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Abstract

The field of implicit neural representation has made sig-
nificant progress. Models such as neural radiance fields
(NeRF) [12], which uses relatively small neural networks,
can represent high-quality scenes and achieve state-of-the-
art results for novel view synthesis. Training these types of
networks, however, is still computationally expensive and
the model struggles with real life 360◦ scenes. In this work,
we propose the depth distribution neural radiance field
(DDNeRF), a new method that significantly increases sam-
pling efficiency along rays during training, while achiev-
ing superior results for a given sampling budget. DDNeRF
achieves this performance by learning a more accurate rep-
resentation of the density distribution along rays. More
specifically, the proposed framework trains a coarse model
to predict the internal distribution of the transparency of an
input volume along each ray. This estimated distribution
then guides the sampling procedure of the fine model. Our
method allows using fewer samples during training while
achieving better output quality with the same computational
resources.

1. Introduction
The field of implicit representation for 3D objects and

scenes has been growing rapidly. Methods such as Occu-
pancy Networks [10] and DeepSDF (Signed Distance Func-
tion) [15] achieved state-of-the-art results in 3D reconstruc-
tion. The two main advantages of implicit representation
are compactness and continuity (compared to explicit repre-
sentation methods such as meshes or voxels, which are dis-
crete and less compact). It also enables reconstructing the
3D shape at any level of resolution by increasing/decreasing
the number of samples in space. Due to their performance
and accuracy, implicit methods became very popular and
were adopted by many papers and in various domains.
Neural Radiance Fields (NeRF) [12] uses the same architec-
ture as DeepSDF to represent a scene as a radiance field by
answering the following query about a scene: Given a spe-
cific location (x, y, z) and a viewing direction (ϕ, θ), what

is the RGB color and the density σ at this location and this
viewing direction? When rendering an image, a pixel color
(u, v) is evaluated by sampling points along the ray pass-
ing from the center of projection (COP) through the pixel
(u, v), and applying a ray marching rendering technique
for volume rendering [16]. NeRF achieved cutting-edge re-
sults for novel view synthesis, leading to what is called the
“NeRF explosion”. In the past two years, numerous follow-
up works enhanced the original NeRF model and extended
it with improved approaches and into new domains. We
briefly review a few of these works in Section 2.

Nevertheless, NeRF has one major drawback: its exten-
sive training and rendering time and space requirements.
Because the quality of the model depends on the number of
samples drawn along each ray (more samples produce bet-
ter results), the training process has a trade-off between ef-
ficiency (number of samples) and quality. Most NeRF mod-
els use two-stage hierarchical sampling techniques. The
first stage (coarse model) samples uniformly along each ray,
dividing it into equi-length intervals. The opacity α and the
total transparency of each interval i are used to determine
the amount of influence wi this interval has on the pixel’s
color (see Equation (2)). Each ray’s wi values are normal-
ized and interpreted as a piecewise-constant PDF (or dis-
crete PDF) between the intervals. The second stage (fine
model) samples a new set of points along the ray according
to this PDF function. Figure 1 (a) illustrates this method.

This paper proposes representing the coarse PDF as a
mixture of Gaussian distributions rather than a piecewise-
constant PDF. The input to the model is a specific ray inter-
val and the outputs are parameters of a Gaussian distribution
(µ, σ), representing the conditional density inside that inter-
val (in addition to the color and total density). Theoretically,
this representation of the internal density enables unlimited
density resolution along the rays. It assists the sampling
procedure of the second stage (fine model) by locating the
fine samples around informative sections and investing most
of the samples near the relevant phenomena. Figure 1 (b) il-
lustrates our method. We will demonstrate and analyze its
superiority over piecewise-constant PDF representation for
a variety of domains and sampling budgets. Our model and
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PDF representation are versatile and can be integrated into
almost all existing NeRF models.
The main contributions of this paper are:

1. A continuous representation of the density distribution
along rays in NeRF-based models, which leads to bet-
ter results for a given number of samples. This allows
NeRF models to be trained using fewer computational
resources.

