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Abstract

Layout analysis is a task of uttermost importance in
ancient handwritten document analysis and represents a
fundamental step toward the simplification of subsequent
tasks such as optical character recognition and automatic
transcription. However, many of the approaches adopted
to solve this problem rely on a fully supervised learning
paradigm. While these systems achieve very good perfor-
mance on this task, the drawback is that pixel-precise text
labeling of the entire training set is a very time-consuming
process, which makes this type of information rarely avail-
able in a real-world scenario. In the present paper, we
address this problem by proposing an efficient few-shot
learning framework that achieves performances compara-
ble to current state-of-the-art fully supervised methods on
the publicly available DIVA-HisDB dataset.

1. Introduction

Document image layout analysis is a very important
task for the humanities community for the study of an-
cient manuscripts [21]. In particular, the page segmentation
of a given document image into semantically meaningful
regions (e.g. main text, comments, decorations and back-
ground) allows them to easier and quicker study the docu-
ment and represents a fundamental step toward the simpli-
fication of subsequent tasks such as optical character recog-
nition [16] and automatic transcription [11].

Document layout analysis is a particularly challenging
task when referring to historical manuscripts. Compared to
machine-printed documents [19], ancient texts exhibit many
variations such as layout structure, decorations and differ-
ent writing styles. For example, in many manuscripts, the
main text body is entwined with additions, corrections and

marginal or interlinear glosses [21], often made by differ-
ent authors at different times. Furthermore, historical docu-
ment pages frequently suffer from high degradation due to
aging, ink stains, noise, scratches and bad conservation [9].
In addition to all these factors, even the image acquisition of
ancient text may not be appropriate with illumination issues
or inconsistencies and scan curve problems [2].

Due to the non-uniformity and integrity of the images,
many of the approaches adopted to solve this problem
rely on a fully supervised learning paradigm [15, 24, 18].
While these systems achieve very good performance on this
task, they usually need a large number of annotated im-
ages for training. The Ground Truth (GT) represented by
these annotations is critical for training and evaluating doc-
ument analysis methods, especially for complex historical
manuscripts that exhibit challenging layouts with interfer-
ing and overlapping handwriting [12]. The drawback is
that pixel-precise annotation of the entire dataset of histori-
cal document pages requires specific domain knowledge as
well as being a very time-consuming process, making this
type of information rarely available in a real-world scenario.
Nonetheless, few-shot learning approaches are still under-
explored in the literature for this task. This paper tackles
all the above issues by proposing a novel few-shot learning
framework for efficient pixel-precise layout segmentation of
historical documents. In particular, we propose two original
contributions: first, a dynamic instance generation process
that aims at providing a way of efficiently leveraging the
limited data available in this scenario and second a segmen-
tation map refinement process that provides a way of im-
proving the precision of the annotation predictions provided
by the adopted model. By combining these two components
with a powerful DeepCNN backbone network we are able
to achieve performances comparable to the ones obtained
by current state-of-the-art fully supervised approaches.

The rest of this paper is organized as follows. Section 2
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(a) CSG18 page (b) CSG863 page (c) CB55 page

(d) CSG18 detail (e) CSG863 detail (f) CB55 detail

Figure 1: Samples from the 3 manuscripts (CSG18, CSG863 and CB55) presents in DIVA-HisDB dataset [22]. Fig. 1a– 1c
show a full page for each manuscripts, while Fig. 1d– 1f show a detail extracted from each of them.

gives an overview of some related work in page segmen-
tation for historical document images. Then Section 3 de-
scribes the three components defining the proposed frame-
work. Section 4 reports the details of our experimental setup
as well as providing an overview of the obtained results. Fi-
nally, in Section 5, are drawn the conclusions of this work
and discuss the ideas for future work.

2. Related work

Many different approaches have been proposed to tackle
the layout analysis, especially for handwritten historical
documents. This section reviews some representative state-
of-the-art methods for historical document image segmen-
tation. In general, the techniques employed for document
layout analysis are usually divided into three categories:
bottom-up, top-down and hybrid [3].

