduction
In the field of computer vision, object detection is a

classic and valuable task [33, 6]. Its purpose is to find
and classify bounding boxes of objects in an image, which
can be applied to various scenarios. Nowadays, more
accurate, faster, and lighter methods are still being proposed
[7, 45]. With the development of automotive technology,
object detection models have been widely used on the road

[11, 5, 3, 39]. Safety is the most important thing when
driving. For drivers, poor visibility at night or in heavy rain
greatly increases the risk of driving. Under such conditions,
the visibility of the camera is limited, so the camera-based
detection model cannot assist drivers well. Fortunately,
using multiple sensors can make up for the shortcoming of
cameras. In this paper, not only an RGB camera but also
lidar, radar, and time information are adopted as the model
inputs. As shown in Fig.1, with the rich depth information
of lidar and radar, more accurate and robust predictions are
obtained so that the potential hazards on the road can be
prevented and safety is guaranteed.

(a) Only camera is considered.

(b) The lidar data is too sparse.

(c) MT-DETR (proposed)

(d) Ground Truth

Figure 1. Predictions of unimodal methods and MT-DETR.

Considering the data type, information volume, and
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characteristics of the sensors, the MT-DETR, an end-
to-end multimodal multistage object detection model
with confidence fusion, is proposed to tackle the object
detection task in adverse weather. The followings are the
contributions of this paper:

1. A novel end-to-end multimodal object detection
model called MT-DETR is proposed. It includes
fusion modules and enhancement modules and adopts
a hierarchical fusion mechanism. Based on the
importance of each modality, RFM, the confidence-
aware CFM and REM are designed as fusion modules
and enhancement module, respectively.

2. In order to ensure the effectiveness of each unimodal
branch, MT-DETR adopts a multistage loss function,
which increases stability and performance during
training without causing extra time during inference.

3. The camera-lidar synthesis algorithm for foggy days
(including day scenes and night scenes) is introduced
by considering the glare effects and the variation
of atmospheric light over time. The more realistic
synthetic data make the model more adaptable to
adverse weather during the training phase.

Extensive experiments on the STF dataset [3]
demonstrate that MT-DETR outperforms the existing
methods by a large margin both in clear and unseen adverse
weather. If MT-DETR is additionally trained with the
proposed synthetic foggy data, it achieves higher accuracy.

2. Related Work
2.1. Object Detection Architecture

Object detection is a popular and challenging task in
computer vision. Most object detection frameworks can
be roughly divided into one-stage and two-stage methods.
One-stage detectors (e.g., SSD [24], RetinaNet [21], YOLO
series [31, 32, 4, 42]) directly obtain the classification
and bounding box of the object from the feature map
quickly. In contrast, two-stage detectors (e.g., RCNN series
[14, 13, 33, 16, 6, 8]) perform region proposal to propose
candidate bounding boxes for better results with higher time
cost.

Recently, [7] proposed a Transformer-based [40] end-
to-end detection framework called DETR. It treats object
detection as a set prediction problem, removing most of
the previous hand-crafted design and becoming a simpler
detection pipeline. The subsequent Deformable DETR [45]
accelerated the convergence of DETR and achieved better
performance. Based on this end-to-end framework, we
propose MT-DETR using a multimodal backbone to process
data from multiple sensors, and it is adaptive to almost all
detection frameworks.

2.2. Multimodal Fusion

Due to the inherent insufficiency of a single sensor,
multimodal fusion is a task that has received more and
more attention recently. Many previous works [41, 29, 18]
have studied how to combine images with text, sound
or point clouds, etc. Compared with unimodal object
detection (Fig.2(a)) [33, 31, 7, 45], Cross-modal data can be
complementary for better performance. Multimodal fusion
is a core but non-trivial problem in multimodal task. ”Early
Fusion” [41] simply concatenates multimodal inputs, and
”Middle Fusion” [44, 3, 27, 23, 29] usually performs better
by fusing cross-modal data at the feature extraction stage
(Fig.2(b)). However, multimodal fusion is not a simple task
because of the different data types and properties among the
modalities. Existing multimodal object detection methods
[44, 27, 23] successfully improve accuracy in clear weather
but cannot perform well in bad weather. In this paper, MT-
DETR is extended from ”Middle Fusion” with additional
specially designed modules and auxiliary loss functions
(Fig.2(c)).

