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Abstract
We present a method for optimizing object-level rigid 3D

scene flow over two successive point clouds without any
annotated labels in autonomous driving settings. Rather
than using pointwise flow vectors, our approach represents
scene flow as the composition a global ego-motion and a
set of bounding boxes with their own rigid motions, exploit-
ing the multi-body rigidity commonly present in dynamic
scenes. We jointly optimize these parameters over a novel
loss function based on the nearest neighbor distance using
a differentiable bounding box formulation. Our approach
achieves state-of-the-art accuracy on KITTI Scene Flow
and nuScenes without requiring any annotations, outper-
forming even supervised methods. Additionally, we demon-
strate the effectiveness of our approach on motion segmen-
tation and ego-motion estimation. Lastly, we visualize our
predictions and validate our loss function design with an
ablation study.

1. Introduction

Understanding the 3D motion in a scene is an essen-
tial problem in computer vision and robotics. 3D scene
flow is a low-level motion representation, characterized as
a 3D motion field over all points in the scene. With the
increasing prevalence of LiDAR and depth sensors, scene
flow estimation from point clouds has become an increas-
ingly important problem. Advances in deep feature learn-
ing on point sets [37, 38, 6, 55, 22] have recently given
rise to deep learning approaches to scene flow estimation
[27, 48, 13, 50, 54, 12, 51, 32, 1, 33]. However, because
real-world scene flow annotations are expensive to acquire,
many of these approaches rely on synthetic datasets [29]
and often do not generalize well to real world data, espe-
cially LiDAR scans. Additionally, most of these works fail
to exploit the rigidity present in most scenes i.e. the dy-
namics of most scenes can be decomposed into the motion
of multiple rigidly moving objects. They predict uncon-
strained, pointwise motion vectors, resulting in inaccurate
and physically inconsistent predictions.

In light of these shortcomings, we propose a new object-

level scene flow estimation approach that jointly optimizes
a global ego-motion and a set of bounding boxes with their
own rigid motions, without using any annotated labels. To
optimize this new scene flow parameterization using gradi-
ent methods, we develop a novel loss function and a dif-
ferentiable bounding box formulation. We demonstrate the
effectiveness of our approach on the KITTI [30, 31, 11] and
nuScenes[4] datasets. In particular, our method achieves 2x
lower end-point-error than the current state-of-the-art on the
KITTI Scene Flow dataset.

In summary, our main contributions are that:

• We propose a novel objective function to optimize
object-level rigid scene flow without any annotated la-
bels in autonomous driving settings.

• We develop a differentiable 3D bounding box formu-
lation to optimize our scene flow parameters.

• Our method produces physically plausible and inter-
pretable scene flow by constraining the predicted mo-
tion to be rigid.

• Our approach accurately detects moving objects at an
instance level without labeled supervision.

• Our approach significantly outperforms the state-of-
the-art on KITTI Scene Flow and nuScenes.

2. Related Work
Supervised Scene Flow The term scene flow was first in-
troduced in [44]. Traditional methods primarily predicted
scene flow from stereo and RGB-D [15, 49, 20, 14, 40, 45,
46, 47], although some used LiDAR [43]. Following the rise
of deep learning, neural networks became a prevalent tool
for scene flow estimation on images [19, 52, 53, 16, 17].
[27] pioneered deep scene flow estimation on point clouds
by combining the FlowNet architecture [9, 18] with ad-
vances in deep point cloud feature learning [37, 38]. They
trained their model in a supervised manner on synthetic
data [29] and generalize it to real world data [10]. Subse-
quent works on supervised scene flow estimation from point
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Figure 1: Overview of our loss function for a single bounding box. Terms in blue blocks are optimizable scene flow pa-
rameters b: bounding box parameters, T: bounding box’s rigid transformation, Tego: ego-motion transformation, c: box’s
confidence score, and the plot refers to our differentiable bounding box approximation. From P1, we differentiably select
the points inside the bounding box and transform them using T and Tego. Then we compute the nearest neighbor distance
between the two transformed point sets and P2. Lastly, we weigh the two nearest neighbor distance by c and 1−c respectively
and sum them to compute the loss.