2. A novel distribution estimation (DE) loss, which pro-
vides an additional path for information to flow from
the fine model backwards to the coarse model while
improving the overall performance.

2. Related Works
2.1. Implicit 3D representation

The first two methods that achieved very good results us-
ing implicit representation of 3D objects were Occupancy
Networks [10] and DeepSDF [15]. Occupancy Networks
are trained to answer whether a point (x, y, z) in space is
inside or outside a 3D object. DeepSDF is trained to pre-
dict the signed distance of a given point (x, y, z) from a 3D
surface, where positive and negative distances represent a
point outside or inside the shape, respectively. By answer-
ing the above queries for enough 3D points in a space, along
with a variant of the marching cube algorithm, a 3D mesh
of an object can be extracted. These methods became very
popular due to their good results, compactness, and contin-
uous representation. Additional works (such as Pifu [19])
were trained to answer more detailed queries to extract 3D
shapes and textures. Advanced implicit models, e.g., SAL
[2] and SALD [3], were developed to train models directly
from raw 3D data without ground truth (GT).

2.2. The Implicit Representation of Radiance Fields

As described above, the NeRF [12] method uses a neu-
ral network to imply an implicit representation of a radiance
field for volumetric rendering. It gets as an input an (x, y, z)
location and viewing direction (ϕ, θ), and predicts as out-
put the RGB color and the density α at this location. When
this method was published, it achieved state-of-the-art re-
sults in the task of novel view synthesis. In the past two
years, many works extended the NeRF model to additional
tasks and domains. NeRF++ [24] extends the model to un-
bounded real world scenes using an additional neural net-
work for background modeling and introducing new back-
ground parametrization. NeRF-W [9] extends the model for
unconstrained image collections, and D-NeRF [17] extends
it for dynamic scenes. Mip-NeRF [4] addresses the model
aliasing problem with different resolution images. Several
works also tried to reduce the required training time and,
especially, the inference time [6, 8, 14, 18].

Two additional models that were recently published and
achieved state-of-the-art results are plenoxels [20] and Mip-
NeRF 360 [5]. Plenoxels use voxel grids with multiple
small Multi-Layer Perceptrons (MLP) and significantly ac-
celerate the training process. The amount of parameters
Plenoxels use is considerably greater (about 100 times) than
the regular NeRF model. The Mip-NeRF 360 model is
much smaller than Plenoxels, but still uses about 10 times
more parameters that the original Mip-NeRF model. Mip-
NeRF 360 uses a novel architecture, space warping, on-
line distillation, and regularization to significantly improve
model performance on complex 360 degrees real world
scenes.

The connection between sampling the rays around infor-
mative depth locations and the computational complexity
appear in some of the above-mentioned works. DSNeRF
[6] uses some prior depth information to improve the train-
ing time. It also allows training the model with a small
number of images. NSVF [8] uses sparse voxel fields to
achieve better sampling locations. DONeRF [14] improves
inference time by using a depth oracle for sampling around
informative locations. The depth oracle is trained with GT
depth (or a trained NeRF model) to predict an accurate loca-
tion for the second-stage sampling. DONeRF [14] also uses
log-sampling and a space warping technique to increase the
obtained quality on areas far away from the camera.

Our model can be seen as a direct extension of the orig-
inal NeRF model [12] and Mip-NeRF [4]. The next two
sub-sections provide a brief overview of these two models.