2.3. Datasets for Autonomous Vehicle

With the rapid development of autonomous driving
technology, many camera-based driving datasets are
presented [12, 11, 36]. Vehicles nowadays are usually
equipped with multiple sensors (e.g., stereo cameras, lidar,
radar) for more accurate detection, and many multimodal
driving datasets are presented [5, 39, 3, 2, 10, 38]. For safe
driving, autonomous vehicles should be able to adapt to
any weather and time of day. Still, most driving datasets
only focus on clear weather conditions [5, 39, 10].

The STF dataset [3] includes clear, light fog, dense fog,
and snow weather, and each weather has day and night
scenes. Due to the rich diversity of weather and time, it
is adopted as the dataset for this research. Although STF
covers a variety of weather, the amount of adverse weather
data (light fog, dense fog, snow/rain) is insufficient for
training. Therefore, we only use clear weather as training
data and test on various weather conditions.

Considering commonality and effectiveness for general
situations, data generated by the camera, lidar, radar, and
time from STF are considered [3] as the input sensors. The
followings are their characteristic:

• Camera has always been the primary sensor for object
detection because it is the most abundant data source.
However, the camera is limited when the visibility is
not high due to insufficient light at night.

• Lidar is also an essential sensor for self-driving cars
since it provides depth information and is not affected
by brightness. Nevertheless, lidar visibility is reduced
and noise occurs on rainy or foggy days.
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Figure 2. Overview of different object detection frameworks. (a) Unimodal methods input RGB camera image. After the feature
extraction by backbone, multi-scale features are passed to detection head for prediction. (b) Middle fusion-based methods extract
multimodal features by each branch, then fuse them together to predict objects. (c) MT-DETR uses fusion module and enhancement module
for more accurate features, and adopts hierarchical fusion mechanism and auxiliary multistage loss to ensure more effective learning.

• Radar has good robustness and is not affected by
bad weather, but the data points provided by radar in
STF are very sparse. It is challenging to use radar
effectively, especially with only dozens of depth points
in a frame.

• Different from previous works [2, 5], we are the first
to utilize time information as the model’s input as
we found that the reliability of each sensor may be
influenced over time. Time data is a binary value
according to the day/night annotation of the dataset so
that the model can be aware of time information.

Due to the above reasons, it is believed that integrating
information from cameras, lidar, radar, and time makes the
model more adaptive to various weather conditions as those
sensors contain complementary properties.

3. Methodology
3.1. MT-DETR

The proposed MT-DETR, a novel MulTimodal
MulTistage network for end-to-end object detection,
takes multiple sensors simultaneously with fused features.
Same as the Deformable DETR [45], MT-DETR adopts
Transformer [40] as the detection head. By fully utilizing
each sensor, MT-DETR obtains robust detection results at
night and in unseen weather. Experiments on STF dataset
[3] demonstrate that MT-DETR outperforms unimodal and
state-of-the-art methods.

3.1.1 Framework Overview

The input of MT-DETR’s backbone is the image data
obtained from different sensors, and the output is
multi-scale features after multimodal fusion. Fig. 3
presents the architecture of MT-DETR, which consists
of four components: feature extractor, fusion module,
enhancement module, and detection head. The ConvNeXt
[25] is adopted as the feature extractor in parallel unimodal
branches. The fusion module fuses the features extracted by
the unimodal branches (Section 3.2.1). The enhancement
module combines the fused features with the unimodal
branch to enhance the unimodal feature and then proceeds
to the feature extraction of the next scale (Section 3.2.2).
Finally, the fused features obtained from the fusion module
at each scale are passed to the detection head for prediction.