clouds followed this training framework. [13] and [50] de-
veloped faster and more accurate network architectures us-
ing sparse permutohedral lattices and cost volumes respec-
tively. [54] predicted scene flow as a global ego-motion and
a set of residual flow vectors. [36] framed scene flow es-
timation as a correspondence problem by borrowing ideas
from optimal transport. [39] utilized high-order CRFs to
constrain the scene flow output to be locally smooth and
rigid. Lastly, [51] used a recurrent network to iteratively
refine scene flow predictions.

Self-Supervised Scene Flow Because of the domain shift
from synthetic to real world datasets, as well as the dif-
ficulty acquiring scene flow annotations for real LiDAR
scans, recent works on scene flow estimation from point
clouds have explored self-supervision. [33] was the first,
utilizing a nearest neighbor and cycle-consistency loss. [41]
and [35] developed loss functions that use Chamfer Dis-
tance in conjunction with smoothness and shape constraints.
[51, 54, 1] use losses similar to these, but [51] uses a recur-
rent network architecture, while [54, 1] predict ego-motion
in addition to flow vectors. None of these approaches ex-
ploit the multi-body rigid property of dynamic scenes. Re-
cently, [24] proposed a method that over-segments point
clouds and computes a rigid transform for each segment,
but does not incorporate any notion of objects.

Scene Flow Optimization Rather than predicting scene flow
in real time, recently a few works have used offline opti-
mization approaches to estimate scene flow. In particular,
[35] directly optimizes its self-supervised loss function over
each point cloud at inference time, and [25] trains a neural
network over a single pair of point clouds to predict scene
flow, using the network as an implicit smoothness regular-

izer. Our approach falls within this category, but unlike the
previous works, we optimize scene flow at the object level.

Object Scene Flow While multi-body rigidity is a com-
monly used prior in scene flow estimation, most existing
works require some form of annotation. [34, 26, 28, 53]
predicted object-level scene flow from stereo, images, or
RGB-D. [26, 28, 53] required annotated segmentation la-
bels, and [34] focused on object detection. [32] was the first
work to predict object level scene flow from point clouds,
but it required scene flow, object detection, and ego-motion
labels. More recently, [12] proposed a weakly supervised
approach to object-level scene flow estimation that only re-
quires ego-motion and foreground/background labels, and
[8] built on this by utilizing a recurrent update network. All
of the aforementioned approaches except [34] require an-
notated labels at training time. Our approach is the first to
leverage the rigidity of dynamic scenes in scene flow esti-
mation while also requiring no labelled supervision.

3. Method
The objective of 3D scene flow estimation is, given a

pair of point clouds P1 ∈ R3×N1 , P2 ∈ R3×N2 , to predict
the scene flow between them, defined as a set of vectors
F ∈ R3×N1 that indicate the motion of the points in P1 to
their corresponding location in P2. Note that there may not
be direct correspondences between the two point clouds.

3.1. Motion Representation

Previous works usually predict scene flow directly, pa-
rameterized as a set of pointwise motion vectors. However,
this parameterization is highly unconstrained and fails to
exploit the underlying rigidity present in most scenes. We
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Figure 2: Visualizations of non-differentiable vs differen-
tiable bounding boxes in 1 and 3 dimensions: (a) non-
differentiable 1D bounding line; (b) differentiable 1D
bounding line; (c) non-differentiable 3D bounding box; (d)
differentiable 3D bounding box.

instead parameterize scene flow as the composition of a
global ego-motion and a set of bounding boxes containing
moving objects, each with their own rigid motions. Specif-
ically, our objective is to compute a global ego-motion
Tego = {Rego ∈ SO(3), tego ∈ R3} ∈ SE(3); a
set of k bounding boxes B = {bi}k parameterized as
b = (c, x, y, z, w, l, h, θ) where c is a confidence score
indicating whether or not the box contains a moving ob-
ject, x, y, z is the center of the bounding box, w, l, h are the
box’s dimensions, and θ is a heading angle; and a set of k
rigid transformations of the form Ti = {Ri ∈ SO(3), ti ∈
R3} ∈ SE(3), one for each bounding box. Because we fo-
cus specifically on autonomous driving settings, we assume
the boxes have zero pitch and roll. Refer to the supplement
for additional details on our motion parameterization.