2.2.1 The Original NeRF Model

As mentioned above, NeRF receives a point and viewing
direction as input (x, y, z, θ, ϕ), and produces a 4D out-
put (R,G,B, σ), where R,G,B indicate colors and σ is
the density of the input point along the viewing direction.
Given an image whose intrinsic and extrinsic parameters
are known, each pixel in that image defines a ray r, initiated
at the COP and passing through that pixel at point o. To
estimate the color of the pixel, the luminescent colors are
accumulated along the ray: a set of n points are sampled
along the ray r whose parameters (locations and viewing
directions) are fed into the network, and their (R,G,B, σ)
values are extracted as outputs. Assuming a length parame-
terization t along the ray r(t) = o+ tr, the sampled points
are located at r(ti), i = 1..n, and (θi, ϕi) is determined by
r. These inputs are fed into the network whose outputs are
(Ri, Gi, Bi, σi). The density σi is translated into opacity αi

(having a value between 0 and 1) by considering the interval
δi = ti+1 − ti along the ray that is affected by σi:

αi = 1− exp(−σiδi) (1)

To avoid confusion with the σ in our model that represents
standard deviation, we will omit σ in the notation from now
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Figure 1. Hierarchical sampling: The horizontal axis represents the depth of the ray for a scene with a maximum depth of 5. First, the
coarse samples (blue dots) are taken; then the density values are transformed into a PDF function (blue line). The fine model samples
(purple dots) are taken with respect to the coarse model PDF. The orange rectangles represent points that have an influence on the pixel
color (similar in both plots). The left plot illustrates the sampling procedure in the regular model; the right plot illustrates our scheme.
Notice how the finer samples are concentrated around the informative areas in our representation.

on and refer directly to α. The influence of each interval
i along the ray on the final color prediction is calculated
as a combination of the accumulated transparency, (1−αi),
from interval i to the pixel, and the opacity values of interval
i:

wi = αi ·
i−1∏
j=0

(1− αj) (2)

The NeRF architecture comprises two identical networks
(coarse and fine), each with eight fully connected (FC) lay-
ers. The inputs are first encoded using positional encoding
(PE) and then inserted into the network. As described in
Section 1, the model uses two-stage hierarchical sampling
where the wi’s values of the coarse model are normalized
and can be interpreted as a discrete PDF hc:

hc
i =

wi∑n−1
j=0 wj

(3)

where n is the number of samples along the ray. The fine
model then samples the second stage of the hierarchical
sampling according to hc. Figure 1 (a) illustrates this pro-
cess. Color rendering is performed using ray marching [16]
for volumetric rendering and calculated as follows:

Ĉ(r) =
n∑

i=1

wici (4)

where Ĉ(r) is the predicted pixel color for ray r, ci is the
RGB prediction for sample i and wi is the influence that
sample i has on the final RGB image. Ĉc(r) and Ĉf (r) are
the coarse and fine model color predictions. The calcula-
tions of wi and ci are made separately for the coarse and
fine models. The loss function is defined as:

Lnerf =
∑
r∈R

[||C(r)− Ĉf (r)||2 + ||C(r)− Ĉc(r)||2] (5)

where R is the rays batch for loss calculation and C(r) is
the GT color for ray r.

2.2.2 The Mip-NeRF Model

Mip-NeRF [4] is an extension of the regular NeRF model
that was developed to handle aliasing artifacts when ren-
dering images with different resolutions or at different dis-
tances than the images used in the training process. Instead
of rays of lines, Mip-NeRF refers to a ray as a cone [1]
whose vertex is at the COP and that passes through the rele-
vant pixel with a radius related to the pixel size. The cone is
divided into intervals (parts of the cone) along the depth axis
and the network receives the encoding of an interval as an
input. Each ray is divided into n intervals bounded by n+1
partitions {ti} where interval i is the cone volume bounded
between partitions ti and ti+1. The bounded volumes are
encoded using a novel integrated positional encoding (IPE)
before being passed through the network. With this vol-
umetric representation, the model can consider the entire
volume that affects the pixel value. Mip-NeRF uses a sin-
gle neural network for both the coarse and fine models. The
rest of the process is similar to the original NeRF. In our
work we also use the cone representation as in Mip-NeRF.