3.1.2 Hierarchical Fusion Mechanism

Combining features from all branches simultaneously may
lose the relationship and priority between sensors. Thus the
hierarchical fusion mechanism is proposed. Because the
data types of lidar and radar are similar, fusing them first
can capture more thorough and accurate depth information.
Therefore, when mixing modalities, we fuse lidar and radar
into the depth feature, combining it with the camera and
time branch. With the hierarchical fusion mechanism, the
model can understand the depth of knowledge more clearly.
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Figure 3. The architecture of MT-DETR.

3.2. Module Design

3.2.1 Fusion Modules

The Residual Fusion module (RFM) and Confidence Fusion
Module (CFM) are proposed for the fusion purpose. As
shown in Fig. 4(a)(b), RFM fuses the features of the lidar
and radar branches to obtain the depth feature, and CFM
is responsible for fusing the depth feature with camera and
time branches to get the final fused features.

Taking the amount of information from lidar and radar
into account, RFM concatenates the features of lidar and
radar. Then its dimension is reduced by the convolution
block, which adds to the lidar features’ residual connection.
Considering the characteristics of each modal, CFM
concatenates the features of the camera, depth, and time to
obtain the confidence map after dimensionality reduction
by the convolution block. After that, the confidence map is
element-wisely multiplied with the depth feature and added
to the camera feature, becoming the fusion feature.

The depth feature Fdepth
i and fusion feature Ffusion

i of i-th
stage can be computed by:

Fdepth
i = RFM(Flidar

i ,Fradar
i )

= Flidar
i + Conv1×1(F

lidar
i ⊕ Fradar

i ) ,
(1)

Ffusion
i = CFM(Fcamera

i ,Fdepth
i ,Ftime

i )

= Fcamera
i + (Fdepth

i ∗ σ(Conv1×1(F
camera
i ⊕ Fdepth

i ⊕ Ftime
i ))) ,

(2)

where Fcamera
i ,Flidar

i ,Fradar
i ,Ftime

i denote the feature
outputted from i-th stage (i = 1, 2, 3, 4) of each unimodal
feature extractor, ⊕ denotes an operation of feature
concatenation, ∗ and + denote element-wise multiplication
and addition respectively, σ(·) and Conv1×1(·) indicate
sigmoid function and 1× 1 convolution block.

3.2.2 Enhancement Module

The Residual Enhancement Module (REM) is proposed to
reinforce the unimodal branch. As shown in Fig. 4(c), REM
is similar in structure to RFM but has a deeper convolution
layer. In addition, REM pays more attention to the features
of the unimodal branch. That is to say, it combines the
output of the convolution block with the unimodal feature to
be the enhanced feature. It should be noted that the camera
and time branches are enhanced using the fusion feature,
while the lidar and radar branches are boosted with the

5255



Figure 4. The architecture of fusion modules and enhancement module. (a) Residual Fusion module (RFM) fuses the features of lidar
and radar into depth feature. (b) Confidence Fusion Module (CFM) fuses the features of camera, depth, and time to become the final fusion
feature. (c) Residual Enhancement Module (REM) fuses unimodal feature with fusion feature into refined unimodal feature.

depth feature. The enhanced feature F̃m
i of each unimodal

branch can be obtained by:

F̃m
i = REMm(Fm

i ,Ffusion
i ), for m ∈ {camera, time}

= Fm
i + Conv1×1(Conv3×3(F

m
i ⊕ Ffusion

i )) ,
(3)

F̃m
i = REMm(Fm

i ,Fdepth
i ), for m ∈ {lidar, radar}

= Fm
i + Conv1×1(Conv3×3(F

m
i ⊕ Fdepth

i )) ,
(4)

then the feature at the next scale Fm
i+1 can be extracted as:

Fm
i+1 = FEm

i+1(F̃
m
i ), for i ∈ {1, 2, 3} , (5)

where REMm(·, ·) and FEm
i (·) indicate the REM module

and feature extractor of each unimodal branch at i-th stage.
For m ∈ {fusion, camera, depth}, we finally collect

Fm = {Fm
i | i = 2, 3, 4} and feed them into the following

detection head for further prediction.

