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Abstract

The common implementation of face recognition systems
as a cascade of a detection stage and a recognition or veri-
fication stage can cause problems beyond failures of the de-
tector. When the detector succeeds, it can detect faces that
cannot be recognized, no matter how capable the recogni-
tion system is. Recognizability, a latent variable, should
therefore be factored into the design and implementation
of face recognition systems. We propose a measure of rec-
ognizability of a face image that leverages a key empirical
observation: An embedding of face images, implemented
by a deep neural network trained using mostly recognizable
identities, induces a partition of the hypersphere whereby
unrecognizable identities cluster together. This occurs re-
gardless of the phenomenon that causes a face to be unrec-
ognizable, be it optical or motion blur, partial occlusion,
spatial quantization, or poor illumination. Therefore, we
use the distance from such an “unrecognizable identity” as
a measure of recognizability, and incorporate it into the de-
sign of the overall system. We show that accounting for
recognizability reduces the error rate of single-image face
recognition by 58% at FAR=1e-5 on the IJB-C Covariate
Verification benchmark, and reduces the verification error
rate by 24% at FAR=1e-5 in set-based recognition on the
IJB-C benchmark.

1. Introduction
We aim at making face recognition systems easier to use

responsibly. This requires not just reducing the error rate,
but also producing interpretable performance metrics, with
estimates of when recognition can be performed reliably, or
otherwise should not be attempted, or deemed unreliable.

In most face recognition systems[8, 10, 38], each im-
age is first fed to a face detector (FD), that returns the lo-
cation and shape of a number of bounding boxes likely to
portray faces. Those, together with the image, are then
fed to a downstream face recognition (FR) module that
returns either one of K labels corresponding to identities
in a database (search), or a binary label corresponding to

‡Work done when at Amazon.

whether or not the bounding box matches a given iden-
tity (verification). FD and FR are typically non-interacting
modules trained on different datasets: The FD is tasked
with finding faces no matter whether they are recogniz-
able. The FR is tasked with mapping each detection onto
one of K identities. An obvious failure mode of such cas-
caded systems is when the FD is wrong: If a face is not
detected, obviously it cannot be correctly recognized. If a
detected bounding box does not show a face, the FR system
will nonetheless map it to one of the known identities, un-
less post-processing steps are in place, typically involving a
threshold on some confidence measure.

But even when the FD is right, there remain the follow-
ing problems:

First, while an image may contain enough information
to decide that there is a face, it may not contain enough to
determine whose face it is, regardless of how good the FR
system is. This creates a gap between the FD, tasked to
determine that there is a face regardless of whether it is rec-
ognizable, and the FR, tasked to recognize it. An FR system
should not try to recognize a face that is not recognizable.
‡ Accordingly, how can we measure and account for the
recognizability of a face image in face recognition?

Second, failure to take into consideration recognizabil-
ity can lead to misleading results in face recognition bench-
marks. Unrecognizable faces due to optical, atmospheric, or
motion blur, spatial quantization, poor illumination, partial
occlusion, etc, are typically used to train and score FD sys-
tems, but FR systems are trained using recognizable faces,
lest one could not establish ground truth. Accordingly,
how can we balance the reward in detecting unrecognizable
faces with the risk of failure to recognize them?

Third, failure to account for the recognizability of a face
can have consequences beyond the outcome of FR on that
face. Consider the problem of set-based face recognition
where the identity is to be assigned not to a single image,
but to a small collection of images known to come from the
same identity, some of which unrecognizable. These may

‡An optimal (Bayesian) FR system would forgo the FD and marginalize
over all possible locations and shapes, which is obviously intractable. But
conditioning on the presence of a face, rather than marginalizing it, is not
the only problem: There is another latent variable, “recognizability” that
is unaccounted for and instead assumed to be true by the FR.
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Figure 1. Hypersphere embeddings [38] of different faces from
the IJB-C dataset (colored clusters) visualized as circles with area
proportional to recognizability, using t-SNE [27]. As the im-
ages are perturbed artificially, becoming increasingly unrecogniz-
able, their embeddings migrate to join a common cluster (orange
square). Such an “unrecognizable identity” (UI) is described in
Sec. 2.2.1 and distinct from the centroid of the recognizable em-
beddings (black pentagram). Note the difference between face de-
tection confidence (C) and embedding based recognizability score
(R). The former is the output of a face detector and measures the
likelihood that the image contains a face while the latter measures
if the face can be recognized.

be frames of a video, some of which affected by motion blur
or partial occlusions. It may seem that using all the available
data can only improve the quality of the decision. However,
uniform averaging does not factor in the differences with
the set to guarantee optimal performance. Accordingly, how
should one combine images in set-based face recognition,
assuming we have available a measure of recognizability?