3. Problems with NeRF Models
When looking deeper into the NeRF hierarchical sam-

pling strategy we observe two inherent issues. The first one
is that for n samples, the depth resolution of the fine model
cannot be better than 1

n2 of the scene depth. In other words,
even if the coarse pass predicts that 100 percent of the sam-
ples should be placed in a single interval, the fine sampling
will sample this single interval uniformly. To overcome this
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Figure 2. Left plot: Limited depth resolution when using a small
number of samples (inside the green rectangle). Right plot: Many
samples with zero contribution when using a large number of sam-
ples (inside the red rectangles).

problem we are forced to use a large number of samples
during training. (A small number of samples will lead to in-
accurate depth estimation.) Another derivative of this prob-
lem is that for a deep or unbounded scene, even when us-
ing a large number of samples, the model still struggles to
achieve good results and there is a trade-off between back-
ground and foreground quality (as shown in NeRF++ [24])
as a function of the sample’s depth range. Increasing the
depth range will increase the background quality but con-
comitantly will decrease the foreground quality.

The second disadvantage we observed is that most sam-
ples in the coarse pass contribute almost nothing to the train-
ing process. Many samples predict zero influence from the
very early training stages until its end. Despite this, we
still need to use these samples along the entire training pro-
cess in order to acquire dense enough samples in the second
stage, due to the first problem mentioned above. Figure 2
illustrates the inherent trade-off between the two phenom-
ena.

4. Method
4.1. Preliminaries

Our model is a direct extension of NeRF [12] and Mip-
NeRF [4], described above in Sections 2.2.1 and 2.2.2. As
mentioned, in the coarse step we are trying to extract ad-
ditional information about the distribution of the density
along the ray. We will show later that a better estimation
of the density distribution along the ray in the coarse step
will lead to improved localization of the fine samples, and
subsequently improve the results.

To distinguish between coarse and fine samples, we de-
note T c = {tci}ni=1 as the coarse model samples and T f =

{tfi }ni=1 as the fine model samples. Similar to Mip-NeRF,
our coarse model gets, as an input, an interval of a cone,
but in addition to the regular RGBα output, our model also
predicts an estimate of the density influence distribution in-
side this interval. More specifically, it predicts the mean µ
and standard deviation (SD) σ of the distribution inside that
interval. We assume the distribution inside each interval is
Gaussian and that it neither affects nor is affected by adja-
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Figure 3. DDNeRF full pipeline: (1) Draw a cone in space and
split it into relatively uniform intervals along the depth axis. (2)
Pass these intervals through an IPE and then through the coarse
network to get predictions. (3) Render the coarse RGB image.
(4) Approximate the density distribution with respect to the coarse
samples (blue dots) and their Gaussian parameters; then sample
the fine samples (purple dots). (5) Pass these samples through an
IPE and thereafter through the fine network to get predictions. (6)
Render the final RGB image and depth map.

cent intervals. The importance of this assumption will be
clarified in Section 4.2.

The coarse model learns to predict the distribution by
trying to mimic the distribution of the fine model. We as-
sume that the fine model achieves a better estimate of the
density along the ray. This process will be described in
more detail in Section 4.3. The entire pipeline of our model
is shown in Figure 3. We used the Mip-NeRF [4] architec-
ture with small modifications to add µ and σ to the coarse
model predictions; see Section 1 in the Supplementary for
more details.

4.2. Estimation of the Density Distribution

The predicted µ and σ are limited to be in the range be-
tween 0 and 1, by passing the predicted values through the
sigmoid activation function. The values are interpreted rel-
ative to the interval length. The notation µr

i , σr
i stands for

the relative mean and SD of interval i, respectively. The
transformation from the relative interpretation to the abso-
lute location and scale along the ray (µi, σi) is calculated
as:

µi = tci + µr
i · δci ; σi = σr

i · δci (6)

where, δci = (tci+1 − tci ). These additional outputs enable
us to achieve a finer distribution estimation along the ray.
In addition to the discrete PDF estimation hc between the
intervals, we also estimate the distribution inside each in-
terval. The total distribution along the ray is approximated
as a linear sum of Gaussian distributions (one Gaussian for
each interval). This representation allows us to focus the
fine samples in a smaller and informative section along the
ray.

