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Abstract

Contrastive representation learning has proven to be an
effective self-supervised learning method. Most success-
ful approaches are based on Noise Contrastive Estimation
(NCE) and use different views of an instance as positives
that should be contrasted with other instances, called neg-
atives, that are considered as noise. However, several in-
stances in a dataset are drawn from the same distribution
and share underlying semantic information. A good data
representation should contain relations, or semantic simi-
larity, between the instances. Contrastive learning implic-
itly learns relations but considering all negatives as noise
harms the quality of the learned relations. To circumvent
this issue, we propose a novel formulation of contrastive
learning using semantic similarity between instances called
Similarity Contrastive Estimation (SCE). Our training ob-
jective is a soft contrastive learning one. Instead of hard
classifying positives and negatives, we estimate from one
view of a batch a continuous distribution to push or pull
instances based on their semantic similarities. This tar-
get similarity distribution is sharpened to eliminate noisy
relations. The model predicts for each instance, from an-
other view, the target distribution while contrasting its pos-
itive with negatives. Experimental results show that SCE
is Top-1 on the ImageNet linear evaluation protocol at 100
pretraining epochs with 72.1% accuracy and is competitive
with state-of-the-art algorithms by reaching 75.4% for 200
epochs with multi-crop. We also show that SCE is able to
generalize to several tasks. Source code is available here:
https://github.com/CEA-LIST/SCE.

1. Introduction

Self-Supervised learning (SSL) is an unsupervised learn-
ing procedure in which the data provides its own supervi-

sion to learn a practical representation of the data. It has
been successfully applied to various applications such as
classification and object detection. A pretext task is de-
signed on the data to pretrain the model. The pretrained
model is then fine-tuned on downstream tasks and several
works have shown that a self-supervised pretrained network
can outperform its supervised counterpart [5, 24, 6].

Contrastive learning is a state-of-the-art self-supervised
paradigm based on Noise Contrastive Estimation (NCE)
[25] whose most successful applications rely on instance
discrimination [26, 7]. Pairs of views from same images are
generated by carefully designed data augmentations [7, 48].
Elements from the same pairs are called positives and their
representations are pulled together to learn view invariant
features. Other images called negatives are considered as
noise and their representations are pushed away from posi-
tives. Frameworks based on contrastive learning paradigm
require a procedure to sample positives and negatives to
learn a good data representation. A large number of nega-
tives is essential [49] and various strategies have been pro-
posed to enhance the number of negatives [7, 54, 26, 32].
Sampling hard negatives [32, 44, 53, 30, 19] improve the
representations but can be harmful if they are semantically
false negatives which is known as the ”class collision prob-
lem” [4, 52, 13].

Other approaches that learn from positive views without
negatives have been proposed by predicting pseudo-classes
of different views [5, 6], minimizing the feature distance
of positives [24, 11] or matching the similarity distribution
between views and other instances [60]. These methods free
the mentioned problem of sampling hard negatives.

Based on the weakness of contrastive learning using
negatives, we introduce a self-supervised soft contrastive
learning approach called Similarity Contrastive Estimation
(SCE), that contrasts positive pairs with other instances and
leverages the push of negatives using the inter-instance sim-
ilarities. Our method computes relations defined as a sharp-
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ened similarity distribution between augmented views of a
batch. Each view from the batch is paired with a differently
augmented query. Our objective function will maintain for
each query the relations and contrast its positive with other
images. A memory buffer is maintained to produce a mean-
ingful distribution. Experiments on several datasets show
that our approach outperforms our contrastive and relational
baselines MoCov2 [10] and ReSSL [60].

Our contributions can be summarized as follows:
• We propose a self-supervised soft contrastive learning

approach called Similarity Contrastive Estimation (SCE)
that contrasts pairs of augmented images with other in-
stances and maintains relations among instances.

• We demonstrate that our framework SCE outperforms
on several benchmarks its baselines MoCov2 [10] and
ReSSL [60] for a shared architecture and can further be
improved using more recent architectures with a larger
batch size and a predictor.