In the context of autonomous driving, bounding boxes
are usually sufficient to capture the shapes of moving ob-
jects. We choose to use bounding boxes to parameter-
ize objects rather than segmentation masks as in previous
works because similar to pointwise flow vectors, segmenta-
tion masks are highly unconstrained and can represent in-
coherent objects e.g. an object with two detached points on
opposite sides of the scene. On the other hand, optimizing
bounding boxes constrains the objects to physically plausi-
ble point sets, significantly reducing the dimensionality of
the optimization space.

3.2. Overview

An overview of our proposed objective function is shown
in Figure 1. To compute the scene flow parameters without

any labelled supervision, we optimize them over a novel
loss function that characterizes the nearest neighbor dis-
tance (NND) from P1 to P2 after applying the scene flow
parameters. Given a bounding box bi, we select the points
inside it using a differentiable bounding box approximation.
We then transform these points using Ti and Tego and com-
pute the NND between the two transformed point sets and
P2. We call these terms the foreground and background
loss, respectively. Finally, we multiply the foreground and
background loss by ci and 1− ci respectively and add these
together to compute the total loss for bi. The final loss is the
sum of all per-box losses. To compute scene flow parame-
ters, we simply minimize this loss function using gradient-
based optimization. As a clarifying note, we do not use any
neural networks and are only interested in directly optimiz-
ing the scene flow parameters. In the following sections, we
explain each component of the loss function in detail.

3.3. Differentiable Bounding Boxes

Our proposed loss function takes the NND of trans-
formed points in P1 to P2, where pointwise NND is defined
as:

Dnn(P1, P2)[i] = min
p2∈P2

||p2 − P1[i]||22 (1)

where [i] denotes the ith point. However, the NND of points
inside a bounding box bi is a step function with respect to
bi and therefore non-differentiable. In order to optimize bi
over the NND, we propose a novel, differentiable bounding
box approximation.

Fundamentally, a bounding box is a membership func-
tion in 3D space. Each point in the domain of the function
is mapped to either 1 or 0 depending on whether it is inside
or outside the box. In the simplified case of a 1 dimensional
bounding box or “bounding line”, the membership function
would be the difference of two shifted unit step functions,
as shown in Figure 2a. Inspired by [7], we can replace the
step functions with sigmoid approximations to make them
differentiable, shown in Figure 2b, resulting in a 1D differ-
entiable bounding box:

box1D(x) =
1

1 + ek(x+
l
2 )

− 1

1 + ek(x−
l
2 )

(2)

where l is the width of the box and k is a parameter control-
ling the sharpness of the sigmoid slope.

To generalize to 3D, we take the product of 1D bound-
ing lines along each of the three axes of the bounding box,
resulting in a 3D bounding box membership density field
shown in Figure 2d. This results in:

box3D(x, y, z) =
∏

d∈{xb,yb,zb}

(
1

1 + ek(d+
ld
2 )

− 1

1 + ek(d−
ld
2 )

)

(3)
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where xb, yb, zb are x, y, z transformed into the local coor-
dinate frame of the bounding box, and ld is the width of the
box along dimension d.

The boxes are initialized in a grid over the ground plane.
We initialize our box shapes to approximate that of cars,
using the anchor dimensions from [22]. The heading angle,
rotation, and translation of each box are initialized to 0, the
identity, and 0⃗, respectively. For more details, please refer
to the supplement.