The PDF inside interval i is denoted as fi(t) =

N (t|µi, σi) and its CDF denoted as Fi(t) =
∫ t

−∞ fi(τ)dτ .
Since we require that fi be bounded inside the interval[
tci , t

c
i+1

]
, we truncate the Gaussian to be inside the interval
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boundaries, normalize it, and define a truncated Gaussian
distribution f ′

i(t), t ∈
[
tci , t

c
i+1

]
:

f ′
i(t) =

1

ki
· fi(t) ; ki = Fi(t

c
i+1)− Fi(t

c
i ) (7)

The truncation procedure is illustrated in Figure 4 (a). The
normalized function {hc

i} between the intervals is calcu-
lated as it is done in the regular NeRF model (Equation (3)).
The global density distribution estimated by the coarse
model is then calculated as a mixture of the truncated Gaus-
sians, where {hc

i} are used as the Gaussian weights:

fdd(t) = hc
i · f ′

i(t) for t ∈ [tci , t
c
i+1] (8)

The entire procedure is illustrated in Figure 4.
The main reason we model the global distribution as a

mixture of truncated Gaussians and not as a mixture of regu-
lar Gaussians is that we require each Gaussian to affect only
a single interval. This property is necessary for two reasons.
First, it enables calculation of each interval independently,
while the results of one interval do not affect other inter-
vals. Second, assigning each Gaussian to a specific interval
allows efficient calculation of the samples in the fine model.
It also enables efficient calculations of the loss component
(described in Section 4.3) without requiring significant ex-
tra time or memory.

4.3. Training DDNeRF

During the training process we assume that the density
distribution of the fine network is always more accurate than
the coarse density distribution. Therefore, we promote the
predicted coarse distribution to be close to the fine one.

The fine PDF function hf is a discrete function com-
puted similarly to Equation (3) with respect to density out-
put α over the fine samples T f . Our goal is to estimate hf

using the coarse model PDF function fdd. We use the no-
tation ĥf to indicate the estimated hf . Since fdd is defined
at each location along the ray, we can estimate ĥf using fdd
and its CDF function Fdd as follows:

ĥf
i = Pr(tfi ≤ t ≤ tfi+1) = Fdd(t

f
i+1)− Fdd(t

f
i ) (9)

To train the network, we use the KL loss to define the di-
vergence between the two discrete probabilities hf and ĥf .
Using the KL loss naively, however, tends to push µ and σ
toward values close to 0 or 1 and impairs the model con-
vergence (by over-shrinking the Gaussians or leading the
model predictions to be in the vanishing gradient area of the
sigmoid function). To avoid these issues, we add two reg-
ularization terms that encourage the Gaussian (before trun-
cation) to remain in the center of the interval, with a SD
large enough to avoid over-shrinking. This regularization

also keeps the model inside the effective range of the sig-
moid function. The regularization components of the loss
function are

∑
i

µ2
raw and

∑
i

σ2
raw where µraw and σraw

are the model output values before passing through the sig-
moid function to limit the range to be between 0 to 1. The
overall DE loss is defined as follows:

DELoss = KL(ĥf , hf )+
1

n
·(λµ

∑
i

µ2
raw+λσ

∑
i

σ2
raw)

(10)
where n is the number of coarse samples and λµ and λσ

are the regularization coefficients. We set the coefficient
values to be in the range of 0.01 to 0.1. The specific value
depends on the number of samples along the rays. (The
value for n samples is approximately 0.8

n .); see Section 2 in
the Supplementary for experimental results with different
regularization values. We add the DELoss to the regular
NeRF loss (eq. (5)) for our overall loss:

L = Lnerf + λDE ·DELoss (11)

where λDE is the DELoss coefficient, set to be 0.1 in our
experiments.

Smoothing and sampling: We define an uncertainty
factor u ≥ 1 that smooths the truncated f ′ Gaussians in-
side the intervals by increasing σ: σ̂ = u · σ. This un-
certainty factor is decreased during training toward 1 and
corresponds to our increased certainty in the fine network
estimation. Figure 5 describes the distributions and internal
smoothing during training in our model vs. Mip-NeRF.