The bottom-up strategy derives document analysis dy-
namically from smaller granularity data levels such as pix-
els and connected components. Then, the analysis grows up
to form larger document regions and stops once it reaches
a page segmentation into different regions with uniform el-
ements. These techniques are flexible and do not require
any prior knowledge of the layout structure. However, usu-
ally, they demand many labeled training data that is often
not available, especially in the domain of historical docu-

ments where highly specialized expertise is needed to label
the data.

On the contrary, top-down approaches assume that pages
have a well-defined structure and layout. Various character-
istics of the document page structure are then considered,
such as white space between text regions, size of text blocks
and the measures between main texts and paratext [9]. The
page segmentation process then starts from the whole page
and cuts it into areas to produce small homogeneous re-
gions. In general, the top-down methods are easily applica-
ble but not suitable for complex layouts such as handwritten
historical documents. In addition, these methods depend on
the layout structure of the document, so they have a low
generalization capability.

Even though the research of this technique is well es-
tablished, there are still many challenging issues that nei-
ther bottom-up nor top-down strategies can address appro-
priately. For this reason, the hybrid strategy has been iden-
tified and derives from the integration of the other two main
categories [3]. Over the years, many techniques have been
used to address this task, from classical computer vision al-
gorithms to deep learning methods.

Chen et al. [5] used a convolutional autoencoder to learn
the features directly from the pixel intensity values. Then,
by using these features to train a Support Vector Machines
(SVM), this method got high-quality segmentation without
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any assumption of specific topologies and shapes of docu-
ment layouts.

A different approach, which also allows performing lay-
out analysis, was proposed by Mehri et al. [15] with the
method based on learning texture features. This method
used the simple linear iterative clustering super-pixels, Ga-
bor descriptors, the co-occurrence matrix of the gray level,
and a SVM to classify pixels into foreground and back-
ground. A super-pixel is a set of pixels that shares similar
spatial and intensity information.

Many researchers have approached the page segmenta-
tion problem as a pixel labeling problem such as the work
by Chen et al. [4]. In this paper, the features are learned
directly from randomly selected image patches by using
stacked convolutional autoencoders. With a SVM trained
with the features of the central pixels of the super-pixels,
an image is segmented into four regions. Finally, the seg-
mentation results are refined by a connected components-
based smoothing procedure. The authors show that by using
super-pixels as units of labeling, the speed of the method is
increased.

Following the same idea of [4], in Chen et al. [6] lo-
cal features are learned with stacked convolutional autoen-
coders in an unsupervised manner for the purpose of initial
labeling. Then a conditional random field model is applied
for modeling the local and contextual information jointly
to improve the segmentation results. The graph nodes are
represented by super-pixels, so the label of each pixel is
determined by the label of the super-pixels to which it be-
longs. Another interesting approach was proposed by Xu et

(a) Original page (b) Masked page

Figure 2: Image showing a sample instance from the CB55
manuscript class 2a together with the corresponding filtered
version 2b obtained by masking it with the corresponding
binarized filter extracted from it through the Sauvola thresh-
olding algorithm.

al. [24] with a multi-task layout analysis framework based
on the fully convolutional network to solve the page seg-

mentation, text line segmentation and baseline detection
problem simultaneously. The framework trains a multi-task
fully convolutional network to predict pixel-wise classes
and heuristic-based post-processing is adopted to reduce
noise and correct misclassification. The prediction of the
four branches was combined to produce the result of page
and text line segmentation.

Davoudi et al. [9] proposed a novel method for document
layout analysis that reduces the need for labeled data. This
method is a dictionary-based feature learning model where
a sparse autoencoder is first trained in an unsupervised man-
ner on a historical text document’s image patch. The latent
representation of image patches is then used to classify pix-
els into various region categories of the document using a
feed-forward neural network.

Finally, Studer et al. [23] tackles the problem of the lim-
ited presence of annotated data by introducing and testing
the use of pre-train models on images from a different do-
main and then fine-tuning them on historical documents.
The authors choose some famous, pre-trained, semantic-
segmentation networks on the ImageNet [10] database for
object recognition (e.g. DeepLabV3 [7] and SegNet [1])
and test them on the task of text segmentation in hand-
written documents. The results demonstrated that on some
manuscripts pre-training on ImageNet increases the per-
formance, but on others, the pre-trained network performs
much worse.

