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Abstract
Compared to joint position, the accuracy of joint rota-

tion and shape estimation has received relatively little at-
tention in the skinned multi-person linear model (SMPL)-
based human mesh reconstruction from multi-view images.
The work in this field is broadly classified into two cate-
gories. The first approach performs joint estimation and
then produces SMPL parameters by fitting SMPL to resul-
tant joints. The second approach regresses SMPL parame-
ters directly from the input images through a convolutional
neural network (CNN)-based model. However, these ap-
proaches suffer from the lack of information for resolving
the ambiguity of joint rotation and shape reconstruction and
the difficulty of network learning. To solve the aforemen-
tioned problems, we propose a two-stage method. The pro-
posed method first estimates the coordinates of mesh ver-
tices through a CNN-based model from input images, and
acquires SMPL parameters by fitting the SMPL model to
the estimated vertices. Estimated mesh vertices provide suf-
ficient information for determining joint rotation and shape,
and are easier to learn than SMPL parameters. Accord-
ing to experiments using Human3.6M and MPI-INF-3DHP
datasets, the proposed method significantly outperforms the
previous works in terms of joint rotation and shape estima-
tion, and achieves competitive performance in terms of joint
location estimation.

1. Introduction
Human pose estimation from single or multi-view im-

ages is a long-standing computer vision problem. In many
studies [9,11,30,35], the human pose is simply represented
as a set of 3D coordinates of the body joints. Compared to
joint coordinate, human joint rotation and shape estimation
has not received much attention. However, when 3D joint
coordinates as well as joint rotations and human shape in-
formation are available together, the body of a person can
be better described, as shown in Fig. 1(a) and (c). The es-
timated joint and shape information can also be used for
human part segmentation [13] and detailed human mesh re-

(a) (b) (c)

Figure 1: Results for (a) joint position estimation, (b) joint
fitting, and (c) surface fitting are visualized. Joint fitting and
surface fitting indicate that SMPL is fitted to the estimated
joint set and vertex set, respectively.

construction [45, 46].
The skinned multi-person linear model (SMPL) [22] is

frequently used for multi-view human mesh reconstruction
methods [32, 33, 38, 42], which can acquire joint rotations
and human shape as well as joint coordinates. Among
the methods, the most similar to our proposed method
is [42]. This method first estimates 3D joints from multi-
view images and then additionally computes joint rotation
and shape information by fitting the SMPL-X [28] model to
the 3D joints. However, this fitting framework heavily relies
on regularization because joint coordinates do not provide
enough information to resolve the ambiguity in the estima-
tion of joint rotation and shape information. Nevertheless,
the lack of such information can degrade joint rotation and
human shape estimation performance, as shown in Fig. 1(b).
The convolutional neural network (CNN)-based model pro-
posed in [33] directly regresses SMPL pose and shape pa-
rameters from input multi-view images. However, the map-
ping function from the input image to the SMPL parameter
is highly non-linear [27], which makes learning the model
difficult.

In this paper, we propose a Learnable human Mesh Tri-
angulation (LMT) method for SMPL-based human mesh re-
construction from sparse multi-view images. The proposed
method can solve the above two problems. LMT first esti-
mates human surface vertex coordinates, not human joints,
from the input multi-view images, and then fits the SMPL
model to the resultant vertices. Such surface vertex co-
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ordinates provide strong constraints on joint rotation and
human shape, which can help resolve the ambiguity prob-
lem. Also, many previous works [3, 6, 24, 34, 37, 39] ver-
ified that heatmap-based keypoint estimation can be easily
learned through CNNs, especially fully convolutional net-
works. Our basic idea is to extend this heatmap-based key-
point estimation framework to SMPL mesh vertex estima-
tion, which can solve the non-linearity problem in direct
SMPL parameter regression.

To reconstruct SMPL-based human mesh vertices, we
extend Learnable Triangulation of human pose (LT) [11],
the heatmap-based method for estimating sparse joints to
dense vertices. However, the application of LT to mesh ver-
tices is non-trivial and raises two issues to be overcome.
The first is high computational complexity. LT generates 3D
heatmaps to estimate body joints. No problem is observed
in the case of sparse joints (e.g., ∼20 for Human3.6M [10]
and MPI-3DHP-INF [26]). In contrast, the use of a 3D
heatmap may cause excessive GPU memory usage in the
case of dense mesh vertices (e.g., 6890 for SMPL). How-
ever, the optimization process used to obtain SMPL param-
eters in the proposed method does not require full-vertices.
Rather, estimating appropriately sampled sub-vertices can
improve the performance of the model while solving the
computational issue, which is proven through our experi-
ments.