3.3. Multistage Loss Function

While fusing with extremely unbalanced sensor
information, it is possible for the fusion module only to
trust the features from the camera branch. Therefore, the
rest of the unimodal branches may not be well learned.
Inspired by [20, 6], the final fusion feature and middle-stage
features are fed into the head to get the detection result

for calculating the auxiliary loss function. This multistage
loss function ensures that each branch can extract useful
information. For unimodal object detection, the loss
function is the same as Deformable DETR [45]: Focal loss
[21] for classification, l1 loss and Generalized IoU loss
[34] for bounding box regression. These loss functions are
added to follow the weights of the Deformable DETR [45].

Afterwards, we use the prediction obtained from Ffusion
to calculate the fusion loss Lfusion; the prediction obtained
from Fcamera to calculate the camera loss Lcamera; and the
prediction obtained from Fdepth to calculate the depth loss
Ldepth. Lfusion is the primary loss while Lcamera and Ldepth
are auxiliary ones. The total loss is then defined as:

Ltotal = λfusionLfusion + λcameraLcamera + λdepthLdepth , (6)

where λfusion, λcamera, λdepth are corresponding weights to
balance the assistant supervision.

3.4. Foggy Data Synthesis

In the STF dataset, only clear weather data are
considered for training, so we propose a synthesis method
to generate foggy data from those clear data. A pair of
data contains information from the camera, lidar, radar, and
time. Notice that the data from the camera and lidar are
affected by fog, so we attempt to generate the same density
of fog on both the camera and lidar data.
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3.4.1 Camera Data Synthesis

Based on [19, 35], the following composition formulas are
utilized to impose fog on clear images. Given clear image
I , depth map D, atmosphere light A, the transmission map
T , the foggy image I

′
can be generated as:

T = e−β×D ,

I
′
= T ∗ I + (1− T ) ∗A ,

(7)

where β is a weight representing the density of fog, which
is set to 1.0, ∗ and + denote pixel-wise multiplication and
addition, respectively.

As no depth map is available in STF, the pretrained
depth estimation model DPT [30] is adopted to predict
the depth. In [19], the atmosphere light A is a randomly
sampled number from [0.3, 0.7] for the whole frame, yet
we introduce two modifications. (1) The sampling interval
is adjusted over time to consider the difference between
day and night. (2) Real foggy images have apparent glare
effects, so the atmosphere light A varies by referring to the
local brightness of the camera image I . In other words,
the atmosphere light A is rather than a single value for the
whole frame. The effect of improved fog synthesis is shown
in Fig. 5(b). More details and visualizations of the synthesis
algorithm are provided in the supplementary material.

3.4.2 Lidar Data Synthesis

Due to the limited penetration of the invisible light emitted
by the lidar sensor, the sensing ability of the lidar is affected
in adverse weather. For example, fog affects the lidar
signal in two aspects. First, visibility becomes poor, and
lidar points in far distance will disappear. Second, noise is
introduced into the air. Based on the point cloud imaging
principle of lidar, [15] physically accurately simulated
the effect of fog on lidar and proposed a fog simulation
algorithm on clear lidar data. We utilize the method of
[15] to add the fog effect on the lidar point cloud and the
resultant effect is shown in Figure 5(d).

4. Experiment
4.1. Dataset, Metrics and Implementation Details

The experiments are conducted on the STF dataset [3]. It
provides data with 2D bounding boxes for object detection
of vehicles and pedestrians in various weather conditions,
including clear, light fog, dense fog, and snow. All training,
validation, and testing data include day and night scenarios,
along with their weather conditions and quantities are
shown in Table 1.

The average precision (AP) is used to evaluate the object
detection tasks. As for the COCO [22] benchmark, AP75

(a) clear camera (b) synthesized foggy camera

(c) clear lidar (d) synthesized foggy lidar

Figure 5. Results of fog synthesis on camera and lidar. (b) is
synthesized from (a) using equation (7), and (d) is synthesized
from (c) using the method proposed by [15].

Table 1. The amount of each weather condition in STF.

Condition
Training Validation Testing

clear clear clear light fog dense fog snow

day 2183 399 1005 633 572 2293
night 1343 409 877 419 315 2440

total 3526 808 1882 1052 887 4733

is adopted as the scoring metric. AP75 represents the area
under the precision-recall curve, so it falls between 0 and
100 (%). The higher the score, the more accurate the model.