3.4. Loss Function

Our proposed loss function is the sum of independently
computed per-box losses, so for simplicity we will focus on
the loss of a single box b, written as:

Lnn = c

N1∑
i=1

ŵi ∗ (Dnn(Rpi + t, P2) + ϵ)

+(1− c)

N1∑
i=1

ŵi ∗Dnn(Regopi + tego, P2)

= cLfg + (1− c)Lbg

(4)

where c is the confidence score of the box. ŵi is the
ith element of ŵ, a normalized vector of weights produced
by the smooth bounding box approximation for b computed
using Equation 3 over P1, pi is the ith point in P1, R and
t are b’s associated rotation and translation respectively, N1

and N2 indicated the number of points in P1 and P2, and ϵ is
a constant penalty, to be described shortly. Lastly, Lfg and
Lbg denote foreground and background loss, respectively.

The foreground loss is the differentiable NND of points
in bi after P1 is transformed by Ti, and the background loss
is the NND after P1 is transformed by Tego, describing the
NND under the assumption that the points in bi belong to
a dynamic rigid object or a static object. During optimiza-
tion, it is unknown whether a given box contains a moving
or static object, so to model this uncertainty, we write the
final loss as the sum of these two terms weighted by c and
1 − c, where c ∈ (0, 1). If the foreground loss is lower
than the background loss, the box likely contains a dynamic
object, and to minimize the overall loss, c will converge
towards 1. Likewise, c will converge towards 0 if the back-
ground loss is smaller. Concurrently, if the confidence is
high, the loss from this box will primarily propagate gradi-
ents towards optimizing T, and if it is low, the loss will op-
timize Tego, ensuring that primarily static objects are used
for ego-motion optimization. During inference, we thresh-
old c to determine which boxes contain moving objects.

Since the ego-motion is shared among all bounding
boxes, it is more constrained than the per-box rigid mo-
tions. When a bounding box contains a static part of the
scene, we find empirically the foreground rigid motion to
be nearly identical to the ego-motion, but converging to a

barely smaller loss. This results in many static background
objects erroneously having a high confidence. To address
this, we add a small constant penalty ϵ to the foreground
term. This value can be interpreted as the minimum dis-
tance an object needs to traverse to be considered dynamic.

3.5. Auxillary Terms

In addition to the main loss function described above,
we also incorporate a few auxillary terms. Since we narrow
our use case specifically to autonomous driving datasets, we
broadly assume that the moving objects are cars, and con-
struct certain auxillary terms based on this assumption.

Box Dimension Regularization We apply a small penalty
Lshape to the bounding box shape that constrains it to be
about the size of an average car:

Lshape = ∆2
w +∆2

l +∆2
h (5)

where ∆w,∆l,∆h are the underlying parameters to the
width, length, and height of the boxes, described in the sup-
plement.

Heading Term Because cars face the direction they are
moving, we apply a consistency loss Lheading that forces
the heading of bounding boxes to point in the same direc-
tion as their motion.

Lheading = ||θxy − txy||22 (6)

where θxy is a 2D vector parameterizing the heading, fur-
ther described in the supplement, and txy are the x and y
components of t on the ground plane.

Angle Term Moving cars do not experience large rotations,
so we apply a small penalty Langle on the magnitude of the
rotation angle θ due to R.

Langle = θ2 (7)

Mass Term We also apply a mass term Lmass that encour-
ages the bounding boxes to have more points inside them.
If a box contains part of a moving object, this term encour-
ages it to converge around it entirely. If it does not contain
a moving object, it is still helpful for the boxes to contain
many background points in order to make the ego-motion
estimation more robust.

Lmass = −
N1∑
i=1

wi (8)

where wi is the ith element of w, the unnormalized vector of
membership weights from the differentiable bounding box.

Combining these terms, our final per-box loss is

L = Lnn + λshapeLshape + λheadingLheading

+λangleLangle + λmassLmass

(9)
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Table 1: Scene flow evaluation.