The second issue is the inconsistency between multi-
view features. In our method, multi-view features are aggre-
gated in each voxel after being unprojected into 3D space.
In the case of voxel on the human surface, multi-view fea-
tures aggregated into the voxel must be consistent. How-
ever, occlusion can lead to inconsistency between aggre-
gated multi-view features, which makes vertex coordinate
estimation difficult. To alleviate this problem, we propose
to utilize the visibility information obtained from the single-
view mesh reconstruction method. The basic idea is to use
visibility information to increase the dependence of a cer-
tain voxel on features obtained from visible views and re-
duce the dependence on features obtained from invisible
views. We experimentally show that utilizing visibility in-
formation alleviates the multi-view inconsistency problem
and improves mesh reconstruction performance.

The contributions of this paper can be summarized as
follows:

• We quantitatively and qualitatively prove that fitting
the SMPL model to human surface vertices rather than
human body joints leads to better mesh reconstruction
results in terms of joint rotation and human shape.

• We show that the computational issue that makes it
difficult to extend the heatmap-based framework to
SMPL mesh vertices can be resolved through sub-
vertices estimation, which also brings additional per-

formance gain.

• Per-vertex visibility information is utilized to consider
the consistency of multi-view features. Moreover,
cross-dataset experiments show that the use of visi-
bility improves the generalization performance of our
model.

• Extensive experiments using Human3.6M and MPI-
INF-3DHP datasets prove that the ideas of sub-vertices
estimation and per-vertex visibility are effective. Con-
sequently, the proposed framework outperforms previ-
ous methods in terms of joint rotation and human shape
while showing competitive results in terms of 3D joint
coordinates.

2. Related Work
2.1. Multi-view Joint Estimation

Many methods [9, 11, 12, 29, 30, 36, 40] have been pro-
posed to estimate the 3D human pose in the form of joint
coordinates from the input multi-view images. Among the
methods for estimating the pose of a single person, the one
most similar to our work is LT [11]. LT aggregates 2D fea-
tures extracted from multi-view images in 3D voxel space
and then applies the 3D convolution to the aggregated fea-
ture to estimate 3D pose. However, the final LT output is
the 3D joint locations without joint rotation information.
In contrast, in our method, the SMPL parameters are esti-
mated, which enables a richer reconstruction of the human
body, including joint rotations and human shape.

2.2. Multi-view Joint and Shape Estimation
Many studies [17,32,33,38,42,43] have been conducted

to estimate joint rotations or human shape as well as joint
coordinates from input multi-view images. For SMPL and
SMPL-X parameter estimation, the model is fitted to the
predicted 3D joints in [42], and the 3D joints are fed into the
feedforward network in [38]. In contrast, our method esti-
mates SMPL parameters using 3D mesh vertices rather than
3D joints. Since the human surface provides richer infor-
mation than joint coordinates for joint rotation and human
shape estimation, our method can reconstruct rotation and
shape more accurately than joint-based methods [38, 42].
In [17], the Mannequin dataset [18] is used to train a model
that robustly predicts SMPL parameters in an in-the-wild
environment. The dataset provides videos of static humans
captured by a dynamic camera. The method in [17] per-
forms 3D joint estimation by applying the structure-from-
motion (SfM) algorithm to the input video. However, the
SfM method is generally difficult to apply to sparse multi-
view environments, e.g., Human3.6M and MPI-INF-3DHP
datasets, which are the focus of this work. The geometry
of a clothed human is reconstructed in [43] and multiple
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Figure 2: Overall pipeline of the proposed method. Visible vertices in the visibility map are colored in gold. ⊕ denotes
concatenate operation.

images obtained from a dynamic camera are used in [32].
Their goals and settings are different from our work.

In [33], an existing work with the same goal as ours,
SMPL parameters are directly regressed from multi-view
images through a CNN model. However, learning the
network in this method is difficult due to the high non-
linearity of the regression function [4,13,15,16,19,20,27].
Therefore, our method learns a keypoint estimation network
based on heatmap regression rather than parameter regres-
sion, and then obtains SMPL parameters by fitting SMPL to
human mesh vertices predicted by the network.