3. Proposed Method

In this section, we provide an outline of the proposed
framework showcasing the key components that define its
effectiveness. First, we introduce DeepLabV3, a robust
CNN architecture for segmentation tasks which we em-
ployed as the backbone of our framework. Then we discuss
the dynamic instance generation approach that characterizes
our training process, which allows for improved generaliza-
tion capabilities at a low computational cost. Finally, we
introduce the refinement process we applied to the segmen-
tation maps produced by the backbone network to obtain a
more precise version of them.

A visual representation of the presented framework is
provided in Fig. 3.

3.1. Backbone network

As the backbone of the proposed framework, we selected
DeepLabV3 [7] , a ResNet-based Deep CNN architecture
that employs atrous (dilated) convolutions in cascade or in
parallel with different dilation levels and is widely adopted
in the context of image semantic segmentation. This ap-
proach allows retaining a larger spatial resolution for the
feature maps throughout the network architecture compared
to models relying heavily on striding and pooling layers.
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Figure 3: Visual representation of the segmentation pipeline for the proposed framework. During the training (green area)
each input image is split into N, non-overlapping, patches of size k × k which cover its entire surface and are used as the
baseline training set. Furthermore, during each epoch C random crops of the input image are randomly generated from the
image as additional training data. The backbone model then provides a predicted coarse segmentation map for each of these
patches that are compared with the ground truth one through the application of a weighted cross-entropy loss. At inference
time the dynamic instance generation step is removed while a segmentation refinement process is applied to the outputs of
the backbone architecture to obtain more precise segmentation maps.

The key aspect that makes atrous convolutions effective
for in the context of semantic segmentation task is that they
allow us to create deeper networks while at the same time
providing output feature maps that are larger than those of a
traditional deep CNN architecture and without any increase
in the amount of computation needed. Furthermore, the
Atrous Spatial Pyramid Pooling (ASPP) module employed
in the DeepLabV3 network allows, thanks to the adoption
of different dilation rates, provides an effective way of cap-
turing information at multiple scales of the original image.

3.2. Dynamically enhanced training data

Maximizing the exploitation of available data is a key
step in few-shot learning systems like the one we are pre-
senting in this work. While using the entire images to train
our model would allow capturing global contextual infor-
mation about it, we believe that most of this contextual in-
formation can also be retrieved from smaller sections of the
document’s pages almost as effectively. For this reason, as
a first step to improve the efficiency of our training setup,
we decided to split each page of the document in a set P of
non-overlapping, fixed-size, patches that cover the entire in-
put image and represent our baseline training set (Fig. 4a).
While this first step allows us to enhance the size of our
training set by a factor of P its main limitation is that the
size of the single patches must be large enough to allow cap-
turing contextual information from the corresponding rep-
resented area of the original image, thus limiting the value
of P . For this reason, to further improve the efficiency of

(a) Baseline patches (b) Randomly selected crops

Figure 4: Representaton of the instance generation process:
4a shows the baseline non overlapping patches, while 4b
shows a set of randomly generated crops.

our training process while at the same trying to enhance the
generalization capabilities of our model we introduced a dy-
namic instance generation process which at each epoch re-
trieves a set of C randomly selected crops, of the same size
as the baseline dataset patches, which, together with the cor-
responding segmentation maps, are used as additional in-
stances for training the segmentation network (Fig. 4b). An
additional perk of this approach is that it avoids generating
huge amounts of potentially unnecessary data beforehand.
In particular, the intuition behind this strategy is that we try
to generate a number of instances that is proportional to the
complexity of the dataset. A complex dataset will need a
larger amount of instances to be generated to fully represent
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the heterogeneity of its data, while for a simpler dataset a
smaller number of them would suffice. Furthermore, being
employed only during training allows for maintaining a lean
pipeline at inference time when only the baseline patches
are employed for the segmentation process.

3.3. Segmentation refinement

One common problem for semantic segmentation sys-
tems in the context of handwritten document analysis is rep-
resented by the degree of precision that the systems need to
achieve in order to provide pixel-precise segmentations of
the foreground elements of the document’s pages (e.g. text,
decorations). What makes this task even more difficult in
historical documents is that they are subjected to varying
degrees of degradation which both reduce the contrast be-
tween the foreground and the background and also can lead
to having less clearly shaped characters.