For a fair comparison, all models adopt ConvNeXt
[25] as the feature extractor and the detection head of
Deformable DETR [45] and follow the same training
settings and parameters. All models (unless otherwise
noted) are trained on clear weather data only. We
implement MT-DETR and reimplement the previous
methods in mmdetection toolbox [9] with Pytorch [28].
All experiments are conducted on a single Nvidia A6000
GPU. AdamW optimizer [26] is utilized to train MT-DETR
for 36 epochs with batch size 1. The learning rate starts
at 0.0001 with layer-wise learning rate decay [1] and the
weight decay is set to be 0.05. λfusion = 1.0, λcamera = 1.0,
and λdepth = 0.5 are chosen to balance the multistage loss.

4.2. Multimodal Effectiveness

The performance of each combination of sensors in MT-
DETR is shown in Table 2. The results verify that the fusion
of three sensors outperforms a single or a mixture of two,
ensuring that MT-DETR integrates the advantages of each
sensor successfully. For unimodal comparisons, the camera
performs better than lidar and far exceeds radar due to the
amount of information. Radar’s points provided by STF are
too sparse to make successful predictions.
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The comparison of camera, camera-lidar, and camera-
radar demonstrates that lidar and radar can assist the
camera. Since lidar has more information, camera-lidar
performs better than camera-radar in clear weather.
However, because radar signal has better penetration,
camera-radar can catch up with camera-lidar performance
in adverse weather conditions. The camera-lidar-radar one
surpasses any of the above models, which confirms that the
three sensors’ information can complement each other, and
MT-DETR effectively utilizes their properties to improve
accuracy.

Table 2. The performance of different inputs on all STF test
splits. The best and second best results are highlighted in bold
and underlined, respectively.

Training Data Testing Data

camera lidar radar
clear light fog dense fog snow

day night day night day night day night

✓ 62.1 58.9 63.4 59.9 69.6 67.9 63.0 61.1
✓ 27.9 32.6 19.3 33.6 19.5 16.1 28.2 30.2

✓ 0.8 0.6 0.9 0.4 0.8 0.5 0.8 0.4

✓ ✓ 64.0 60.7 64.8 62.9 69.9 69.4 64.5 63.8
✓ ✓ 63.7 60.1 66.4 61.8 70.3 69.4 64.5 63.1

✓ ✓ ✓ 65.0 61.8 66.2 63.3 71.5 69.6 65.4 64.2

4.3. Comparison

In this section, MT-DETR is compared with baselines
and state-of-the-art methods. Since some existing methods
take the camera-radar signals as input, while some serve
the camera-lidar-radar signal to the model, the performance
comparison is provided with these two settings. Moreover,
experiments are conducted to verify whether the proposed
time branch and the proposed synthetic training data are
beneficial for the model’s performance. More visual
predictions of MT-DETR are shown in the supplementary
material.

4.3.1 Camera-radar

In this section, only the camera and radar signals are fed
into the MT-DETR. In Table 3, the MT-DETR is compared
with state-of-the-art object detection methods [27, 44]. Two
baselines are considered here: the ”Early Fusion” method
feeds the concatenation of each sensor into a unimodal
model at the beginning; the ”Middle Fusion” method (like
Fig. 2(b)) fuses the features extracted by each branch and
sends them to the detection head. Camera-radar fusion is
challenging because radar data is too sparse in the STF
dataset. As it can be seen from Table 3, the proposed
approach achieves higher performance than other methods
in all weather conditions. While other methods are easily
overlooked or misled by radar, MT-DETR can leverage
radar well to surpass them.

Table 3. Comparison of the baselines and state-of-the-art
methods with camera-radar signals on all STF test splits.
The best and second best results are highlighted in bold and
underlined, respectively.