1.1. Main Hypothesis and Empirical Observation

The three questions above point to the need to explicitly
represent “recognizability” as a latent variable. As was the
case for the FD, marginalization is impractical. We instead
hypothesize that recognizability can be quantified inferen-
tially. A measure of recognizability could then be used to
complete the hypothesis space for FR, effectively adding an
additional class for unrecognizable identities, akin to open-
set classification. An estimate of recognizability would also
allow us to correctly weigh the influence of the detector
in the overall FR results. Finally, it would allow proper
weighting of different samples in set-based face recogni-
tion.

So, recognizability and the addition of an unrecognizable
identity (UI) class would address the issues set forth in the
introduction. But what is the unrecognizable identity? Is it
an actual identity or just a moniker for the interstitial space
around the decision boundaries among all known identities?

If we represent each face via an embedding in a com-
pact metric space, such as the hypersphere, perturbing the
image until it is unrecognizable moves the corresponding
embedding close to a decision boundary. So, it is reason-

Figure 2. During face clustering, faces with low recognizability
scores are grouped into one cluster by distance-based clustering
method (left), compared with clusters of faces with known identi-
ties (right). We refer to the former as the unrecognizable identity
cluster (UI) cluster. The UI cluster includes images subject to oc-
clusion, optical or motion blur, low resolution, poor illumination,
etc. So the clustering of UIs is not simply due to visual similarity.

able to expect that the embeddings of UIs distribute along
the boundaries of decision regions with no particular rela-
tion to each other: Distant identities, when perturbed, would
become distant UIs. Instead, we observe the following phe-
nomenon: When training an FR system without any UIs,
and using the resulting embedding to cluster identities (both
recognizable and not), UIs cluster together in representa-
tion space, despite being unrecognizable versions of dif-
ferent identities that may otherwise be far in representation
space.

This phenomenon, illustrated in Fig. 1, is counter-
intuitive at many levels: First, UIs do not distribute near
the boundary between different identities, but rather close to
each other and far from the corresponding identities. This
happens without imposing any loss on the distance among
UIs – for they are not even included in the training set for
the FR – and is likely made possible by the geometry of the
high-dimensional hypersphere.‡ Second, this phenomenon
is not only due “low-quality” images of UI being visually
similar to each other. Unlike other domains where motion-
blurred images form their own cluster, distinct from the low-
resolution cluster, here the UI cluster is highly heteroge-
neous, with images that exhibit occlusion, optical or motion
blur, low resolution, poor illumination, etc. So, the cluster-
ing of UIs is not simply due to visual similarity. Samples
of these phenomena are illustrated in Fig. 2 and Sec. 2.2.1.
We conjecture that this behavior is specific to FR, which is a
fine-grained categorization task, where nuisance variability
can cause coarse-grained perturbations that move the corre-
sponding samples out of domain.

We are now ready to tackle the main goal: Leverage the
key empirical observation above to harness unrecognizable
faces to improve face recognition.

‡This phenomenon is unrelated to the known collapse of representa-
tions of low-quality images towards the origin of a linear embedding space
[29], as here the embedding is constrained to be on the hypersphere.
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1.2. Related Work and Contributions

The face recognition literature is gargantuan; by ne-
cessity, we limit our review to the most closely related
methods, cognizant that we may omit otherwise important
work. Like most, we use a deep neural network (DNN)
model to compute our embedding function mapping an im-
age x and a bounding box b to a (pseudo-)posterior score
ϕ(xb) ∝ logP (y|x, b) where y ∈ {1, . . . ,K} denotes the
identity for the case of search, and K = 2 for verification
[9, 11, 20, 43, 30, 33, 25, 39, 49, 26, 41, 19]. Our work re-
lates to efforts to understand the effect of image quality on
face recognition: Some explicitly modeled image quality in
face aggregation [13, 44, 45, 47, 23], others utilized corre-
lation among images from the same person to improve set-
based [21, 22] or video-based [32] face recognition. More
recently, [15, 16] developed face quality assessment tools
and methods [36], probabilistic representation to model data
uncertainty [35, 2, 34], as well as explicit handling of qual-
ity variations with sub-embeddings [35].