Dataset Method
Supervision/

Approach
Training

Data EPE3D ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

StereoKITTI

FlowNet3D [27] Full FT3D 0.177 0.374 0.668 0.527
HPLFlowNet [13] Full FT3D 0.117 0.478 0.778 0.410
PointPWCNet [50] Full FT3D 0.069 0.728 0.888 0.265
FLOT [36] Full FT3D 0.056 0.755 0.908 0.242
EgoFlow [54] Full FT3D 0.069 0.670 0.879 0.404
FlowStep3D [51] Full FT3D 0.055 0.805 0.925 0.149
HCRF-Flow [39] Full FT3D 0.053 0.863 0.944 0.180
WeaklyRigidFlow [12] Full FT3D 0.042 0.849 0.959 0.208

PointPWCNet [50] Self FT3D 0.255 0.238 0.496 0.686
EgoFlow [54] Self FT3D 0.415 0.221 0.372 0.810
FlowStep3D [51] Self FT3D 0.102 0.708 0.839 0.246
SLIM [1] Self RawKITTI 0.121 0.518 0.796 0.402
SLIM*[1] Self RawKITTI 0.067 0.77 0.934 0.249
RigidFlow [24] Self FT3D 0.062 0.724 0.892 0.262

Chamfer* Optimization - 0.991 0.056 0.071 0.942
PointPWCNet [50] Optimization - 0.657 0.357 0.405 0.72
NSFP [25] Optimization - 0.036 0.912 0.961 0.154
NSFP*[25] Optimization - 0.034 0.914 0.962 0.151
Ours Optimization - 0.035 0.932 0.971 0.146
Ours* Optimization - 0.017 0.973 0.989 0.096

LidarKITTI

PointPWCNet [50] Full FT3D 0.390 0.387 0.550 0.653
FLOT [36] Full FT3D 0.653 0.155 0.313 0.837

WeaklyRigidFlow [12] Weak SemKITTI 0.094 0.784 0.885 0.314
ExploitingRigidity [8] Weak SemKITTI 0.071 0.824 0.913 0.295

Chamfer* Optimization - 0.944 0.022 0.057 0.992
PointPWCNet [50] Optimization - 0.734 0.248 0.347 0.845
NSFP*[25] Optimization - 0.142 0.688 0.826 0.385
Ours* Optimization - 0.085 0.883 0.929 0.239

nuScenes

Chamfer* Optimization - 0.879 0.035 0.082 0.976
PointPWCNet*[50] Optimization - 0.615 0.199 0.328 0.86
NSFP *[25] Optimization - 0.177 0.374 0.668 0.527
Ours * Optimization - 0.107 0.717 0.862 0.321

* methods that use the entire point cloud. All other methods downsample to 8,192 points.

where each λ is a hyperparameter that controls the influence
of the corresponding loss. The total loss is then the sum of
L over all boxes.

3.6. Inference

To select the boxes containing moving objects, we first
filter out any bounding boxes that contain fewer than nmin

points, where nmin is a threshold that depends on the point
cloud density of the given dataset. Then we apply non-
maximum-suppression and keep boxes with a score of 0.85
or above. We classify these boxes as dynamic. With the
dynamic boxes, we segment P1 by assigning each point to
the most confident box it is in, as there may still be some
overlap between boxes. Finally, we apply each box’s rigid
transformation to its points, and the ego-motion to the re-
maining background points to compute the scene flow as

fi = Ripi + ti − pi (10)

where pi is the ith point in P1, fi is its scene flow prediction,
and Ri and ti are its associated rotation and translation.

4. Results
We evaluate our method both quantitatively and visually

on various datasets for scene flow estimation, moving object
segmentation, and ego-motion estimation, comparing them
with the current state-of-the-art. Additionally, we explore
the effects of our design choices using an ablation study.

4.1. Datasets

KITTI Scene Flow [30, 31, 11] We evaluate our scene flow
and motion segmentation predictions on the KITTI Scene
Flow Dataset, a real world autonomous driving dataset con-
taining 142 pairs of point clouds annotated with scene flow
vectors and instance segmentation masks. The authors re-
moved pedestrians and cyclists, so the only moving ob-
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Table 2: Motion segmentation results on StereoKITTI.