To solve this problem we introduce in our inference
pipeline a segmentation refinement process based on the
Sauvola thresholding technique [20]. Sauvola’s threshold-
ing can be seen as an improvement over Niblack’s algo-
rithm [17] which was specifically designed for document
binarization. This technique computes a local threshold t at
each pixel of a grayscale image by applying the Eq. 1 to the
n× n surrounding pixels defining its neighborhood:

t = mN ∗ (1 + k ∗ ((stdN/R)− 1)) (1)

In the above equation, mN and stdN represent the mean
and the standard deviation of the neighborhood respectively,
while R represents the dynamic range of standard devia-
tion. Finally, k is a constant value that controls the value of
the threshold in the local window, the higher is k the lower
the threshold from the local mean. In practice, this pro-
cess provides a binary mask that allows to effectively sep-
arate the darker areas of the image, representing the back-
ground, from the lighter ones, representing the foregrounds.
The segmentation refinement process is carried out by per-
forming a pixel-wise multiplication between the segmen-
tation maps provided by the backbone architecture (where
the background class is represented as 0) and the mask ex-
tracted from the corresponding input image by the Sauvola
algorithm. In Fig. 2 we show a sample page from the dataset
together with its filtered version.

4. Experiments
In this section, we provide an overview of the dataset by

highlighting its characteristics as well as the challenges it
poses, together with a detailed description of the training
setup adopted for the experiments.

4.1. Dataset

The dataset selected to train and test our system is the
DIVA-HisDB dataset [22], a historical document dataset

consisting of a total of 150, high-resolution, annotated
pages coming from 3 different medieval manuscripts, iden-
tified as CSG18, CSG863 and CB55, characterized by com-
plex and heterogeneous layouts as well as different levels
of degradation. A sample page for each of the classes of
manuscripts is reported in Fig. 1. Out of the total images
60 are typically used for training, 30 for validation and an-
other 60 for testing. For the present work, we only relied on
6 images (2 for each manuscript) to train our model. The
DIVA-HisDB provides pixel-level ground truth segmenta-
tion (Fig. 5) for the layout of each page, which distinguishes
between 4 classes of elements. A further challenging aspect
of the dataset is a very marked imbalance between these
classes. Detail of their distribution is provided in Tab. 1.

(a) Original page (b) Page GT

Figure 5: Images showing: A page of the CSG863
manuscript class ( 5a) and the corresponding ground truth
mask ( 5b) The magenta areas represent the main text, while
the yellow and cyan area represent the comments and deco-
rations respectively.

BG Comments Decoration Text
CB55 82.41 8.36 0.55 8.68

CSG18 85.16 6.78 1.47 6.59
CSG863 77.82 6.35 1.83 14.00

Table 1: Classes distribution (%).

4.2. Training and inference setup

The network training process has been carried out
through the adoption of the ADAM optimizer with a learn-
ing rate of 1e−3 and a weight decay of 1e−5. The selected
loss function is a weighted cross-entropy loss in which the
weights for each class are determined by taking the square
root of 1 over the class frequency in the dataset (Eq. 2,
where Fi represents the frequency (%) of class in the cor-
responding class dataset), this choice was made to account
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for the class imbalance that characterizes the dataset.

Wi =

√
1

Fi
(2)

The maximum number of epochs was set to 200, starting
from epoch 50 onwards an early stop was introduced in case
the network did not improve over the last 20 iterations. Due
to the high resolution of the images (up to 4.8k × 6.8k px),
a resizing process has been carried out to reduce the com-
putational complexity of the model and be able to fit them
in the GPU memory. The final shape of the images is of
1120 × 1344 px. To train the model two images for each
manuscript class have been selected and split into patches of
size 224×224 px, resulting in a training set of 60 patches for
each manuscript. This set is then enhanced by generating 10
additional random crops of the same size for each image as
part of our dynamic training routine. The maximum final
amount of generated instances composing the training set
is 4000 if the model needs all the available epochs to con-
verge. As for the inference setup the parameters selected for
the Sauvola thresholding algorithm where a window size of
15pixels and k = 0.1, the reason behind the selection of
such a low value for the latter parameter is that we wanted
to avoid as much as possible including background noise,
represented by page degradation, as part of the generated
binary mask.