• We show that our proposed SCE is competitive with the
state of the art on the ImageNet linear evaluation protocol
and generalizes to several downstream tasks.

2. Related Work
Self-Supervised Learning. In early works, different

pretext tasks to perform Self-Supervised Learning have
been proposed to learn a good data representation such as:
instance discrimination [18], patch localization [17], col-
orization [58], jigsaw puzzle [41], counting [42], angle ro-
tation prediction [23].

Contrastive Learning. Contrastive learning is a learn-
ing paradigm [49, 54, 29, 47, 26, 7, 39, 48, 5, 24] that out-
performed previously mentioned pretext tasks. Most suc-
cessful methods rely on instance discrimination with a pos-
itive pair of views from the same image contrasted with all
other instances called negatives. Retrieving lots of nega-
tives is necessary for contrastive learning [49] and various
strategies have been proposed. MoCo (v2) [26, 10] uses a
small batch size and keeps a high number of negatives by
maintaining a memory buffer of representations via a mo-
mentum encoder. Alternatively, SimCLR [7, 8] and Mo-
Cov3 [12] use a large batch size without a memory buffer,
and without a momentum encoder for SimCLR.

Sampler for Contrastive Learning. All negatives are
not equal [4] and hard negatives, negatives difficult to dis-
tinguish with positives, are the most important to sample to
improve contrastive learning. However, they are potentially
harmful to the training because of the “class collision” prob-
lem [4, 52, 13]. Several samplers have been proposed to al-
leviate this problem such as using the nearest neighbor as
positive for NNCLR [19]. Truncated-triplet [50] optimizes
a triplet loss using the k-th similar element as negative that
showed significant improvement. It is also possible to gen-
erate views by adversarial learning as AdCo [30] showed.

Contrastive Learning without negatives. Various
siamese frameworks perform contrastive learning without
the use of negatives to avoid the class collision problem.
BYOL [24] trains an online encoder to predict the output
of a momentum updated target encoder. SwAV [5] en-
forces consistency between online cluster assignments from
learned prototypes. DINO [6] proposes a self-distillation
paradigm to match distribution on pseudo class from an on-
line encoder to a momentum target encoder. Barlow-Twins
[57] aligns the cross-correlation matrix between two paired
outputs to the identity matrix that VICReg [2] stabilizes by
adding an intra-batch decorrelation loss function.

Regularized Contrastive Learning. Several works reg-
ularize contrastive learning by optimizing a contrastive ob-
jective along with an objective that considers the similari-
ties among instances. CO2 [52] adds a consistency regular-
ization term that matches the distribution of similarity for a
query and its positive. PCL [35] and WCL [59] combines
unsupervised clustering with contrastive learning to tighten
representations of similar instances.

Relational Learning. Contrastive learning implicitly
learns relations among instances by optimizing alignment
and matching a prior distribution [51, 9]. ReSSL [60] intro-
duces an explicit relational learning objective by maintain-
ing consistency of pairwise similarities between strong and
weak augmented views. The pairs of views are not directly
aligned which harms the discriminative performance.

In our work, we optimize a contrastive learning objec-
tive using negatives that alleviate class collision by pulling
related instances. We do not use a regularization term but
directly optimize a soft contrastive learning objective that
leverages the contrastive and relational aspects.

3. Methodology
In this section, we will introduce our baselines: MoCov2

[10] for the contrastive aspect and ReSSL [60] for the rela-
tional aspect. We will then present our self-supervised soft
contrastive learning approach called Similarity Contrastive
Estimation (SCE). All these methods share the same archi-
tecture illustrated in Fig. 1a. We provide the pseudo-code
of our algorithm in supplementary material.