3. Proposed Method
3.1. Overview of the Proposed Method

We propose a method (i.e., LMT) to estimate the SMPL-
based 3D mesh of a single person from multi-view images
obtained by C calibrated cameras. Fig. 2 shows the overall
pipeline of the proposed method, which consists of the visi-
bility module, CNN backbone, feature aggregation module,
vertex regression module, and fitting module. The visibility
module estimates per-vertex visibility vc ∈ RN for sub-
sampled mesh from every single image Ic ∈ RH0×W0×3,
where N denotes the number of subsampled vertices. The
CNN backbone computes visibility augmented image fea-
tures F 2D

c ∈ RH×W×K from the input multi-view image Ic
and per-vertex visibility vc. The feature aggregation module
unprojects the input image feature F 2D

c into the 3D global
voxel space to generate C volumetric unprojected features
V unproj
c ∈ R64×64×64×K , then aggregates the unprojected

features {V unproj
c }Cc=1 to produce the volumetric aggre-

gated feature V agg ∈ R64×64×64×K . The vertex regres-
sion module generates 3D vertex coordinates M ∈ RN×3

of sub-sampled mesh from the aggregated feature V agg us-
ing 3D convolution and soft-argmax operation [35]. The

fitting module outputs the final joint coordinates, rotations,
and shape information by fitting the SMPL model to the 3D
vertex coordinates M from the vertex regression module.

3.2. Visibility Module
The visibility module calculates the per-vertex visibil-

ity map vc from the single-view image Ic. We implement
the visibility module using the I2L-MeshNet [27], one of
the state-of-the-art single-view human mesh reconstruction
methods, and the general visibility computation algorithm 1.
The detailed procedure is as follows. We first feed a single
image Ic into the I2L-MeshNet and obtain the human mesh
defined in the human-centered coordinate system of which
the origin is defined as the pelvis joint. However, the vis-
ibility computation algorithm requires camera coordinates
of the human mesh. Therefore, the algebraic triangulation
method [11] is used to estimate the pelvis joint. The camera
coordinates of the estimated pelvis joint are used to trans-
form the human mesh obtained by I2L-MeshNet into the
camera coordinate system. The visibility computation al-
gorithm is then used to obtain the visibility map for full-
vertices vfullc ∈ R6890. To prevent overfitting of the pro-
posed model, we apply additional mesh subsampling [31]
to vfullc and use the resultant per-vertex visibility map vc of
sub-vertices for subsequent processes.

3.3. Backbone
The CNN backbone outputs the visibility augmented

image features {F 2D
c }Cc=1 from input multi-view images

{Ic}Cc=1 and per-vertex visibility {vc}Cc=1. To construct
the proposed backbone, according to [11], we remove the
last classification and pooling layers of ResNet-152 [8] pre-
trained on COCO [21] and MPII [1], and then add three

1https://github.com/MPI-IS/mesh
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deconvolution layers and a 1 × 1 convolution layer to
the back of the network. The last deconvolution layer of
the backbone creates an intermediate feature F deconv

c ∈
RH×W×256. After vc is extended to the spatial axis, it is
concatenated with the intermediate feature F deconv

c . An ad-
ditional 1 × 1 convolution is applied to the concatenated
feature to generate the visibility augmented image feature
F 2D
c .

3.4. Feature Aggregation Module
In the feature aggregation module, the 2D feature F 2D

c

from the backbone is unprojected into a cuboid defined
in 3D world space to create a volumetric unprojected fea-
ture V unproj

c . The volumetric aggregated feature V agg is
then calculated through the aggregation of the unprojected
features {V unproj

c }Cc=1. In the proposed method, the esti-
mation of the vertex coordinates of the subsampled mesh
M depends on the unprojected 3D features in the cuboid.
Therefore, the location and size of the cuboid should be set
so that the cuboid contains the target human subject. Con-
sequently, a cuboid with a side length of 2.0 m, centering
on the pelvis of the target subject, is created.

The construction process of the unprojected feature
V unproj
c through the unprojection of F 2D

c is as follows.
We first project the 3D coordinates of the cuboid voxels
V coords ∈ R64×64×64×3 into the 2D image plane of each
view using the camera projection matrix and obtain the 2D
image coordinates V proj

c ∈ R64×64×64×2. Next, bilin-
ear sampling is used to extract 2D features corresponding
to each location of V proj

c from F 2D
c , and, consequently,

V unproj
c is obtained:

V unproj
c = F 2D

c {V proj
c }, (1)

where {·} denotes bilinear sampling. Then C unprojected
features in 3D world space are aggregated using 3D softmax
operation [11]. This can be written as:

V agg =

C∑
c=1

(dc ⊙ V unproj
c ), (2)

dc =
exp(V unproj

c )∑C
c=1 exp(V

unproj
c )

, (3)

where dc ∈ R64×64×64×K and ⊙ denote the confidence
weight and element-wise multiplication, respectively.