Method

Testing Data

clear light fog dense fog snow
day night day night day night day night

Early Fusion 61.5 56.8 58.1 60.7 60.7 60.7 60.6 61.0
Middle Fusion 61.6 58.5 64.3 60.3 69.2 67.3 63.0 61.1
CRFNet [27] 62.3 57.7 62.5 60.3 68.3 67.7 62.3 60.9
BiRANet [44] 61.8 57.7 60.4 60.8 69.0 68.0 62.0 61.1
MT-DETR (Ours) 63.7 60.1 66.4 61.8 70.3 69.4 64.5 63.1

4.3.2 Camera-lidar-radar

Here the camera-lidar-radar signals serve as input to the
MT-DETR in the experiments. The comparisons with
baselines and state-of-the-art multimodal methods [23, 3]
are provided in Table 4. The baselines and state-of-the-
art methods are fairly comparable under different weather
conditions, while it is clear that the proposed MT-DETR
outperforms other methods by noticeable margins. These
results further prove that the design of MT-DETR, such as
CFM and multistage loss, can improve performance in clear
weather and enhance robustness in adverse environments.

Table 4. Comparison of baselines and state-of-the-art methods
with camera-lidar-radar signals on all STF test splits. The best
and second best results are highlighted in bold and underlined,
respectively.

Method

Testing Data

clear light fog dense fog snow
day night day night day night day night

Early Fusion 61.9 59.1 60.7 61.8 57.8 60.2 62.0 61.8
Middle Fusion 63.4 59.6 62.1 62.0 69.1 67.7 64.3 62.4
IADM [23] 60.4 57.4 60.3 59.6 67.5 67.0 60.4 59.2
DEF [3] 62.9 59.8 65.6 61.9 69.4 69.2 64.1 62.6
MT-DETR (Ours) 65.0 61.8 66.2 63.3 71.5 69.6 65.4 64.2

4.3.3 Overall System

Here we propose introducing the time branch and using the
proposed synthetic foggy data for training. As illustrated
in Table 5, the MT-DETR with camera-lidar-radar-time
signals (the full model) performs well in various weather
conditions. In addition, the full model with the proposed
synthetic training data boosts the results for almost all the
cases except the night scene with dense fog, which is a
challenging case that requires further discussion. Here we
also consider the glare effect in the generating process of
the synthetic data. The improvement of considering the
glare effect is also reflected in the results. The glare effect
generation is detailed in the supplementary material.
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Table 5. The full MT-DETR with synthetic training data.
The best and second best results are highlighted in bold and
underlined, respectively. ∗ denotes the synthesis algorithm without
glare effect.

Training Data Testing Data

camera lidar radar time
synthetic clear light fog dense fog snow

data day night day night day night day night

✓ ✓ ✓ 65.0 61.8 66.2 63.3 71.5 69.6 65.4 64.2

✓ ✓ ✓ ✓ 64.7 62.2 67.0 63.7 71.3 70.7 65.9 64.8
✓ ✓ ✓ ✓ ✓∗ 65.7 63.2 67.2 65.3 70.3 68.6 66.9 65.6
✓ ✓ ✓ ✓ ✓ 66.2 63.1 68.0 65.8 71.7 70.1 67.2 65.6

4.4. Ablation Study

4.4.1 Ablation on MT-DETR Input Sensor

To verify that every sensor provides helpful information
and improves the model’s performance, we conduct an
ablation study on the input sensors. Table 6 shows that MT-
DETR performs best when using all sensors simultaneously
(camera, lidar, radar, time). Considering time information,
although the full MT-DETR model’s performance is not as
expected in cases with clear days and days with dense fog, it
provides better performance in other conditions. Generally
speaking, each branch provides an improvement differently
in different cases.

Table 6. Ablation study of MT-DETR input sensors. The best
result is highlighted in bold.