3.1. Contrastive and Relational Learning

Consider x = {xk}k∈{1,...,N} a batch of N images.
Siamese momentum methods based on Contrastive and Re-
lational learning, such as MoCo [26] and ReSSL [60] re-
spectively, produce two views of x, x1 = t1(x) and x2 =
t2(x), from two data augmentation distributions T 1 and T 2

with t1 ∼ T 1 and t2 ∼ T 2. For ReSSL, T 2 is a weak data
augmentation distribution compared to T 1 to maintain rela-
tions. x1 passes through an online network fs followed by a
projector gs to compute z1 = gs(fs(x

1)). A parallel target
branch containing a projector gt and an encoder ft updated
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(a) Siamese pipeline (b) SCE objective function

Figure 1: SCE follows a siamese pipeline illustrated in Fig. 1a. A batch x of images is augmented with two different data
augmentation distributions T 1 and T 2 to form x1 = t1(x) and x2 = t2(x) with t1 ∼ T 1 and t2 ∼ T 2. The representation z1

is computed through an online encoder fs and projector gs such as z1 = gs(fs(x
1)). A parallel target branch updated by an

exponential moving average of the online branch, or ema, computes z2 = gt(ft(x
2)) with ft and gt the target encoder and

projector. In the objective function of SCE illustrated in Fig. 1b, z2 is used to compute the inter-instance target distribution by
applying a sharp softmax to the cosine similarities between z2 and a memory buffer of representations from the momentum
branch. This distribution is mixed via a 1− λ factor with a one-hot label factor λ to form the target distribution. Similarities
between z1 and the memory buffer plus its positive in z2 are also computed. The online distribution is computed via softmax
applied to the online similarities. The objective function is the cross entropy between the target and the online distributions.

by exponential moving average of the online branch com-
putes z2 = gt(ft(x

2)). z1 and z2 are both l2-normalized.
MoCo uses the InfoNCE loss, a similarity based func-

tion scaled by the temperature τ that maximizes agreement
between the positive pair and push negatives away:

LInfoNCE = − 1

N

N∑
i=1

log

(
exp(z1i · z2i /τ)∑N
j=1 exp(z

1
i · z2j /τ)

)
.

(1)
ReSSL computes a target similarity distribution s2, that

represents the relations between weak augmented instances,
and the distribution of similarity s1 between the strongly
augmented instances with the weak augmented ones. Tem-
perature parameters are applied to each distribution: τ for
s1 and τm for s2 with τ > τm to eliminate noisy relations.
The loss function is the cross-entropy between s2 and s1:

s1ik =
1i ̸=k · exp(z1i · z2k/τ)∑N
j=1 1i̸=j · exp(z1i · z2j /τ)

, (2)

s2ik =
1i ̸=k · exp(z2i · z2k/τm)∑N
j=1 1i̸=j · exp(z2i · z2j /τm)

, (3)

LReSSL = − 1

N

N∑
i=1

N∑
k=1
k ̸=i

s2ik log
(
s1ik
)
. (4)

A memory buffer of size M >> N filled by z2 is main-
tained for both methods.

3.2. Similarity Contrastive Estimation

Contrastive Learning methods damage relations among
instances which Relational Learning correctly build. How-
ever Relational Learning lacks the discriminating features
that contrastive methods can learn. If we take the exam-
ple of a dataset composed of cats and dogs, we want our
model to be able to understand that two different cats share
the same appearance but we also want our model to learn
to distinguish details specific to each cat. Based on these
requirements, we propose our approach called Similarity
Contrastive Estimation (SCE).

We argue that there exists a true distribution of similar-
ity w∗

i between a query qi and the instances in a batch of
N images x = {xk}k∈{1,...,N}, with xi a positive view of
qi. If we had access to w∗

i , our training framework would
estimate the similarity distribution pi between qi and all in-
stances in x, and minimize the cross-entropy between w∗

i

and pi which is a soft contrastive learning objective:

LSCE∗ = − 1

N

N∑
i=1

N∑
k=1

w∗
ik log (pik) . (5)

LSCE∗ is a soft contrastive approach that generalizes
InfoNCE and ReSSL objectives. InfoNCE is a hard con-
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trastive loss that estimates w∗
i with a one-hot label and

ReSSL estimates w∗
i without the contrastive component.