3.5. Vertex Regression Module
The vertex regression module with encoder-decoder

structure composed of 3D convolution generates the vertex
coordinates of the subsampled mesh M from the input ag-
gregated feature V agg . The encoder first computes a 3D
feature with 2 × 2 × 2 resolution and 128 channel dimen-
sion from V agg , which is fed into the decoder to output a

volumetric feature V ∈ R64×64×64×32. Next, a 1 × 1 × 1
3D convolution is applied to V to produce 3D heatmaps
H3D ∈ R64×64×64×N for the subsampled vertices. Details
of the proposed encoder-decoder are presented in the Sup-
plementary material.

A 3D soft-argmax operation is used to obtain vertex co-
ordinates M from the 3D heatmaps H3D:

H̃3D
n =

exp(H3D
n )∑

i,j,k exp(H
3D
n (i, j, k))

, (4)

Mn =
∑
i,j,k

r · H̃3D
n (i, j, k), (5)

where r = [ri, rj , rk] denotes the world coordinate vector
of the voxel with indices (i, j, k) in the 3D heatmap. H3D

n ,
H̃3D, and Mn denote the n-th channel of the 3D heatmap,
the normalized 3D heatmap, and the n-th row vector of M ,
respectively.

To train the proposed network, an L1 loss is applied to
the vertices generated by the vertex regression module:

LM =
1

N

N∑
n=1

∥Mn −M∗
n∥1, (6)

where M∗ denotes the ground-truth mesh.

3.6. Fitting Module
The fitting module is used to acquire the SMPL pa-

rameters corresponding to the vertex coordinates M gen-
erated by the vertex regression module. Fitting module is
based on optimization according to the existing works [23,
25, 28, 41, 42] and optimization parameters Θ = {z ∈
R32, R ∈ R6, β ∈ R10, t ∈ R3} contains VPoser’s latent
code z, global rotation with continuous representation [44]
R, shape parameter β, and global translation t. From the
latent code, VPoser V(·) calculates the SMPL pose param-
eter θ = V(z) ∈ R69, which is fed into the SMPL decoder
M(·) together with R, β, and t to produce the SMPL mesh
Mfit = M(θ,R, β, t) ∈ R6890×3. The SMPL mesh is
transformed into sub-vertices Mfit

sub = sub(Mfit) ∈ RN×3

by the mesh coarsening function [31] sub(·). The fitting
module updates Θ iteratively to reduce the difference be-
tween the sub-vertices of the fitted mesh Mfit

sub and the re-
gressed vertices M .

The cost function for fitting is defined as follows:

Efit = Edata + Ereg, (7)

Edata =
1

N

N∑
n=1

∥Mfit
sub,n −Mn∥22, (8)

Ereg = λzEz + λβEβ + λwEθw + λαEα, (9)
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where Mfit
sub,n and θw ∈ R6 denote the n-th row vector of

Mfit
sub and the axis-angle representation of both wrist joints.

Ez , Eβ , and Eθw are the L2 regularization terms for z, β, and
θw, respectively. And Eα is the exponential regularization
term for preventing unnatural bending of the elbows and
knees [2, 28]. Each λ represents regularization weight.

Joint coordinates J = GMfit ∈ R17×3 can be obtained
from the fitted mesh Mfit using a pretrained joint regres-
sion matrix G ∈ R17×6890. The obtained J is used to eval-
uate the joint coordinate estimation performance.

4. Experimental Results
4.1. Implementation Details

The spatial sizes of the input image Ic and 2D feature
F 2D
c are set to (H0,W0) = (384, 384) and (H,W ) =

(96, 96), respectively. The bounding box provided in the
datasets is used to crop the human region from the input
image. Random rotation is applied to the cuboid [11] along
the vertical axis of the ground, and other augmentation is
not used. Except for the fitting module, our network is
trained end-to-end. Learnable parameters are included in
the backbone and vertex regression module, and their learn-
ing rates are set to 1e-4 and 1e-3, respectively. The mini-
batch size, number of epochs, number of sub-vertices N ,
and channel of the feature map K is set to 3, 15, 108, and
32, respectively. The Adam optimizer [14] is used to train
our network, which takes about 3.5 days using a single RTX
3090 GPU. Mesh sub-sampling algorithms [31] are applied
to ground-truth human mesh vertices to obtain sub-sampled
vertices, which are used for network training. The Adam
optimizer is also used to update the optimization parameter
Θ in the fitting module. The fitting module learning rate,
number of iterations for fitting, λw, λz , λβ , and λα are set to
6e-2, 500, 6e-2, 2e-6, 5e-6, and 5e-5, respectively. All reg-
ularization weights are simply determined through greedy
search.