Method mIoU ↑ Accuracy ↑

SLIM [1] 42.9 60.1
Ours 86.6 92.9

jects in the dataset are cars. The dataset has two settings:
StereoKITTI and LidarKITTI. StereoKITTI is the tradi-
tional setting in which the point clouds are generated from
stereo disparity maps and therefore have correspondences.
Most of the existing methods evaluate on this setting. Li-
darKITTI is a more challenging setting in which the point
clouds are captured by a Velodyne 64-beam LiDAR. They
are sparser and do not have direct correspondences. The
ground truth scene flow vectors are assigned by projecting
the LiDAR points onto the StereoKITTI disparity map and
using the associated scene flow annotations.

For a fair comparison, we adopt the common data pre-
processing step introduced by [13] of removing ground
points via naive thresholding at 1.4 m below the sensor, and
cropping any points further than 35 m from the sensor. We
use this step on all our datasets and experiments. Due to
memory constraints during training, most prior learning-
based approaches also downsample their point clouds to
8,192 points. Our efficient implementation enables us to
use the entire point cloud, so on StereoKITTI, we report our
performance using both 8,192 points, and all points. The
typical size of undownsampled point clouds in each dataset
is detailed in the supplement.

On LidarKITTI, we optimize our scene flow parameters
over the entire LiDAR scan and evaluate it on the points in
front of the vehicle with scene flow annotations. We found
that only optimizing over points in front of the vehicle in
LiDAR scans results in false positive detections at the point
cloud boundaries due to cropping. This problem is some-
what mitigated when using the entire 360°point cloud.

nuScenes [4] nuScenes is a more challenging dataset than
KITTI, consisting of sparser LiDAR sweeps and more com-
plex driving scenarios. We use a subset of nuScenes re-
leased by [25], consisting of 310 point cloud pairs with
ground points removed using RANSAC. The ground truth
flow vectors are drawn using track annotations.

SemanticKITTI [2] We evaluate our ego-motion predic-
tions on SemanticKITTI, a large scale autonomous driv-
ing dataset curated from the KITTI odometry dataset. It
consists of 21 sequences of LiDAR frames annotated with
ground truth poses. Due to the size of the dataset, we only
evaluate on a random subset of 500 point cloud pairs. We
also use SemanticKITTI to evaluate our method’s motion
segmentation accuracy; refer to the supplement for details.

FlyingThings3D (FT3D) [29] FlyingThings3D is a large
synthetic dataset consisting of stereo pairs with scene flow

Table 3: Ego-Motion Estimation Evaluation on Se-
manticKITTI.

Method
Rotation

Error (◦) ↓
Translation
Error (m) ↓

Rotation
Accuracy ↑

Translation
Accuracy ↑

ICP [3] 0.244 0.122 0.906 0.878
Ours 0.235 0.107 0.916 0.94

annotations generated from CAD models moving randomly
in space. While our approach does not make use of FT3D,
previous supervised approaches use it for training.

RawKITTI [10] RawKITTI consists of the approximately
38,000 raw LiDAR scans from the KITTI dataset. [1] uses
this for self-supervised training.

4.2. Evaluation Metrics

To evaluate scene flow, we use the standard metric of 3D
end-point error (EPE3D), which is the average l2 distance
between the predicted and ground truth scene flow. We also
adopt the following metrics from [27, 13]: strict accuracy
(Acc3DS): the percentage of points with EPE3D < 0.05 m
or relative error < 5%; relaxed accuracy (Acc3DR): the per-
centage of points with EPE3D < 0.1 m or relative error <
10%; and Outliers: the percentage of points with EPE3D >
0.3 m or relative error > 10%.