Our contribution is three-fold, corresponding to the three
questions posed in the introduction:

1) We propose a measure of recognizability that lever-
ages the existence of a single UI cluster in the learned em-
bedding. The “embedding recognizability score” (ERS) is
simply the Euclidean (cordal) distance of the embedding of
an image from the UI cluster center in the hypersphere.

2) We use the ERS to mitigate the detrimental effect of
using different datasets for FD and FR. This results in 58%
error reduction at FAR=1e-5 (Table 1) in single-image face
recognition, without impacting the performance of the de-
tector.

3) We propose an aggregation method for set-based face
recognition, by simply calculating the weighted average
relative to the ERS, and report 24% error reduction (at
FAR=1e-5 on IJB-C) compared with uniform averaging.

We emphasize that unrecognizable faces are still in-
cluded in the evaluation and the improvement is due to the
proposed matching method using ERS (Sec. 2.2.2).

1.3. Implications on Bias and Fairness

As with any data-driven algorithmic method, a trained
FR system is subject to statistical bias due to the distribution
of the training set, and more general algorithmic bias engen-
dered by the choice of models, inference criteria, optimiza-
tion method, and interface. In addition to those externali-
ties, there can be intrinsic sources of bias that exist before
any algorithm is implemented or dataset collected: Light in-
teracts with matter in a way that depends on the sub-surface
scattering properties of materials. Therefore suboptimal
calibration of the imaging tools could affect the recogniz-
ability of any vision system. Moreover, clothing, makeup,
and accessories can impact recognizability by causing oc-
clusions of facial features. We, therefore, expect that the

Figure 3. Face verification accuracy can be heavily impacted
by image perturbation, evidenced by IJB-C Template-based Face
Verification benchmark results: the left x-axis shows perturbation
level low to high and the y-axis FRR@FAR=1e-5, with corre-
sponding images on the right. Perturbation types are color-coded.

UI will not represent an unbiased sampling of the popula-
tion and reflect physical and phenomenological characteris-
tics of the scene, the illuminant, the sensor, and the capture
method, regardless of the algorithm used to infer recogniz-
ability. In addition, recognizability is based on the statis-
tical properties of the embedding, which is subject to the
usual data and algorithmic biases. It is not clear how to bal-
ance different populations in the UI. We defer these impor-
tant and delicate questions to the many studies on bias and
fairness[1, 40, 46, 4], and focus on the orthogonal question
of how to deal with recognizability irrespective of what al-
gorithm or system is used for recognition.

2. Face Recognizability in Face Recognition
To consider face recognizability in the context of face

recognition systems, we first study the impact of face recog-
nizability degradation on FR accuracy and reveal why it is
important to account for input data recognizability. Then we
propose a measure of face recognizability depending on the
face embedding model. By factoring in the recognizability
measure for FR prediction decisions, we propose methods
to mitigate the detriment of unrecognizable faces to FR sys-
tems.

2.1. Observing Recognizability

The observation that UIs cluster together can be illus-
trated using face embeddings [38] on images of 8 randomly
sampled celebrities from the IJB-C dataset. We synthesize
UI images by perturbing images with increasing Gaussian
blur, motion blur, occlusions, etc. The t-SNE visualization
of the embeddings is shown in Fig. 1, where recognizable
faces form separate clusters corresponding to their identi-
ties, but as they become increasingly unrecognizable they
do not distribute around the boundary between identities,
nor around their centroid, but rather around a distinct clus-
ter, the UI cluster.
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Figure 4. Sample images from IJB-C dataset, grouped by em-
bedding based recognizability scores (ERS): high (>0.95), middle
(0.7−0.8), and low (<0.6). Images with low ERS are hard to rec-
ognize even for human viewers.

To validate this result, we perform large-scale face clus-
tering [6] on datasets where there are artificial or natural low
recognizability (LR) images of faces or non-faces. To ex-
emplify artificial LR images, we take a subset of 10K faces
from DeepGlint [7], a face embedding training dataset. We
randomly apply Gaussian blur, motion blur, resolution re-
duction, rotation, affine transformation, or occlusion to cor-
rupt 1K of the faces. After running face clustering with the
HAC algorithm [6] on the normalized features, a UI clus-
ter emerges. The cluster size is larger than all the other
clusters by more than two orders of magnitude. For natural
LR images, we run clustering on face crops detected by a
state-of-the-art FD model on the WIDERFace [48] dataset.
Again, we obtain a heterogeneous cluster comprising solely
unrecognizable and visually dissimilar faces. The identity-
agnostic UI images distribute closely in one cluster and
away from identity-based clusters. This corroborates two
typical types of face quality-related errors in FR reported
in several prior works [2, 34]: false positive matches be-
tween low-quality faces of different ids and false negatives
between high and low-quality faces of the same id.