4.3. Experimental Results

In this section, we outline the metrics selected for the
evaluation of the proposed framework as well as provide
both an ablation study, aimed at supporting the effective-
ness of the choices defining the proposed system and a thor-
ough comparison with other popular semantic segmentation
approaches, including the current state-of-the-art for docu-
ment layout analysis.

4.4. Metrics

The metrics used to evaluate the performance of the
proposed approach are Precision, Recall, Intersection over
Union (IoU) and F1-Score. The metrics were calculated as
described in [24] individually for each class following the
definition reported in Eq. 3– 6, where TP, FP and FN stand
respectively for True Positives, False positives and False
Negatives, and then a weighted average, based on each class
frequency has been performed.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

IoU =
TP

TP + FP + FN
(5)

F1− score =
2× Precision×Recall

Precision+Recall
(6)

4.5. Results

First we present the results of the ablation study we con-
ducted on the different versions of the proposed framework.
In particular, in Tab. 2 we provide a comparison between the
baseline approach, which consists in running the backbone
network on a patch level but without the dynamic crop gen-
eration nor the segmentation refinement processes, and the
improved versions in which these strategies have been em-
ployed singularly and the in a combined fashion. We report
both the scores for the individual classes as weel as the final
averaged ones. As we can see both the proposed strategies
determine an improvement in the system performance when
introduced as part of the segmentation pipeline. In partic-
ular, the segmentation map refinement process, for which
we show a sample qualitative results in Fig. 6, provides the
most important contribution, improving the mean scores for
all the metrics by a margin of 5.5% to 9%. The dynamic
crop generation other hand provides an additional average
boost of 2% on the selected metrics. Finally, when com-
bined, the 2 strategies provide an average improvement of
9% across the metrics, with a peak for the IoU score which
gets improved by a 12.3%. The values in bold represent the
best-performing system for each metric on the correspond-
ing class of the dataset.

(a) Ground truth

(b) Coarse Prediction

(c) Refined Prediction

Figure 6: Qualitative results showing the effects of the
segmentation refinement process. Fig. 6a shows the orig-
inal ground truth for a zoomed area of the original image.
Fig. 6b shows the coarse segmentation mask obtained by
the model. Finally Fig. 6c shows the segmentation predic-
tion resulting from the refinement process.

Hereafter, we compare the results of the proposed ap-
proach with 5 popular semantic segmentation models which
proved to be effective on a wide variety of segmentation
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CB55 CSG18 CSG863 Mean
Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1

Ours (baseline) 0.846 0.843 0.757 0.825 0.911 0.918 0.851 0.904 1.000 0.913 0.913 0.954 0.919 0.891 0.840 0.894
Ours (w/ seg. refinement) 0.962 0.930 0.913 0.945 0.982 0.978 0.964 0.980 1.000 0.913 0.913 0.954 0.981 0.940 0.930 0.960
Ours (w/ dynamic crop gen.) 0.902 0.908 0.833 0.896 0.935 0.939 0.893 0.933 0.914 0.915 0.844 0.906 0.917 0.921 0.857 0.912
Ours (w/ both) 0.974 0.974 0.950 0.972 0.985 0.982 0.968 0.982 0.985 0.984 0.971 0.984 0.981 0.980 0.963 0.980

Table 2: Results of the ablation study. Each rows shows the performance of the different versions of our system across all
the selected metrics for the 4 classes of manuscripts composing the DIVA-HisDB dataset. The last four columns show the
average scores achieved by the models across the different classes.

tasks across different domains, namely the original ver-
sion of DeepLabV3 [7], its improvement, represented by
DeepLabV3+ [8], FCN [14], Lite Reduced Atrous Spa-
tial Pyramid Pooling (LRASPP) [13] and Pyramid Scene
Parsing Network (PSPNet) [25]. Furthermore, we compare
our model with the current state-of-the-art model for lay-
out analysis of ancient documents, which we will refer to as
MLA [24]. All the models, excluding MLA for which we
gathered the results from the respective paper, have been
personally tested by us keeping the training and evaluation
settings as consistent as possible. In Tab. 3 we provide the
final results obtained by the aforementioned models. As we
can see all the reported approaches achieve scores above
90% for the Precision and Recall, and F1-Score and above
84% for the IoU metric, which is arguably the most interest-
ing metric to consider while being also the hardest on which
to consistently achieve good results. Nonetheless, we show
how the framework proposed in the present paper is able to
consistently and substantially improve the results obtained
by the other approaches, with the exclusion of MLA, while
relying on a fraction of the available training data. In par-
ticular, the most impactful improvement has been achieved
for the IoU metric on which our system was able to out-
perform the second best performing model from the com-
petition, DeepLabV3+, by a 4.3% margin, with an average
improvement across all the metrics of 2.9%.