We propose an estimation of w∗
i based on contrastive

and relational learning. We consider x1 = t1(x) and x2 =
t2(x) generated from x using two data augmentations t1 ∼
T 1 and t2 ∼ T 2. Both augmentation distributions should
be different to estimate different relations for each view. We
compute z1 = gs(fs(x

1)) from fs and gs (and optionally a
predictor [24, 12]) and z2 = gt(ft(x

2)). z1 and z2 are both
l2-normalized. The similarity distribution s2 that defines
relations among instances is computed via the Eq. (3). The
temperature τm sharpens the distribution to only keep rele-
vant relations. A weighted positive one-hot label is added
to s2i to build the target similarity distribution w2

i :

w2
ik = λ · 1i=k + (1− λ) · s2ik. (6)

The online similarity distribution p1
i between z1i and z2,

including z2i in opposition with ReSSL, is computed and
scaled by the temperature τ with τ > τm to build a sharper
target distribution:

p1ik =
exp(z1i · z2k/τ)∑N
j=1 exp(z

1
i · z2j /τ)

. (7)

The objective function illustrated in Fig. 1b is the cross-
entropy between each w2 and p1:

LSCE = − 1

N

N∑
i=1

N∑
k=1

w2
ik log

(
p1ik
)
. (8)

The loss can be symmetrized by passing x1 through the
momentum encoder, x2 through the online encoder and av-
eraging the two losses computed.

A memory buffer of size M >> N filled by z2 is main-
tained to better approximate the similarity distributions.

The following proposition explicitly shows that SCE op-
timizes a contrastive learning objective while maintaining
inter-instance relations:

Proposition 1. LSCE defined in Eq. (8) can be written as:

LSCE = λ · LInfoNCE + µ · LReSSL + η · LCeil, (9)

with µ = η = 1− λ and

LCeil = − 1
N

∑N
i=1 log

(∑N
j=1 1i̸=j ·exp(z1

i ·z
2
j /τ)∑N

j=1 exp(z1
i ·z

2
j /τ)

)
.

The proof separates the positive term and negatives. It
can be found in the supplementary material. LCeil lever-
ages how similar the positives should be with hard nega-
tives. Because our approach is a soft contrastive learning
objective, we optimize the formulation in Eq. (8) and have
the constraint µ = η = 1 − λ. It frees our implementa-
tion from having three losses to optimize with two hyperpa-
rameters µ and η to tune. Still, we performed a small study
of the objective defined in Eq. (9) without this constraint to
check if LCeil improves results in Sec. 4.1.

4. Empirical study
In this section, we first make an ablative study of our

approach Similarity Contrastive Estimation (SCE) to find
the best hyperparameters. Secondly, we compare SCE with
its baselines MoCov2 [10] and ReSSL [60]. Finally, we
evaluate SCE on the ImageNet Linear evaluation protocol
and assess its generalization capacity on various tasks.

4.1. Ablation study

To make the ablation studies, we conducted experiments
on ImageNet100 that has a close distribution to ImageNet,
studied in Sec. 4.3, with the advantage to require less re-
sources to train. We keep implementation details close to
ReSSL [60] and MoCov2 [10] to ensure fair comparison.

Dataset. ImageNet [16] is a large dataset with 1k
classes, almost 1.3M images in the training set and 50K
images in the validation set. ImageNet100 is a selection
of 100 classes from ImageNet whose classes have been se-
lected randomly. We took the selected classes from [47] ref-
erenced in the supplementary material.

Implementation details for pretraining. We use the
ResNet-50 [28] encoder and pretrain for 200 epochs. As for
ReSSL [60], we apply by default strong and weak data aug-
mentations defined in Tab. 2. We use 8 GPUs with a batch
size of 512. The memory buffer size is 65,536. The pro-
jector is a 2 fully connected layer network with a hidden di-
mension of 4096 and an output dimension of 256. The SGD
optimizer [45] is used with a momentum of 0.9 and a weight
decay of 10−4. A linear warmup is applied during 5 epochs
to reach the initial learning rate of 0.3. The learning rate is
scaled using the linear scaling rule and follows the cosine
decay scheduler without restart [37]. The momentum value
to update the momentum network follows a cosine strategy
from 0.996 to 1. We do not symmetrize the loss by default.