4.2. Datasets
Human3.6M [10] is a large-scale dataset for 3D human

pose estimation, including 3.6M video frames and 3D body
joint annotations acquired from four synchronized cameras.
It includes 11 human subjects (five females and six males),
and according to previous works [11, 33], S1, S5, S6, S7,
and S8 are used for training and S9, and S11 for testing.
The SMPL mesh obtained by applying MoSh [23] to Hu-
man3.6M is used for training and testing as ground-truth.
The input image is undistorted before training and testing.

MPI-INF-3DHP [26] is a dataset for 3D human pose es-
timation and is obtained through the multi-camera marker-
less MoCap system. Since its test data includes single-view
images, only train data composed of multi-view (i.e., 14)
images are used in our experiments. Train data includes

eight subjects. For a fair comparison, according to pre-
vious work [33], S1-S7 are used for training, S8 is used
for testing, and views 0, 2, 7, and 8 are used among all
cameras. MPI-INF-3DHP provides ground-truth 3D human
joints, but does not provide ground-truth 3D human meshes,
so pseudo ground-truth meshes are used to train the model.
The pseudo ground-truth SMPL parameters are obtained by
fitting the SMPL model to ground-truth 3D joints [28], but
the pseudo parameters are not used for evaluation.

4.3. Evaluation Metrics
Mean-per-joint-position-error (MPJPE) is a metric that

evaluates the performance of 3D human pose estimation
based on the L2 distance between the predicted and ground-
truth body joints. For LMT, joint coordinates in the world
coordinate system can be estimated. Thus, following ex-
isting works [9, 11], the L2 distance between the two joint
sets is computed without aligning the predicted and ground-
truth pelvis joints [5, 13, 15, 16, 19, 20, 27].

Mean-per-vertex-error (MPVE) is a metric that evaluates
the performance of human mesh reconstruction based on the
L2 distance between predicted and ground-truth mesh ver-
tices. The proposed method is evaluated through MPVE
only for the Human3.6M dataset on which ground-truth hu-
man meshes are available.

MPJPE and MPVE are used for the evaluation of hu-
man mesh reconstruction methods in most existing works.
However, because MPJPE and MPVE measure the position
errors for joints and vertices, they do not provide informa-
tion on whether the rotation of the body part is accurately
estimated. Therefore, the angular distance dang [7] is used
between the estimated and ground-truth joint rotations for
evaluating the proposed method:

dang = 2 sin−1 ∥R−R∗∥F
2
√
2

, (10)

where, R, R∗, and ∥·∥F denote the predicted rotation ma-
trix, ground-truth rotation matrix, and Frobenius norm, re-
spectively. The joint rotation is defined relative to its parent
joint. The rotation of the root joint (i.e., pelvis) denotes the
global orientation of the entire body. All angular distances
described in this paper are in degree units.

MPJPE averages the 3D position errors of all joints, so
it cannot provide information about the case where only a
specific joint has a large error. Therefore, 3DPCK [26] that
computes the proportion of 3D joints with errors below a
certain threshold is used. The AUC [26] is also presented
for threshold-independent evaluation.

4.4. Ablation Experiments
The number of sub-vertices. The main problem of 3D

heatmap-based prediction for SMPL mesh vertices is exces-
sive GPU memory allocation for 3D heatmaps. This prob-
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Number of vertices MPJPE ↓ MPVE ↓ Angular ↓
6890 19.85 25.21 11.98
431 18.40 24.15 11.60
216 18.97 25.10 11.75
108 18.10 24.88 11.54
54 18.35 26.47 12.00

Table 1: Ablation results for the number of estimated
vertices on Human3.6M. 3D heatmaps with 16× 16× 16
resolution are used in all experiments in this table.