To evaluate motion segmentation, we group all moving
points into a single class and report the mean intersection-
over-union (mIoU) and the segmentation accuracy:

mIoU = 0.5( TP
TP+FP+FN + TN

TN+FP+FN ) (11)

Accuracy = TP+TN
TP+FP+FN+TN (12)

For ego-motion estimation, we report the average rota-
tion and translation errors of our predictions in degrees and
meters, as well as the rotation and translation accuracy, de-
fined as the percentage of scenes where the rotation error <
0.5◦ and the translation error < 0.1 m.

4.3. Baselines

We compare our work against the following supervised,
self-supervised, and optimization-based scene flow estima-
tion approaches: FlowNet3D [27], HPLFlownet [13], Point-
PWCNet [50], FLOT [36], EgoFlow [54], FlowStep3D
[51], HCRF-Flow [39], WeaklyRigidFlow [12], SLIM [1],
NSFP [25], RigidFlow [24], and ExploitingRigidity [8].
Additionally, we directly optimize scene flow over two rep-
resentative self-supervised loss functions: (i) the Chamfer
Distance, used in [35, 51] (ii) the self-supervised loss from
[50], which adds a smoothness and laplacian term to the
Chamfer Distance. We compare motion segmentation re-
sults against SLIM [1], a state-of-the-art self-supervised ap-
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(a) Ours StereoKITTI (b) NSFP StereoKITTI (c) PointPWCNet StereoKITTI

(d) Ours LidarKITTI (e) NSFP LidarKITTI (f) PointPWCNet LidarKITTI

(g) Error Colorbar

Figure 3: Visualization of scene flow predictions for our method, NSFP, and the PointPWCNet loss function under direct
optimization on a scene in KITTI. Color indicates the EPE3D of the prediction, with red indicating high error and purple
indicating low error. For StereoKITTI, the colorscale ranges from 0-0.5 m error, while for LidarKITTI, it ranges from 0-1
m. In this scene, the ego vehicle is moving forward as two cars approach from the opposite direction. Our approach is able
to accurately predict the flow on both cars in the stereo setting, and the closer one in the LiDAR setting. NSFP struggles on
moving objects, while PointPWC predicts locally smooth, but incoherent flow.

Figure 4: Visualization of bounding box/segmentation. De-
tected moving objects are shown inside bounding boxes
and colored according to the resulting segmentation. Back-
ground points are cyan.

proach. Unlike our method, SLIM only predicts binary mo-
tion segmentation masks, and for dynamic points it predicts
pointwise flow vectors instead of rigid motions. For ego-
motion estimation, we use ICP [3] as a baseline.

4.4. Scene Flow Evaluation

We report our results and baselines on StereoKITTI, Li-
darKITTI, and nuScenes in Table 1. Without relying on any
annotated data, our method significantly outperforms the
state-of-the-art supervised, self-supervised, and optimiza-
tion baselines in most metrics on all datasets. In particu-
lar, when utilizing all points on StereoKITTI, our approach
achieves 2x lower EPE3D than the previous state-of-the-
art, and when using 8,192 points, our approach still out-
performs all other downsampled methods on all metrics. In
the LidarKITTI setting, [8] achieves lower EPE3D than our
method, but we achieve better accuracy. Compared to other
label-free optimization-based approaches, our method per-
forms the best by far, achieving 1.7x lower EPE3D than
[25]. Similarly, despite being a more challenging dataset,
our method performs well on nuScenes, achieving an aver-
age error of 0.107 m, significantly outperforming [25].

Relative to the baselines, our method performs better on
StereoKITTI than LidarKITTI. Because there does not exist
same-domain training data for StereoKITTI, StereoKITTI
baselines must always overcome a domain shift during in-
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Table 4: Ablation study over various loss terms and design choices on StereoKITTI. ∇b refers to whether we use differentiable
or non-differentiable bounding boxes.