The clustering results on face datasets are surprising as
low-quality images (for instance, a quality degraded Ima-
geNet database) ordinarily tend to cluster by appearance:
blurred images form a cluster that is distinct from that of
dark images, and that of motion-blurred images, etc. We
conjecture that the existence of UI has to do with the fine-
grained nature of the face domain because we discover sim-
ilar phenomena also emerge in other fine-grained recogni-
tion tasks like person re-identification and fashion retrieval.

What impact could the UIs have on the downstream FR
task? To quantify this, we add recognizability corruption
(Gaussian blur, reduced resolution, and linear motion blur)
to images in the IJB-C face verification benchmark and
show the change of error rates in Fig. 3. We observe a clear
trend of error increase as more corruption is added. This
shows the risk of not considering the recognizability of the
images in recognition and calls for a mitigation solution.
Luckily, the fact that the UI is distant from recognizable
identities in the embedding space, also suggests a way of

measuring recognizability by measuring their distances to
the UI and factor recognizability into face recognition pre-
diction, as we detail in Sec. 2.2.1.

2.2. Accounting for Recognizability

Based on the hypothesis that distance to the UI clus-
ter centroid could serve as a measure of the face recogniz-
ability, we use the distance as an embedding recognizabil-
ity score (ERS), which requires no additional training nor
annotation and can be easily incorporated into both single-
image and set-based face recognition.

2.2.1 The Embedding Recognizability Score

We define Embedding Recognizability Score (ERS) to be
the distance between an embedding vector and the average
embedding of UI images. UI images can be obtained either
by artificially degrading the recognizability of regular face
images such as those from face embedding model training
dataset ‡, or clustering in-the-wild face detection datasets
consisting naturally unrecognizable faces such as WIDER-
Face [48] and taking the resultant UI cluster (see details in
Sec. 3.3). The normalized average feature of the UI images,
fUI , which we call the UI centroid (UIC), is used to repre-
sent the UI. And ERS ei of an embedding fi, is given by

ei = 1− ⟨fUI , fi⟩. (1)

We illustrate the correlation between ERS and recognizabil-
ity in Fig. 4 by taking images from the IJB-C dataset and
grouping them by their ERS scores. The ERS decrease is
accompanied by face quality variations such as occlusion
distortion, larger poses, and increased image blurriness.

2.2.2 ERS in Single Image-Based Recognition

Face verification aims to determine whether two face im-
ages, x1 and x2, belong to the same person. They have
corresponding groundtruth identity labels y1 and y2. The
face embedding model represents an input face image xi as
the feature vector fi ∈ Rd. Without considering recogniz-
ability, the estimated probability of two images being from
the same person is usually

p(ŷ1 = ŷ2|x1, x2) = s(f1, f2). (2)

Here s(·, ·) is the cosine similarity function, and ŷi is the
estimated identity label of xi, which in practice is not ex-
plicitly computed. Then a binary prediction is made based

‡The recognizability in our context is observer-dependent, where the
observer could be a human or an algorithm. Although it could be debated
that a face unrecognizable to the human eye may still be recognizable to an
algorithm when we degrade the face images, we empirically found adding
extreme noise as per manual check to work across the benchmarks
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on whether the probability is higher than an empirically set
threshold τ .

To take ERS into account, we allow the system to predict
“unsure” instead of “same” or “different” when either e1 or
e2 is below a threshold γ. When the ERS of x1 or x2 is
low, we observe the recognizability to be low. The similar-
ity between them cannot be reliably determined to predict if
they belong to the same id. In applications, one can choose
further actions on the unsure cases. For example, in our ex-
periments on the IJB-C Covariate Test, we choose to predict
all unsure cases as not belonging to the same person due to
the empirical risk of false matches.
Face identification aims to tell whether one query image
xi, represented as fi belongs to one of N indexed iden-
tities in the gallery, represented as {gj}Nj=1. ‡ Here we
assume that the gallery has mostly recognizable images.
Without considering recognizability, the decision function
S(Rd) → [0, . . . , N ] is

S(fi; {gj}) = 1[maxj s(fi,gj) ≥ τ ] · argmaxj=1,...,N s(fi,gj) (3)

where maxj s(fi,gj) indicates the maximal similarity
score or the search top retrieval. The query has a posi-
tive match when the maximal similarity score to any of the
gallery images is above the threshold τ . With ERS, the de-
cision function becomes

S′(fi; {gj}) = S(fi; {gj})1(ei ≥ γ). (4)

Again, when ei is lower than γ, it becomes an unsure case,
we predict there is no positive match. If there is no guar-
antee that the gallery images are mostly recognizable, ERS
could be applied to reject retrieved gallery images below γ.