4.4. Dealing with unbounded scenes

For unbounded real world 360◦ scenes we tried an ad-
ditional sampling strategy, which is similar to the log-
sampling technique from DONeRF [14] for background ar-
eas. This extended model is denoted as DDNeRF* in Sec-
tion 5. We also integrated our density distribution extension
into the NeRF++ foreground model. This model is denoted
as DDNeRF++ in the following experiments. See Section 1
in the Supplementary for additional details about these two
extensions.

5. Experiments
We tested our model in three main domains: real-life

forward-facing scenes, synthetic 360◦ scenes, and real life
360◦ scenes. We compare the performance of DDNeRF for
different sampling budgets. We used the same number of
samples for the coarse and fine networks. Thus, the num-
ber of samples listed in the results refers to one network.
We used three different metrics when evaluating our results:
structural similarity [23] (SSIM), perceptual similarity [25]
(LPIPS) and PSNR.
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Figure 4. (a) PDF truncation process. The blue and orange curves are the PDF before (fi) and after (f ′
i ) truncation; gray marks the region

outside the section boundaries. (b) Several adjacent truncated PDF distributions. Each orange truncated Gaussian is assigned to an interval;
horizontal lines are interval weights hc. (c) We combine all distributions into one distribution fdd.
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Figure 5. Density distribution during training. Training with eight intervals, Mip-NeRF is presented in the first row, DDNeRF in the
second row. Left and middle columns: distribution along a chosen ray after 30k and 150k iterations, respectively. Right column: RGB
image after 150k iterations. The blue curves are the coarse predicted PDF — hc for Mip-NeRF and fdd for DDNeRF. The red curves
are the smoothed fdd. Note how the divergence between red and blue is reduced during training as u decreases toward 1. Blue dots are
the coarse samples, purple dots are the fine samples, and the purple curve is hf . Our model (second row) keeps refining its fine samples’
locations, while Mip-NeRF (first row) sample locations remain relatively static from 30K iteration until the end of the training process.
Our model also achieves more accurate samples and a better RGB image compared to vanilla Mip-NeRF.

We divide our experiments into two parts. In Section 5.1
we focus on easy scenes in which NeRF achieved excellent
results: real-life forward-facing and synthetic 360◦ scenes.
Section 5.2 contains difficult scenes which are more chal-
lenging for NeRF: real life 360◦ bounded and unbounded.

We chose to compare our model with Mip-NeRF [4] (all
scenes) and NeRF++ [24] (unbounded scenes). Plenoxels
[20] achieves better results than the aforementioned models
but uses many more parameters than our model (1-2 GB vs.
14 MB) so we chose to compare our model with models of
the same order of magnitude. Section 2 in the Supplemen-
tary contains additional results and an ablation studies.

5.1. Part 1: Easy Scenes

For the forward-facing scenes we use the Fern and Trex
scenes from LLFF [11]. We used the NDC (normalized
device coordinates) transformation as in NeRF and Mip-
NeRF. For the synthetic 360◦ scene we use the LEGO and
the Ficus scenes from the NeRF [12] blender datasets. We
train each model with 200K iterations using 2048 rays per
iteration. To challenge the model we reduce the number of
samples and repeat the training routine several times, with
a different number of samples along the rays — 4, 8, 16,
and 32. Validation is performed using the same number of
samples as in the training. We compare our results with
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Table 1. Results on the LLFF dataset (real-world forward-facing)
and synthetic 360◦ scenes. We trained each model for 200k iter-
ations. Our model achieved better results than the vanilla models
for every number of samples. The values in the table are the mean
values of each domain. For results per scene, see Section 2 in the
Supplementary.