Furthermore, when compared to MLA, which being the
state-of-the-art represents the most interesting term of com-
parison, our approach was able to effectively close the gap
to it, reaching as close as a 0.8% gap for the Precision met-
ric, while being outperformed by only a 1.6% margin on
average across all the metrics. It is important to keep in
mind though that MLA is a much heavier system, which
was trained over 180.000 patches extracted from all the im-
ages of the available training set, while the proposed ap-
proach relied on at most 4000 patches extracted from just 2
of the available images for its training process, resulting in
a reduction of the data needed by a factor of 45.

Finally, in Fig. 7 we provide a set of qualitative results
for the proposed framework as for the DeepLabV3+ and
LRASPP models. In particular, we show a comparison be-
tween the segmentation maps produced by the three models

and those representing the ground truth on a zoomed sec-
tion of three different images belonging to the three classes
of manuscripts present in the dataset. As we can see the
three models provide different levels of precisions when it
comes to the fidelity to the ground truth segmentation maps.
The maps produced by LRASPP, while identifying correctly
the different foreground components of the page, are still
very coarse and include a wide area of background around
as well as inside the different characters. Deeplabv3+ pro-
vides much more precise masks, especially for the main text
(magenta areas) for which it is able to correctly identify the
boundaries of the characters, while it still struggles with the
comments and decorations areas. Finally, we show that the
approach presented in this paper is able to correctly iden-
tify all the three classes of foreground components while
achieving a high degree of precision for all of them across
the different types of manuscripts.

Precision Recall IoU F1
FCN [14] 0.918 0.916 0.843 0.904
LRSAPP [13] 0.930 0.911 0.854 0.910
PSPNet [25] 0.904 0.910 0.838 0.899
Deeplabv3 [7] 0.918 0.915 0.842 0.903
Deeplabv3+ [8] 0.958 0.956 0.920 0.954
MLA [24] 0.989 0.995 0.989 0.995
Ours 0.981 0.980 0.963 0.980

Table 3: Comparison between the results obtained by our
model and the competition, the best and second best score
for each metric are the bold and the underlined ones respec-
tively.

5. Conclusions

In this paper, we presented a complete framework for
few-shot, pixel-precise semantic segmentations on hand-
written historical documents. In particular, we introduced
two new components which represent an effective way of
addressing relevant challenges in the context of few-shot
learning systems. These components are a dynamic in-
stance generation module which provides an effective so-
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Figure 7: Image showing a qualitative comparison between our framework and the competition ones. Each row represents a
zoomed area belonging to a different instance of the dataset, representing the three classes of manuscript contained in it. In
the first column, the ground truth segmentation maps for the 3 images are shown, while on the remaining columns we provide
the results produced by the three systems, LRSAPP, DeepLabV3+ and Ours respectively.

lution to the problem of efficient training sample leverag-
ing when only a small set of training data is available to
the system, and a segmentation refinement module through
which we were able to consistently retrieve substantially
more precise segmentation maps compared to the baseline
output of the backbone segmentation network. By com-
bining these components into the final segmentation frame-
work we showed how it was able to achieve substantially
peter performance than other popular semantic segmenta-
tion approaches trained on the entire dataset in a traditional
setting, as well as being able to achieve results comparable

to the current state-of-the-art for historical document text
segmentation for the selected metrics on the challenging
DIVA-HisDB dataset.

For future works, we would like to address the drawback
of the current approach represented by the need to manu-
ally select additional parameters for the segmentation re-
finement process by exploring automated solutions that we
believe solve this problem while at the same time further
improving the quality of the framework’s predictions.
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[20] J. Sauvola and M. Pietikäinen. Adaptive document image
binarization. Pattern Recognition, 33(2):225–236, 2000.

[21] Fotini Simistira, Manuel Bouillon, Mathias Seuret, Marcel
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