Heatmap resolution MPJPE ↓ MPVE ↓ Angular ↓
16× 16× 16 18.10 24.88 11.54
32× 32× 32 18.02 24.19 11.45
64× 64× 64 17.59 23.70 11.33

Table 2: Ablation results for the resolution of 3D
heatmaps on Human3.6M. 108 vertices are estimated in
all experiments in this table.

lem can be solved by estimating fewer sub-vertices. For ex-
ample, if 108 sub-vertices are used instead of 6890 SMPL
vertices, the size of GPU memory for the 3D heatmap is
reduced by about 6890/108 ≈ 63.8 times.

To investigate the effect of using sub-vertices on mesh
reconstruction performance, MPJPE, MPVE, and angu-
lar distance results are presented according to the num-
ber of vertices in Table 1. To compare the full-vertices
model and all sub-vertices models under the same condi-
tion, 16 × 16 × 16 heatmap resolution is used. It is the
maximum resolution at which a full-vertices model under
our computing resources can be trained.

Table 1 shows that better quantitative results are ob-
tained in most cases using sub-vertices than when using
full-vertices. Only for the 54 sub-vertices, MPVE and an-
gular distance performances deteriorate compared to full-
vertices. This degraded performance is due to the fact that
54 sub-vertices do not provide sufficient information for
joint rotation and shape reconstruction, given the supple-
mentary material. We adopt the 108 vertices model that
shows the best MPJPE and angular distance performance
and requires a relatively smaller heatmap size.

Heatmap resolution. Experiments using various
heatmap resolutions are conducted to investigate a model
that can accurately estimate 108 sub-vertices. Table 2 shows
the performance for the cases in which the heatmap resolu-
tion is set to 16×16×16, 32×32×32, and 64×64×64. The
proposed method shows the best performance at 64×64×64
heatmap resolution. In this case, the memory allocation for
the heatmap is 64 × 64 × 64 × 108 × 4byte = 113.2MB,
which is similar to the memory allocation of 16 × 16 ×
16× 6890× 4byte = 112.9MB for the maximum heatmap
resolution allowed by full-vertices. According to the perfor-
mance comparison of the full-vertices model in Table 1 and
the sub-vertices model in Table 2, the 108 vertices model

ҧ𝑑1 = 0.30 ҧ𝑑2 = 0.14 ҧ𝑑3 = 0.11 ҧ𝑑4 = 0.45

ҧ𝑑1 = 0.26 ҧ𝑑2 = 0.01 ҧ𝑑3 = 0.10 ҧ𝑑4 = 0.62

Figure 3: The first row visualizes the input multi-view im-
ages. The second and third rows show the reconstructed
meshes generated from the softmax baseline and LMT, re-
spectively. d̄c is obtained by averaging the confidence
weight dc corresponding to the red pixel on the multi-view
image along the channel axis. The red pixels are obtained
by projecting the voxel including a ground-truth vertex on
the right foot to each image plane. Therefore, d̄c indicates
how much the model depends on the image feature obtained
from each view c to construct the aggregated feature of the
voxel containing the right foot vertex.

with 64×64×64 heatmap resolution achieves better perfor-
mance for all evaluation metrics than the full-vertices model
without additional memory cost.

Multi-view inconsistency. To prove that using visibility
helps feature aggregation, we implement the softmax base-
line that does not use visibility, and compare it to the LMT.
The Softmax baseline generates the image feature F 2D

c by
directly feeding F deconv

c into the 1 × 1 convolution layer
without concatenation with visibility vc. When aggregat-
ing multi-view features, using only features obtained from
views in which the human body surface is visible is desir-
able, because this leads to the consistency of aggregated
multi-view features. However, in the softmax baseline, the
multi-view inconsistency problem may arise, which can be
mitigated through the use of visibility.

In the first and fourth views of Fig. 3, the right foot is
clearly visible. In the third view, the right foot is not visi-
ble, but it can be contextually inferred that it is behind the
left foot. However, in the second view, severe occlusion pre-
vents the right foot from being estimated. Therefore, rely-
ing on the features obtained from the remaining views rather
than the second view is preferable for estimating the posi-
tion of the right foot. However, the softmax baseline shows
a higher dependence on the second view than on the third
view, which causes the model to incorrectly estimate the

2855



Model MPVE † MPJPE MPVE Angular
Softmax 22.12 17.84 24.14 11.42
LMT 21.50 17.59 23.70 11.33

Table 3: Comparison with the softmax baseline on Hu-
man3.6M. † means that the regressed vertices M from the
vertex regression module are evaluated.