LLFF Synthetic

Smpl Model PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
4 Mip-NeRF 19.84 0.534 0.596 21.85 0.776 0.251

DDNeRF 20.40 0.561 0.573 21.93 0.777 0.237
8 Mip-NeRF 21.43 0.638 0.453 24.50 0.845 0.173

DDNeRF 22.04 0.680 0.384 24.67 0.861 0.150
16 Mip-NeRF 23.33 0.738 0.289 27.10 0.904 0.010

DDNeRF 23.61 0.759 0.262 27.66 0.922 0.0793
32 Mip-NeRF 24.32 0.783 0.227 29.46 0.940 0.050

DDNeRF 24.39 0.789 0.219 30.17 0.951 0.039

those of Mip-NeRF, which trained and validated the model
results under the same conditions. Results are presented in
Table 1. Our model achieves better results in each evalua-
tion metric, regardless of the number of samples. Detailed
per scene results as well as figures for qualitative compar-
isons are presented in Section 2 in the Supplementary.

5.2. Part 2: Difficult Scenes

5.2.1 Bounded scene:

For the bounded 360◦ scene we created our own scene of a
motorcycle inside a warehouse. We acquired 200 snapshots
from 360◦ views, where 10% of the images were saved for
validation purposes. Although its depth is bounded, restor-
ing this scene is not straightforward because it includes a
big complex object and many small objects with fine de-
tails. We used the COLMAP structure from motion model
[21, 22] to extract the relative orientation of the cameras.
We trained each model with 300K iterations of 2048 rays
per iteration. We varied the number of samples, using 32,
64, and 96 samples per ray. Results are shown in Table 2
and Figure 6. As can be seen from Table 2, our model
achieves better results in all metrics for any number of sam-
ples. Moreover, our 32-sample model achieves better re-
sults than the 96-sample Mip-NeRF model. This is a sig-
nificant reduction in memory and training time, despite the
fact that for the same number of samples our model on aver-
age is 18% slower and uses 8% extra memory per iteration.
The extra memory is needed for the fdd calculations. Ta-
ble 3 presents more details about the computation-quality
trade-off.

Also, our model produces more accurate depth estima-
tions and better RGB predictions, especially around com-
plex shapes (Figure 6).

3D Mesh Extraction: We extract the 3D mesh by first
extracting point-clouds from different views in the scene.
Then, using open3D [26] we warp the main object points in

Figure 6. Motorcycle scene results. First row - RGB predictions.
Second row - disparity estimation from the fine model results. Our
model achieves better depth estimation and better RGB prediction.
Zoom regions show how our model is able to represent complex
shapes such as the motorcycle’s off-road tires and the frame and
small wheel of the tool cart.

Table 2. Results for real world 360◦ scenes. The Smpl column re-
fer to samples in each of the networks (coarse and fine). The Sec/It
column is a single iteration time in seconds and the Memory col-
umn is the maximum memory allocated in the GPU during train-
ing. All models were trained for 300K iterations. Performance
was measured on an RTX3090 GPU.

Bounded scene – Motorcycle

Smpl Model PSNR↑ SSIM↑ LPIPS↓ Sec/It Memory

32 Mip-NeRF 20.36 0.533 0.532 0.053 1.73GB
DDNeRF 20.84 0.577 0.453 0.066 1.84GB

64 Mip-NeRF 20.70 0.554 0.502 0.097 3.45GB
DDNeRF 21.07 0.592 0.422 0.112 3.71GB

96 Mip-NeRF 20.80 0.563 0.488 0.142 5.17GB
DDNeRF 21.12 0.593 0.418 0.163 5.67GB

Figure 7. 3D Reconstruction from point clouds: The right object
in each pair was reconstructed from DDNeRF, the left object was
reconstructed from Mip-NeRF. DDNeRF achieves finer and less
noisy shapes, especially around complex geometry regions.