∇b Lshape Lmass Lheading Langle EPE3D ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

✓ ✓ ✓ 0.284 0.74 0.759 0.319
✓ ✓ ✓ ✓ 0.218 0.473 0.678 0.457
✓ ✓ ✓ ✓ 0.401 0.66 0.663 0.406
✓ ✓ ✓ ✓ 0.024 0.959 0.984 0.116
✓ ✓ ✓ ✓ 0.017 0.974 0.989 0.096
✓ ✓ ✓ ✓ ✓ 0.017 0.973 0.989 0.096

ference. On the other hand, LidarKITTI approaches ex-
ploit the abundant LiDAR data and labels in KITTI, which
our method does not require. This explains why our
method outperforms the baselines by a larger margin on
StereoKITTI than LidarKITTI.

4.5. Motion Segmentation Evaluation

Our motion segmentation results are shown in Table 2.
Our approach significantly outperforms [1] in both metrics.
Qualitatively, we found that [1] often only segments parts
of moving objects, while our method reliably segments en-
tire objects. In the supplement, we also evaluate on Se-
manticKITTI and compare against a state-of-the-art super-
vised baseline [5]. While the baseline achieves better accu-
racy than our method, it requires per-point annotated super-
vision. Refer to the supplement for more details.

4.6. Ego-Motion Evaluation

Our ego-motion results on SemanticKITTI are shown in
Table 3. We outperform ICP on all metrics, achieving an
average of 0.235◦ rotation error and 0.107 m translation er-
ror. As a note, we observed that ICP performs unusually
well on SemanticKITTI due to the already close alignment
of the LiDAR scans, as well as the absence of moving ob-
jects in several of the scenes.

4.7. Visualizations

We qualitatively compare our method against NSFP [25]
and the PointPWCNet [50] loss function, two state-of-the-
art optimization methods, by visualizing the predictions on
a scene from KITTI in Figure 3. As shown, our method
produces the most accurate predictions. In particular, NSFP
struggles to predict dynamic objects, while PointPWCNet
generates locally smooth predictions but fails to exhibit ob-
ject level rigidity. Despite the fact that the primary super-
visory signal for all three approaches is the NND, our ap-
proach achieves more accurate predictions by directly con-
straining the scene flow to be rigid.

Additionally, we visualize our predicted bounding boxes
and segmentation masks in Figure 4. Our approach is able
to accurately detect the moving objects in the scenes. From
the visualization, one can note the effect of our heading and
mass losses, as the boxes are centered around and oriented

with the moving objects. For a more exhaustive visualiza-
tion, refer to the supplement.

4.8. Ablation Study

To evaluate our design choices, we conduct an ablation
study, shown in Table 4. We find that the differentiable
bounding boxes, shape regularization, and mass term con-
tribute significantly to our performance. Without differen-
tiable bounding boxes, the shape and position of the boxes
are not updated. Without the shape regularizer, the mass
term causes boxes to grow too large. Without the mass term,
the boxes converge to empty regions without points. The
heading and angle terms also provide slight increases in ac-
curacy. On StereoKITTI, the angle term actually slightly
decreases the accuracy, but generally, and especially in Li-
DAR settings, it improves optimization stability.

4.9. Limitations

Our approach faces a few limitations. As an optimiza-
tion framework, our method is unsuitable for real-time in-
ference. Additionally, our current formulation is only ap-
plicable to autonomous driving settings where objects can
be reasonably parameterized using boxes. Lastly, despite
our method’s state-of-the-art performance, we still struggle
with sparse, occluded, and featureless portions of the input
point clouds, especially in the LiDAR domain. See the sup-
plement for more details.

5. Conclusion
We introduce the first approach that exploits the multi-

body rigidity of dynamic scenes without requiring anno-
tated scene flow or segmentation labels. Our approach
achieves state-of-the-art performance on the KITTI Scene
Flow Benchmark and nuScenes. With the growing preva-
lence of depth sensors and LiDAR, our work will be useful
for processing the raw, unlabelled point clouds they gener-
ate. In the future we hope to combine our approach with
learning for real-time inference, and to generalize to arbi-
trary 3D scenes.
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