Input Sensor Testing Data

camera lidar radar time
clear light fog dense fog snow

day night day night day night day night

✓ ✓ ✓ 28.8 34.1 19.3 35.0 19.0 18.2 29.6 31.2
✓ ✓ ✓ 63.6 59.6 66.0 62.2 70.6 69.4 64.1 62.5
✓ ✓ ✓ 64.3 61.2 64.7 63.2 70.8 69.8 65.6 64.4
✓ ✓ ✓ 65.0 61.8 66.2 63.3 71.5 69.6 65.4 64.2

✓ ✓ ✓ ✓ 64.7 62.2 67.0 63.7 71.3 70.7 65.9 64.8

4.4.2 Ablation of MT-DETR Architecture

An ablation study to investigate the effectiveness of the
proposed components of MT-DETR is provided in this
section. As shown in Table 7, the ”Early Fusion”
concatenates the data of each sensor at the beginning, so
there is no multimodal design which means no fusion is
considered. ”Middle Fusion” fuses the features by the
simplest approach. ”w/o REM” removes the enhancement
module from the model, which means the fusion feature is
not merged with any branch. ”w/o CFM” replaces CFM
with simpler RFM. ”w/o Hierarchical” fuses all sensors at
once instead of fusing lidar and radar first. ”w/o Multistage”
only passes the fusion feature to the following detection
head, so there are no auxiliary loss functions Lcamera and
Ldepth. These results confirm the effectiveness of every

proposed design. An ablation study on synthetic fog density
is reported in the supplementary material.

Table 7. Ablation study of MT-DETR components. The best
result is highlighted in bold.

Method

Testing Data

clear light fog dense fog snow
day night day night day night day night

Early Fusion 59.5 57.3 54.4 60.0 57.5 54.7 59.2 59.7
Middle Fusion 63.6 59.9 64.7 62.8 68.5 69.0 64.0 62.9
w/o REM 63.5 61.0 65.4 62.8 71.1 68.7 65.3 64.0
w/o CFM 64.7 62.0 64.9 63.4 70.1 68.9 65.5 64.5
w/o Hierarchical 63.1 59.9 63.9 62.0 70.7 68.2 64.1 62.5
w/o Multistage 62.9 60.3 64.7 62.7 69.2 68.4 64.2 62.6

Full MT-DETR (ours) 64.7 62.2 67.0 63.7 71.3 70.7 65.9 64.8

4.5. Generalization to Other Feature Extractors

The feature extractor of MT-DETR can be flexibly
replaced to meet different needs. Table 8 shows the results
with different feature extractors. The ConvNeXt-b [25]
is replaced by ResNet-50 [17], ResNeXt-101 [43] and
MobileNetV2 [37], respectively. The middle fusion is the
baseline, and it is compared to the proposed MT-DETR. As
can be seen from the table, the MT-DETR performs better
in all settings, which confirms its generality.

Table 8. The MT-DETR and middle fusion with different
feature extractors. The better results are highlighted in bold.

Model Architecture Testing Data

Feature Extractor Fusion Method
clear light fog dense fog snow

day night day night day night day night

ConvNeXt-b [25]
Middle Fusion 63.6 59.9 64.7 62.8 68.5 69.0 64.0 62.9

MT-DETR 64.7 62.2 67.0 63.7 71.3 70.7 65.9 64.8

ResNet-50 [17]
Middle Fusion 59.8 57.7 55.3 59.6 54.4 53.9 58.4 56.0

MT-DETR 61.4 59.3 57.9 61.5 57.2 57.1 61.3 61.4

ResNeXt-101 [43]
Middle Fusion 59.5 57.1 54.7 58.9 55.9 53.4 59.3 59.6

MT-DETR 61.1 58.5 56.4 61.3 56.0 51.2 61.2 61.2

MobileNetV2 [37]
Middle Fusion 27.3 52.8 26.0 55.1 28.7 39.0 28.2 53.9

MT-DETR 57.4 54.1 51.1 56.0 52.0 41.2 56.0 55.0

5. Conclusion
This paper proposes a novel MT-DETR network for

multimodal object detection, which adopts RFM, CFM,
REM, and hierarchical fusion mechanism to perform cross-
modal fusion and exchange. Additionally, MT-DETR
employs a multistage loss to address the imbalance among
vehicle sensors and learn to extract compelling features.
MT-DETR achieves state-of-the-art performance using the
camera, lidar and radar, and even better with additional
time information and the proposed synthetic foggy training
data. The experimental results demonstrate that the MT-
DETR is robust and performs well in various weather
conditions. The good generalization and scalability confirm
future applicability to different multimodal tasks.
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