Model S1 S2 S3 S4 S5 S6 S7 S8 Avg
MPJPE ↓
Softmax 85.83 64.03 63.42 82.55 65.18 71.68 66.02 70.74 70.66
LMT 81.32 61.49 60.50 78.62 62.47 71.39 65.77 66.78 68.02

3DPCK ↑
Softmax 89.16 96.68 95.01 88.67 94.37 93.42 94.05 94.04 93.32
LMT 90.28 97.80 95.85 89.81 95.21 93.52 94.91 95.22 94.07

AUC ↑
Softmax 53.00 59.97 62.10 58.01 60.11 58.06 60.44 57.53 58.91
LMT 53.94 60.47 62.54 58.66 60.32 58.12 60.53 58.33 59.30

Table 4: Cross-dataset evaluation of the softmax baseline
and LMT. The two models are trained on Human3.6m and
evaluated on MPI-INF-3DHP. S1-S8 denote the subjects in
MPI-INF-3DHP.

Model MPJPE ↓ MPVE ↓ Angular ↓
LT-fitting [11, 42] 16.21 35.20 15.73
LT-fitting [11, 42] (w/o reg) 16.40 42.99 22.94
LMT 17.59 23.70 11.33
LMT (w/o reg) 17.48 25.30 13.03

Table 5: Comparison with joint fitting on Human3.6M.
“w/o reg” means that no regularization term Ereg is used.

right foot mesh. On the other hand, LMT uses visibility to
reduce the dependence on the second view and increase the
dependence on the remaining views. Consequently, LMT
successfully reconstructs the right foot mesh.

Effect of using visibility. We investigate the quantita-
tive results of using per-vertex visibility in terms of joint
coordinates, rotations, and shape estimation. Table 3 shows
the results when the softmax baseline and LMT are trained
on Human3.6M train data and evaluated on Human3.6M
test data. The second column in Table 3 shows the MPVE
for sub-vertices estimated by the vertex regression module,
which proves that using visibility helps the network to esti-
mate the human surface accurately. Columns 3-5 of Table 3
show that the use of visibility helps to improve MPJPE,
MPVE, and angular distance results even after fitting.

Generalization. The proposed method exploits geome-
try information (i.e., visibility) obtained from a single-view
model for feature aggregation. This single-view model can
be trained using more various datasets than the multi-view
model. Therefore, the use of geometry information from
the single-view model causes the effect of implicit learning
through such various datasets and helps to improve the gen-
eralization performance of the proposed method. To prove
this quantitatively, we train the softmax baseline and LMT
using Human3.6M train data and evaluate them for all sub-
jects of MPI-INF-3DHP. Despite the differences between

Figure 4: Qualitative comparison with joint fitting on
Human3.6M. The first column shows the input images.
The second and third columns visualize the meshes recon-
structed by LT-fitting and LMT, respectively.

the two datasets, Table 4 shows that the LMT significantly
outperforms the softmax baseline in all metrics evaluating
the joint coordinate estimation performance.

Comparison with joint fitting. We demonstrate that fit-
ting on the human surface brings more benefits than fitting
on the human joint [42]. However, the method of [42] can-
not be directly compared with LMT because it is for multi-
person mesh reconstruction. Therefore, we design the LT-
fitting baseline using the state-of-the-art multi-view joint es-
timation method LT [11]. LT-fitting modifies Edata to mini-
mize the difference between the predicted and ground-truth
joints, and uses the same regularization term as LMT.

Table 5 shows MPJPE, MPVE, and angular distance re-
sults of LT-fitting and LMT evaluated on Human3.6M. In
both cases of LT-fitting and LMT, the use of regularization
results in better joint rotation and shape estimation. And
LT-fitting relies more heavily on regularization than LMT.
However, LT-fitting with regularization shows worse MPVE
and angular distance results than LMT without regulariza-
tion. Table 6 shows the rotation errors of LT-fitting and
LMT for each joint. For most joints, the rotation predic-
tion performance of LMT is significantly better than that of
LT-fitting. Fig. 4 shows the human mesh reconstruction by
LT-fitting and LMT. LT-fitting cannot describe the subject’s
body shape well because it cannot resolve the ambiguity of
the human shape. On the other hand, LMT shows a visu-
ally satisfactory result. All these results show that using the
human surface rather than the human joint is beneficial for
human pose and shape estimation.