Evaluation protocol. To evaluate our pretrained en-
coders, we train a linear classifier for 100 epochs on top of
the frozen pretrained encoder using an SGD optimizer with
an initial learning rate of 30 without weight decay and a mo-
mentum of 0.9. The learning rate is decayed by a factor of
0.1 at 60 and 80 epochs. Data augmentations follow stan-
dard protocol [10, 60], available in supplementary material.

Leveraging contrastive and relational learning. SCE
defined in Eq. (6) leverages contrastive and relational learn-
ing via the λ coefficient. We studied the effect of varying
λ on ImageNet100. Temperature parameters are set to τ =
0.1 and τm = 0.05. We report the results in Tab. 1. Perfor-
mance increases with λ from 0 to 0.5 after which it starts
decreasing. The best λ is 0.5 confirming that balancing the
contrastive and relational aspects provides better represen-
tation. In next experiments, we keep λ = 0.5.

We performed a small study of the optimization of
Eq. (9) by removing Lceil (η = 0) to validate the relevance
of our approach for τ = 0.1 and τm ∈ {0.05, 0.07}. The
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λ 0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Top-1 81.53 81.77 82.54 82.81 82.91 82.94 82.17 81.58 81.75 81.79 81.11

Table 1: Effect of varying λ on the Top-1 accuracy on ImageNet100. λ = 0.5 is optimal confirming that learning to
discriminate and maintaining relations is best.

Parameter weak strong strong-α strong-β strong-γ
Random crop probability 1 1 1 1 1
Flip probability 0.5 0.5 0.5 0.5 0.5
Color jittering probability 0. 0.8 0.8 0.8 0.8
Brightness adjustment max intensity - 0.4 0.4 0.4 0.4
Contrast adjustment max intensity - 0.4 0.4 0.4 0.4
Saturation adjustment max intensity - 0.4 0.2 0.2 0.2
Hue adjustment max intensity - 0.1 0.1 0.1 0.1
Color dropping probability 0. 0.2 0.2 0.2 0.2
Gaussian blurring probability 0. 0.5 1. 0.1 0.5
Solarization probability 0. 0. 0. 0.2 0.2

Table 2: Different distributions of data augmentations applied to SCE. The weak distribution is the same as ReSSL [60],
strong is the standard contrastive data augmentation [7]. The strong-α and strong-β are two distributions introduced by
BYOL [24]. Finally, strong-γ is a mix between strong-α and strong-β.

Loss coefficients Top-1
λ µ η τm = 0.05 τm = 0.07
1. 0. 0. 81.11 81.11

0.5 0.5 0. 82.80 82.49
0.5 0.5 0.5 82.94 83.37
0. 1. 0. 80.79 78.35
0. 1. 1. 81.53 79.64

Table 3: Effect of loss coefficients in Eq. (9) on the Top-
1 accuracy on ImageNet100. LCeil consistently improves
performance that varies given the temperature parameters.

Online aug Teacher aug Sym top-1
strong weak no 82.94

strong-γ weak no 83.00
weak strong no 73.43
strong strong no 80.54

strong-α strong-β no 80.74
strong weak yes 83.66
strong strong yes 83.00

strong-α strong-β yes 84.17

Table 4: Effect of using different distributions of data aug-
mentations for the two views and of the loss symmetriza-
tion on the Top-1 accuracy on ImageNet100. Using a weak
view for the teacher without symmetry is necessary to ob-
tain good relations. With loss symmetry, asymmetric data
augmentations improve the results, with the best obtained
using strong-α and strong-β augmentations.

results are reported in Tab. 3. Adding the term Lceil con-
sistently improves performance, empirically proving that
our approach is better than simply adding LInfoNCE and
LReSSL. This performance boost varies with temperature
parameters and our best setting improves by +0.9 percent-
age points (p.p.) in comparison with adding the two losses.