the scene, remove outliers and use Poisson meshing to ex-
tract the object surface. DDNeRF reconstruction shows sig-
nificantly better results compared to Mip-NeRF (Figure 7).
Section 2 in the Supplementary offers for more results and
details about the reconstruction process.
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Table 3. Computation–quality trade-off. We trained Mip-NeRF
with 96 samples for 300k iterations on the motorcycle scene, and
compared it to DDNeRF with different sample amounts and train-
ing iterations. We demonstrate the computational-quality trade-off
using up to 300k iterations and 96 samples on DDNeRF. Green re-
sults are better than the baseline; red are inferior to the baseline.
Smpl refers to samples in each of the networks (coarse and fine).
The time column refers to the total training time in hours and the
render column is inference time for a single 1008x756 RGB im-
age. Our model achieves better results with a third of the samples
or iterations. It can also render an image with better quality in
approximately one third of Mip-NeRF’s rendering time. Perfor-
mance was measured on an RTX3090 GPU.

Model Smpl Iters PSNR↑ SSIM↑ LPIPS↓ Time Render

Mip-NeRF 96 300k 20.8 0.563 0.488 11.8H 20.91s

DDNeRF 32 300k 20.84 0.577 0.453 5.5H 7.05s
DDNeRF 96 80k 20.37 0.556 0.458 3.6H 21.37s
DDNeRF 96 100k 20.63 0.566 0.447 4.5H 21.37s
DDNeRF 96 140k 20.89 0.581 0.429 6.3H 21.37s

DDNeRF 96 300k 21.12 0.593 0.418 13.6H 21.37s

5.2.2 Unbounded scenes:

For unbounded scenes, we use the Playground and Truck
scenes from the Tanks and Temples dataset [7]. We compare
our models with both the Mip-NeRF and NeRF++ mod-
els. We train and test each model using 64 and 96 samples
per ray. We also compare the DDNeRF* and DDNeRF++
methods that were described in Section 4.4. For NeRF++
and DDNeRF++ we split the sample budget equally be-
tween the foreground and background models. DDNeRF++
achieves the best scores on average, NeRF++ achieves a bet-
ter PSNR score in the playground scene. When looking at
the output images we can see that DDNeRF++ has better
image quality than NeRF++ in both of the scenes in this
domain. See Figure 8 and Table 4 for more details.

6. Conclusion:
In this paper we introduced DDNeRF, a general exten-

sion for NeRF models, which produces more accurate rep-
resentations of the density along the rays while improving
the sampling procedure and the overall accuracy of the re-
sults. We showed that our model produces superior results
in various domains and sample amounts, while using fewer
computational resources.

Our method is robust, self-supervised and can be ad-
justed to most NeRF models and enhance their perfor-
mance. We successfully tested this with space warping
and re-parametrization (NDC), and with different sampling
methods (log-sampling). We implemented our extension on
Mip-NeRF (general NeRF model) and NeRF++ (for general
unbounded scenes) models. The models with our extension

Table 4. Results for real world 360◦ unbounded scenes. Smpl refer
to samples in each of the networks (coarse and fine). All models
were trained for 300K iterations.

Unbounded Scenes

Smpl Model PSNR↑ SSIM↑ LPIPS↓ Scene

Mip-NeRF 21.47 0.547 0.540

Playground

64 DDNeRF 21.71 0.568 0.498
NeRF++ 21.73 0.575 0.524

Mip-NeRF 21.67 0.551 0.550
DDNeRF 21.69 0.569 0.498

96 NeRF++ 22.19 0.603 0.482
DDNeRF* 21.43 0.596 0.451

DDNeRF++ 22.12 0.611 0.456

96 NeRF++ 21.43 0.646 0.411 TruckDDNeRF++ 21.52 0.655 0.377

DDNeRF++ NeRF++

Figure 8. DDNeRF++ vs. NeRF++: Left images were rendered us-
ing the DDNeRF++ model, the right images using NeRF++. No-
tice that DDNeRF++ produces better results in foreground areas
while background quality remain the same.

achieved better results in various domains.

We expect our method to be integratable with any model
which uses a two stage sampling strategy with the above
properties (such as Mip-NeRF 360 [5]), and to improve
their performance. However, integrating our method with
Multi-resolution Hash Encoding [13] and Plenoxels [20] re-
quires further examination and is a good direction for future
research.
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