2.2.3 ERS in Image Set-based Face Recognition

In set-based face recognition, we have prior knowledge that
each set or template [28], contains one or multiple face im-
ages belonging to a single person. Set-based face recogni-
tion also usually consists of face verification and face iden-
tification. We first extract feature vectors using the embed-
ding model for every image in each set θi containing images
{xl

i} as {f li}
|θi|
l=1, where |θi| is the cardinality of θi. Then the

feature vectors are aggregated into one feature vector fi. Af-
ter aggregation, the processing is the same as in the single
image case. We design an aggregation function weighted
by the ERS of each image as

fi =

|θi|∑
l=1

w(eli)f
l
i∑

l e
l
i

, ei =

∑
l e

l
i

|θi|
, (5)

‡In this work we only deal with the “open-set” setting [28] where pre-
dicting a query has no match in the gallery is allowed, as it is the most
common usage in real-world FR systems.

Figure 5. Pairwise performance comparison between baseline (av-
erage pooling) and our method (ERS) on IJB-C template across
different settings, our method achieves consistent error reduction.
Training settings: Reference (R101, CosFace, DeepGlint), SC-
Arc(R101, Sub-center Arcface, DeepGlint), Center (R101, Soft-
max+Center, DeepGlint), L2-Softmax (R101, ℓ2-Softmax, Deep-
Glint), IMDB (R101, CosFace, IMDB), ResNet34 (R34, CosFace
Loss DeepGlint).

where fi and ei denote the aggregated feature vector and
ERS for the set θi, w : R → R+ denotes the weight-
ing function based on ERS. The aggregated feature vectors
can then be used as in the single image cases. We discuss
choices of weighting function in the ablation study.

3. Experiments
We examine the effectiveness of ERS in face recogni-

tion on multiple benchmarks. We consider two face image
quality assessment methods as the baselines: FaceQnet [16]
and SER-FIQ [36]. In set-based face recognition, we com-
pare the ERS based aggregation function with other set-
based recognition methods: NAN [47], Multicolumn [45],
DCN [44], Iconicity [12], PFE [34] and DUL [2]. Due to
the limitation of space, we share our preliminary bias anal-
ysis of the ERS in the Supplemental Material .
Implementation details We use the deep learning frame-
work MXNet [3] in our model training and evalua-
tion. We train a face embedding model using Cos-
Face [38] loss, ResNet-101 (R101) [14] backbone and
DeepGlint-Face dataset (including MS1M-DeepGlint and
Asian-DeepGlint) [7]. HAC algorithm [6] is used to clus-
ter extracted embeddings and generate UI clusters. We se-
lect threshold γ = 0.60 for ERS via cross-validation on the
TinyFace [42] benchmark.
Evaluation data Single image and set-based face recogni-
tion experiments are run on the IARPA Janus Benchmark-C
(IJB-C) [28] ‡. We run evaluations on the IARPA Janus
Benchmark-C (IJB-C) [28]. IJB-C dataset suite contains in-
the-wild celebrity media, including photos and videos, and
multiple predefined benchmark protocols. We employ four
protocols from IJB-C: 1) IJB-C Covariate Face Verifica-

‡This paper contains or makes use of the following data made available
by the Intelligence Advanced Research Projects Activity (IARPA): Bench-
mark C (IJB-C) data detailed at Face Challenges homepage. For more
information see https://nigos.nist.gov/datasets/ijbc/request.
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Mehod Verification FRR@FAR
1e-6 1e-5 1e-4 1e-3

Baseline 0.6976 0.4540 0.1747 0.0714
FaceQnet [16] (γ = 1.00) 0.6976 0.4540 0.1747 0.0714
SER-FIQ [36] (γ = 0.83) 0.4027 0.2023 0.1164 0.0717

ERS (γ = 0.60) 0.3819 0.1885 0.1113 0.0673
Table 1. Comparison of recognizability conditioned face verifi-
cation on IJBC Covariate Verification benchmark. We compare
with FaceQnet [16] and SER-FIQ [36] as the alternatives for face
recognizability measures.