Asymmetric data augmentations to build the simi-
larity distributions. Contrastive learning approaches use
strong data augmentations [7] to learn view invariant fea-
tures and prevent the model to collapse. However, these
strong data augmentations shift the distribution of similar-
ities among instances that SCE uses to approximate w∗

i in
Eq. (6). We need to carefully tune the data augmentations to
estimate a relevant target similarity distribution. We listed
different distributions of data augmentations in Tab. 2. The
weak and strong augmentations are the same as described
by ReSSL [60]. strong-α and strong-β have been proposed
by BYOL [24]. strong-γ combines strong-α and strong-β.

We performed a study in Tab. 4 on which data augmen-
tations are needed to build a proper target distribution for
the non-symmetric and symmetric settings. We report the
Top-1 accuracy on Imagenet100 when varying the data aug-
mentations applied on the online and target branches of our
pipeline. For the non-symmetric setting, SCE requires the
target distribution to be built from a weak augmentation dis-
tribution that maintains consistency across instances.

Once the loss is symmetrized, asymmetry with strong
data augmentations has better performance. Indeed, using
strong-α and strong-β augmentations is better than using
weak and strong augmentations, and same strong augmen-
tations has lower performance. We argue symmetrized SCE
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Method ImageNet ImageNet100 Cifar10 Cifar100 STL10 Tiny-ImageNet
MoCov2 [10] 67.5 - - - - -
MoCov2 [*] 68.8 80.46 87.56 61.00 86.53 45.93
ReSSL [60] 69.9 - 90.20 63.79 88.25 46.60
ReSSL [*] 70.2 81.58 90.20 64.01 89.05 49.47
SCE (Ours) 70.5 83.37 90.34 65.45 89.94 51.90

Table 5: Comparison of SCE with its baselines MoCov2 [10] and ReSSL [60] on the Top-1 Accuracy on various datasets.
SCE outperforms on all benchmarks its baselines. [*] denotes our reproduction.

τ = 0.1 τ = 0.2
τm Top-1 τm Top-1

0.03 82.33 0.03 81.28
0.04 82.52 0.04 81.15
0.05 82.94 0.05 81.19
0.06 82.54 0.06 81.19
0.07 83.37 0.07 81.13
0.08 82.71 0.08 80.91
0.09 82.53 0.09 81.18
0.10 82.07 0.10 81.20

Table 6: Effect of varying the temperature parameters τm
and τ on the Top-1 accuracy on ImageNet100. τm is lower
than τ to produce a sharper target distribution without noisy
relations. Our approach does not collapse when τm → τ .

requires asymmetric data augmentations to produce differ-
ent relations for each view to make the model learn more
information. The effect of using stronger augmentations
is balanced by averaging the results on both views. Sym-
metrizing the loss boosts the performance as for [24, 11].

Sharpening the similarity distributions. The tempera-
ture parameters sharpen the distributions of similarity expo-
nentially. SCE uses the temperatures τm and τ for the target
and online similarity distributions with τm < τ to guide the
online encoder with a sharper distribution. We made a tem-
perature search on ImageNet100 by varying τ in {0.1, 0.2}
and τm in {0.03, ..., 0.10}. The results are in Tab. 6. We
found the best values τm = 0.07 and τ = 0.1 proving SCE
needs a sharper target distribution. In supplementary mate-
rial, this parameter search is done for other datasets used in
comparison with our baselines. Unlike ReSSL [60], SCE
does not collapse when τm → τ thanks to the contrastive
aspect. Hence, it is less sensitive to the temperature choice.

4.2. Comparison with our baselines

We compared on 6 datasets how SCE performs against
its baselines. We keep similar implementation details to
ReSSL [60] and MoCov2 [10] for fair comparison.

Small datasets. Cifar10 and Cifar100 [34] have 50K
training images, 10K test images, 32×32 resolution and 10-
100 classes respectively. Medium datasets. STL10 [15]

has a 96×96 resolution, 10 classes, 100K unlabeled data, 5k
labeled training images and 8K test images. Tiny-Imagenet
[1] is a subset of ImageNet with 64 × 64 resolution, 200
classes, 100k training images and 10K validation images.