4.5. Comparison on Human3.6M
Table 7 shows the results of previous multi-view human

mesh reconstruction methods and LMT trained and evalu-
ated on Human3.6M. The same input image size and the
same backbone are used for a fair comparison with the pa-
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Angular ↓ pelvis L-hip R-hip torso L-knee R-knee spine L-ankl R-ankl chest neck L-thrx R-thrx head L-shld R-shld L-elbw R-elbw L-wrst R-wrst
LT-fitting [11, 42] 8.18 10.10 9.37 10.75 9.17 9.21 7.8 17.31 16.86 5.88 12.07 10.72 11.64 12.52 11.65 14.18 20.24 16.14 43.00 43.20
LMT 4.77 5.69 5.79 6.40 5.80 5.38 5.68 8.58 9.85 4.48 12.32 9.39 10.22 10.69 11.86 14.06 13.45 11.50 19.53 20.22

Table 6: Per-joint rotation error comparison with joint fitting on Human3.6M.

Model MPJPE ↓ MPVE ↓ Angular ↓
(R50-224) Parameter regr. [33] 46.90 - -
(R50-224) LMT 30.56 42.28 14.61

(R152-384) LT-fitting [11, 42] 16.21 35.20 15.73
(R152-384) LMT 17.59 23.70 11.33

Table 7: Comparison results on Human3.6M. “R50-
224” means that ResNet-50 backbone and input image of
224 × 224 resolution are used. Similarly, “R152-384” de-
notes ResNet-152 and 384× 384 resolution.

Model MPJPE ↓ 3DPCK ↑ AUC ↑
(R50-224) Parameter regr. [33] 50.20 97.40 65.60
(R50-224) LMT 45.87 96.59 71.57
(R152-384) LT-fitting [11, 42] 33.33 99.60 77.23
(R152-384) LMT 33.70 99.37 77.09

Table 8: Comparison results on MPI-INF-3DHP.

rameter regression method of [33]. Since [33] does not pro-
vide MPVE and angular distance results, MPJPE is used for
comparison, which shows that LMT significantly outper-
forms the method of [33]. These results show that the com-
bination of heatmap-based vertex regression and subsequent
SMPL fitting brings more accurate results than the method
of directly regressing the SMPL parameters from input im-
ages. LT-fitting is different from LMT in that SMPL is fitted
to the human joint rather than the human surface. Due to
this difference, LT-fitting does not obtain enough informa-
tion to resolve the ambiguity for joint rotation and human
shape determination, and as a result achieves significantly
lower MPVE and angular distance performance than LMT.

4.6. Comparison on MPI-INF-3DHP
Table 8 shows the results of previous multi-view human

mesh reconstruction methods and LMT trained and evalu-
ated on MPI-INF-3DHP. For a fair comparison with [33],
the LMT model is pretrained on Human3.6M and then
fine-tuned on MPI-INF-3DHP. For 3DPCK with a thresh-
old of 150 mm, [33] shows better results than LMT, but
for threshold-independent AUC, LMT shows better results.
Also, as in Human3.6M, LMT shows better MPJPE perfor-
mance. The LMT model shows a competitive joint coordi-
nate estimation result with LT-fitting. In the case of MPI-
INF-3DHP, ground-truth SMPL parameters are not pro-
vided, so joint rotation and shape estimation results are not
presented. However, LMT gives qualitatively better mesh
reconstruction results than LT-fitting, as shown in Fig. 5.

5. Conclusion
In this paper, a two-stage method consisting of visibility-

based sub-vertices estimation and surface fitting is proposed

Figure 5: Qualitative comparison with joint fitting on
MPI-INF-3DHP. The first column shows the input images.
The second and third columns visualize the meshes recon-
structed by LT-fitting and LMT, respectively.

to reconstruct a single human mesh from multi-view im-
ages. The estimation of sub-vertices rather than full-vertices
solves the problem of excessive GPU memory usage. In ad-
dition, the use of per-vertex visibility improves the mesh
vertices estimation performance by alleviating the multi-
view inconsistency problem. Surface fitting is also demon-
strated to help estimate joint rotations and human shape
compared to joint fitting. According to the experimental re-
sults, the proposed LMT significantly outperforms the ex-
isting multi-view human mesh reconstruction methods on
the Human3.6M and MPI-INF-3DHP datasets. However,
since using a single-view mesh reconstruction model to ac-
quire visibility complicates the proposed model, additional
studies are needed for a more efficient method to obtain vis-
ibility information. In addition, the investigation of more
diverse viewpoints and in-the-wild input images is another
future work.
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