tion Test for single image-based face verification, 2) IJB-C
Template-based Face Verification for set-based face verifi-
cation, 3) IJB-C Template-based Face Search for set-based
face search, and 4) IJB-C Test10: Wild Probe with Full Mo-
tion Video Face Search for set-based video face search. It
is worth noting that the IJB-C Test10 contains video frames
with strong motion blur, forming an FR testbed with unrec-
ognizable video faces.
Evaluation Metric Methods performance is measured on
two standard face recognition test cases: 1:1 verification
and 1:N search. For face verification, we measure False Re-
ject Rates (FRRs, also known as 1− True Acceptance Rate),
at a set of False Acceptance Rates (FARs). For face search,
we measure False Negative Identification Rates (FNIRs, or
1− True Positive Identification Rate) at different False Pos-
itive Identification Rates (FPIR), as well as top-K accuracy.

3.1. ERS in Single Image-Based Face Verification

The IJB-C Covariate Test protocol benchmarks single
image-based face verification. In Table 1, we evaluate
our approach on this benchmark, and compare with Face-
Qnet [16] and SER-FIQ [36] as the alternatives for recog-
nizability measurement. With the same embedding model,
using ERS as the recognizability measure leads to 58% er-
ror reduction at FAR=1e-5 compared to that of not consider-
ing recognizability. The alternative recognizability measure
FaceQnet cannot improve the baseline at all thresholds, and
SER-FIQ can help reduce errors, but with less effect.

3.2. ERS in Set-Based Face Recognition

We evaluate set-based face recognition using ERS as de-
scribed in Sec. 2.2.3. Results on the IJB-C Template-Based
Face Verification and Search are illustrated in Table 2 (top).
We adapt media-pooling [5] in set-based benchmarks. We
compare ERS based method to the baseline of simple av-
eraging without considering recognizability (AvePool). We
also compare our approach with other methods developed
for set-based face recognition. It can be seen that our ap-
proach significantly reduces recognition errors of the base-
line. Our results are comparable or better than other com-
plex methods developed for set-based recognition.

We also evaluate ERS on the IJB-C Test10 benchmark
to test our algorithms on videos in the wild and implement

Method Backbone Train Data IJB-C Veri FRR@FAR
1e-5 1e-4 1e-3

Multi. [45] R50 VGGFace2 0.2290 0.1380 0.0730
DCN [44] R50 VGGFace2 - 0.1150 0.0530
Icon. [12] CNN [43] L2 [31] MS1M+UMD 0.1270 0.0770 0.0470
PFE [34] 64-Layer CNN MS1M 0.1036 0.0675 0.0451
NAN [47] R64 Cosface DeepGlint 0.1023 0.0582 0.0347
DUL [2] R64 MS1M 0.0977 0.0539 0.0530
AvePool R64 Cosface DeepGlint 0.1262 0.0639 0.0332

ERS 0.0929 0.0547 0.0312
AvePool R101

SubCenterArc DeepGlint 0.0592 0.0406 0.0271
ERS 0.0528 0.0363 0.0245

Table 2. Benchmark results on IJB-C Template-Based Verifica-
tion. Top: we compare using ERS for aggregation with the base-
line of averaging embedding (AvePool) and other face aggregation
methods. The results are reported at different FAR levels. We re-
port error rates to better illustrate the difference between methods.
Bottom: ERS application on the latest Sub-center ArcFace model.

an average pooling baseline and learning-based method
NAN [47] for comparison. The results are summarized in
Table 3. It can be seen that although obtained from images,
ERS is also able to improve recognition accuracy in chal-
lenging video data.
Improving State-of-the-art Face Embedding Models. In
Fig. 1 we illustrate the UI cluster using the Cosface [38] for
embedding. The UI clustering phenomenon is not limited
to that embedding model. We empirically find that multiple
other face embedding models have similar behaviors, de-
spite their different loss functions, size of training datasets,
and backbone architectures. We conjecture that the exis-
tence of UI clusters may be attributed to the nature of face
recognition as a fine-grained categorization task. Since ERS
is easy to obtain for any face embedding model without ex-
tra training or annotation, we test applying ERS to multiple
state-of-the-art face embedding models trained under differ-
ent settings, including (1) loss function designs: Sub-center
ArcFace [9], Softmax+Center Loss [43] and ℓ2-Softmax
Loss [31] ; (2) training dataset: IMDB [37] and DeepGlint-
Face; (3) backbone architectures: ResNet-101, ResNet-50
and ResNet-34 [14].