Implementation details. Implementation details for
small and medium datasets are in the supplementary mate-
rial. For ImageNet, we follow the ones in ablation study
with some modifications. The initial learning rate is set to
0.5, the projector is a 3 fully connected layer network with
a hidden dimension of 2048, a batch normalization [31] at
each layer and an output dimension of 256. For MoCov2,
the temperature used is τ = 0.2 and for ReSSL we use the
best temperatures reported [60]. For SCE, we use the best
temperature parameters from ablation study for ImageNet
and ImageNet100, and for other datasets, the best ones from
supplementary material. We use the same architecture for
all methods except that we use the same projector as on Im-
ageNet100 on ImageNet for MoCov2 to improve the result.

Evaluation protocol. The evaluation protocol is the
same as defined in the ablation study for all datasets.

Results are reported in Tab. 5. Our baselines reproduc-
tion is validated as results are better than those reported by
the authors. SCE outperforms its baselines on all datasets
proving that our method is more efficient to learn discrim-
inating features on the pretrained dataset. We observe that
our approach outperforms more significantly ReSSL on
smaller datasets than ImageNet, suggesting that it is more
important to learn to discriminate among instances for these
datasets. SCE has promising applications to domains with
few data such as in medical applications.

4.3. ImageNet Linear Evaluation Protocol

We compare SCE on the widely used ImageNet linear
evaluation protocol with the state of the art. We scaled our
method to a larger batch size and a deeper architecture using
a predictor to match the state of the art results [24, 12].

Implementation details. We use the ResNet-50 [28] en-
coder and apply strong-α and strong-β augmentations de-
fined in Tab. 2 with a batch size of 4096 and a memory
buffer of size 65,536. We follow the same training hyper-
parameters as [12] for the architecture. Specifically, we use
the same projector and predictor, the LARS optimizer [56]
with a weight decay of 1.5·10−6 for 1000 epochs of training
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Method 100 200 300 800-1000
SimCLR [7] 66.5 68.3 - 70.4
MoCov2 [11] 67.4 69.9 - 72.2
SwaV [5] 66.5 69.1 - 71.8
BYOL [24] 66.5 70.6 72.5 74.3
Barlow-Twins[57] - - 71.4 73.2
AdCo [30] - 68.6 - 72.8
ReSSL [60] - 71.4 - -
WCL [59] 68.1 70.3 - 72.2
VICReg [2] - - - 73.2
UniGrad [46] 70.3 - - -
MoCov3 [12] 68.9 - 72.8 74.6
NNCLR [19] 69.4 70.7 - 75.4
Truncated-Triplet [50] - 73.8 - 75.9
SCE (Ours) 72.1 72.7 73.3 74.1

Table 7: State-of-the-art results on the Top-1 Accuracy on
ImageNet under the linear evaluation protocol at different
pretraining epochs: 100, 200, 300, 800+. SCE is Top-1 at
100 epochs and Top-2 for 200 and 300 epochs. For 800+
epochs, SCE has lower performance than several state-of
the-art methods. Results style: best, second best.

and 10−6 for fewer epochs. Bias and batch normalization
parameters are excluded. The initial learning rate is 0.5 for
100 epochs and 0.3 for more epochs. It is linearly scaled for
10 epochs and it follows the cosine annealed scheduler. The
momentum value follows a cosine scheduler from 0.996 for
1000 epochs, 0.99 for fewer epochs, to 1. The loss is sym-
metrized. For SCE specific hyperparameters, we keep the
best from ablation study: λ = 0.5, τ = 0.1 and τm = 0.07.

Multi-crop setting. We follow [30] setting and sam-
ple 6 different views. The first two views are global views
as without multi-crop. The 4 local crops have a resolution
of 192 × 192, 160 × 160, 128 × 128, 96 × 96 and scales
(0.172, 0.86), (0.143, 0.715), (0.114, 0.571), (0.086, 0.429)
on which we apply the strong-γ data augmentation.