Results on the IJB-C face verification benchmark are
illustrated in Fig. 5. We observe consistent error reduc-
tion on all tested models, including 10% error reduction at
FAR=1e-5 on a strong baseline from Sub-center ArcFace
[9]. Full results can be found in Table 2 (bottom). This sug-
gests that the ERS can be an easy plug-in to existing face
recognition systems to reduce recognition errors.

3.3. Ablation Study

Generation of the UI Centroid. The UI centroid (UIC) is a
key component of our ERS-based methods. We explore two
approaches for obtaining the UI images. The first is a direct
approach. As introduced in Sec. 2.1, we heavily perturbed
the recognizability of 1K randomly sampled faces from the
training dataset DeepGlint, using techniques exemplified by

3429



Method Identification FNIR@FPIR Rank-N Error
1e-4 1e-3 1e-2 1e-1 1 5

AvePool 0.8607 0.6840 0.4129 0.2029 0.1564 0.1137
NAN [47] 0.8566 0.6697 0.3726 0.1956 0.1518 0.1100

ERS 0.8299 0.6096 0.3054 0.1807 0.1457 0.1055
Table 3. IJB-C Test 10: Wild Probe with Full Motion Video Face
Search results, tested using backbone ResNet101 trained on Deep-
GlintFace with CosFace [38] loss. In comparison with baseline av-
erage pooling and NAN [47] trained on top of the same backbone
model, our ERS-based aggregation achieves the best performance.

Clustering dataset DeepGlint 1K WIDERFace FDDB
UI cluster average distance 0.3907 0.3213 0.4344

UIC distance to FDDB 0.0560 0.0526 0.0000
w/ ERS FRR@FAR=1e-5 0.0623 0.0627 0.0625

Table 4. Comparison between UI generated from different
datasets and ERS results on IJB-C Template-based Face Verifica-
tion. Without ERS the FRR@FAR=1e-5 is 0.1140. PDS indicates
a perturbed DeepGlint subset.

Fig. 3. In the second approach, we automatically select UI
images from face detection datasets, such WIDERFace and
FDDB [18] datasets, where low recognizability faces are
naturally present. After face clustering, we found the largest
resultant clusters to be UI clusters for both datasets, and
this is consistent across all examined models (Sec.3.2). We
compare UICs generated from DeepGlint 1K, WIDERFace
and FDDB [18] in table 4, where we list the average cosine
distances of each UI cluster, a comparison between gener-
ated UICs, and associated aggregation results. It can be seen
that our method is not sensitive to the UI image source, ar-
tificial or natural. This is also consistent with our observa-
tion that heterogeneous UI images gather in one cluster. We
conclude that it is possible to obtain UIC from different data
distributions where there are low recognizability images.

When clustering across different embedding models, we
find resultant images in the UI clusters to have significant
overlap. Further experiments prove a fixed set of UI im-
ages generated from one embedding model can be reused
by other models for obtaining UIC. In fact, we obtained a
UI set from a Res101-based Cosface model, and reused it
to generate UIC for all other models in Fig. 5 and Table 3.
Either using the direct or clustering-based approach, the ap-
plication of our method is simple and efficient.

Choice of the Weighting Function w. Using ERS in set-
based face recognition requires a choice of the weighting
function w. We compare different choices of w, including
identity, exponential, and square on the IJB-C Template-
Based Face Verification benchmark. We also compare with
two special choices that average the images with top-1%
and top-10% ERSs within a set. From table 5 we can see
square function achieves the best results. We use it in other
experiments without special notes.

w ei softmax(ei) e2i ei ei
Set Selection N/A N/A N/A top 1 top 10%

FRR@FAR 1e-5 0.0684 0.1393 0.0627 0.2196 0.2025
Table 5. Comparison between different ERS-based aggregation
methods on IJBC Templated-based Face Verification benchmark,
basenet ResNet101 trained with Cosface [38].

FRR@FAR
1e-5 1e-4 1e-3 1e-2

Baseline AvePool 0.1140 0.0468 0.0264 0.0141
ERS (WeightedPool) 0.0627 0.0393 0.0243 0.0140

ERS-Enhanced AvePool 0.0644 0.0410 0.0255 0.0144
Table 6. Comparison among average pooling, ERS weighted
pooling and average pooling with ERS enhanced features on IJB-
C Template-based Face Verification benchmark, basenet is R101
trained with Cosface loss.

3.4. Exploration on Increasing ERS

Higher ERSs usually associate with faces with better rec-
ognizability. It is interesting to explore whether we can in-
crease the ERS of a given image. We present the results of
a naive method for this: enhance the face feature by remov-
ing its projection on the direction of the UI representation
to yield high ERS (e = 1) features. Formally, we take the
raw feature embedding f , unit vector fUI and calculate the
feature

vid = f − ⟨f , fUI⟩fUI . (6)

After ℓ2 normalization we get the ERS-enhanced features
f id. From table 6 we can see average pooling with the ERS-
enhanced features surpasses the baseline by a large margin
and achieves comparable results to ERS weighted aggrega-
tion. This suggests increasing embedding ERS can make a
meaningful difference in benchmark results, and achieving
higher ERS through more advanced techniques may lead to
a further increase in recognition accuracy.

3.5. Emergence of the UI Cluster

Inspired by recent works in out-of-distribution detec-
tion [17], we provide an exploratory study on the evolution
of UI image embedding during training. We analyze the
pair-wise cosine distance of embedding vectors within and
between three sets of images: (a) UI images from known
UI clusters, (b) recognizable faces from the same identi-
ties, (c) recognizable faces from different identities. During
training, we compute UIC on set (a) after each epoch. We
measure the distance of these intermediate UICs to the UIC
obtained after the final epoch. We average results from 10
independent training runs and show them in Fig. 6. We can
see that as the training number of epochs increases: (1) The
UI cluster emerges early on during training. Its centroid
shifts significantly during model training. (2) The distance
between UI images and recognizable ids stays high, similar
to that among faces from the different ids (we call these the
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Figure 6. Top: Trajectory of the UI centroid during training w.r.t.
the final model UIC. Bottom: Distances comparison between UI
images, recognizable faces from the same identity and recogniz-
able faces from different identities.

High Distance Groups). (3) Distances among UI images re-
main at low values, similar to that of faces from the same
id (Low Distance Groups) (4) Between the High and Low
Distance Groups, a clear gap could be observed.

3.6. Exploration on Other Vision Tasks

As an extended study, we explore clustering on person
re-identification (re-id) and image retrieval to see whether
the low recognizability clustering phenomenon exists and
whether our method can be applied accordingly. Similar
to Fig. 3, we perform re-id embedding clustering on Mar-
ket1501 [50] dataset, and likewise for partially perturbed
Deepfashion In-Shop dataset [24]. We observe low rec-
ognizability of miscellaneous samples gather in one cluster
similar to those of faces. After devising the associated ERS
measures, it can be observed from Fig. 7 and Fig. 8 that con-
sistent with our findings on the face, the ERS also correlates
with the input image recognizability. We show more results
in the Supplemental Material due to the limitation of space.

4. Conclusion and Discussion
Face recognition is subject to a vast array of issues that

can affect the quality of its result. While we acknowledge
the presence and importance of statistical and algorithmic
biases, in this paper we focus on additional issues that ex-
ist even before any dataset is collected, and affect systems
that are not trained on data. Simply put, some images con-
tain sufficient information to ascertain that there is a face,

Figure 7. Images from Market1501 grouped by ERSs. A positive
correlation between recognizability and ERS can be observed.

Figure 8. Images from Deepfashion with synthetic corruption
grouped ERSs. A positive correlation between recognizability and
ERS can be observed.

but insufficient to determine whose face it is. This gap is
captured by the concept of “recognizability”, which is af-
fected by the physical properties of the subject (sub-surface
scattering and pigmentation, occlusions from hairdo, acces-
sories, makeup), but also extrinsic properties of the scene
such as the nature and quality of the illuminant, physical
properties of the sensor and pre-processing algorithms per-
formed by the camera software, imaging conditions such as
large aperture/high capture time resulting in motion blur, fi-
nite depth of field and resulting optical blur, etc.

We also acknowledge that the principled solution to both
cascading failures of the detection and recognizability of
the detected face, is to properly marginalize the corre-
sponding latent variables. Since that is highly impractical,
we settle for the intermediate inference of recognizability,
through the proposal of an admittedly ad-hoc measure, sug-
gested by the manifest clustering of unrecognizable identi-
ties. Because of the issues mentioned above, and also ver-
ified empirically, the UI is a highly heterogeneous cluster.
It includes images subject to wildly varying nuisances, un-
like other domains such as large-scale image classification
where optical-blurred images form a cluster separate from
motion-blurred images or low-resolution images.

With all due caveats in mind, we observe that explic-
itly accounting for recognizability through the admittedly
unprincipled method we have proposed, we still achieve
significant error reduction in face recognition on standard
public benchmarks and effectively allow a system to oper-
ate in an open-set setting without the complications of full-
fledged open universe training.
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