Evaluation protocol. We train a linear classifier for 90
epochs on top of the frozen encoder with a batch size of
1024 and a SGD optimizer with a momentum of 0.9. The
initial learning rate is 0.1 linearly scaled and follows a co-
sine annealed scheduler.

We evaluated SCE at epochs 100, 200, 300 and 1000
on the Top-1 accuracy on ImageNet to study the efficiency
of our approach and compare it with the state of the art in
Tab. 7. At 100 epochs, SCE reaches 72.1% up to 74.1% at
1000 epochs. Hence, SCE has a fast convergence and few
epochs of training already provides a good representation.
SCE is the Top-1 method at 100 epochs and is second best
for 200 and 300 epochs proving the good quality of its rep-
resentation for few epochs of pretraining.

At 1000 epochs, SCE is below several state-of-the art
results. We argue that SCE suffers from maintaining a λ
coefficient to 0.5 and that relational or contrastive aspects

Method Epochs Top-1
UniGrad [46] 100 71.7
UniGrad (+ Cut-Mix) [46] 100 72.3
SwaV [5] 200 72.7
AdCo [30] 200 73.2
WCL [59] 200 73.3
Truncated-Triplet [50] 200 74.1
ReSSL [60] 200 74.7
WCL [59] 800 74.7
SwaV [5] 800 75.3
DINO [6] 800 75.3
UniGrad (+ Cut-Mix) [46] 800 75.5
NNCLR [19] 1000 75.6
AdCo [30] 800 75.7
SCE (ours) 200 75.4

Table 8: State-of-the-art results on the Top-1 Accuracy on
ImageNet under the linear evaluation protocol with multi-
crop. SCE is competitive with the best state-of-the-art
methods by pretraining for only 200 epochs instead of 800+.

do not have the same impact at the beginning and at the end
of pretraining. A potential improvement would be using a
scheduler on λ that varies over time.

We added multi-crop to SCE for 200 epochs of pretrain-
ing. It enhances the results but it is costly in terms of time
and memory. It improves the results from 72.7% to our best
result 75.4% (+2.7 p.p.). Therefore, SCE learns from hav-
ing local views and they should maintain relations to learn
better representations. We compared SCE with state-of-
the-art methods using multi-crop in Tab. 8. SCE is com-
petitive with top state-of-the-art methods that trained for
800+ epochs by having slightly lower accuracy than the best
method using multi-crop (−0.3 p.p) and without multi-crop
(−0.5 p.p). SCE is more efficient than other methods, as it
reaches state-of-the-art results for fewer pretraining epochs.

4.4. Transfer Learning

We study the generalization of our proposed SCE on sev-
eral tasks using our best checkpoint obtained on ImageNet,
the multi-crop setting for 200 pretrained epochs.

Low-shot evaluation. Low-shot transferability of our
backbone is evaluated on Pascal VOC2007. We followed
the protocol proposed by [60]. We select 16, 32, 64 or all
images per class to train the classifier. Our results are com-
pared with other state-of-the-art methods pretrained for 200
epochs in Tab. 10. SCE is Top-1 for 32, 64 and all images
per class and is second for 16 images per class, proving the
generalization of our approach to few-shot learning.

Linear classifier for many-shot recognition datasets.
We follow the same protocol as [24, 20] to study many-shot
recognition in transfer learning on the datasets FGVC Air-
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Method Food101 CIFAR10 CIFAR100 SUN397 Cars Aircraft VOC2007 DTD Pets Caltech101 Flowers Avg.
SimCLR [7] 72.8 90.5 74.4 60.6 49.3 49.8 81.4 75.7 84.6 89.3 92.6 74.6
BYOL [24] 75.3 91.3 78.4 62.2 67.8 60.6 82.5 75.5 90.4 94.2 96.1 79.5
NNCLR [19] 76.7 93.7 79.0 62.5 67.1 64.1 83.0 75.5 91.8 91.3 95.1 80
SCE (Ours) 77.7 94.8 80.4 65.3 65.7 59.6 84.0 77.1 90.9 92.7 96.1 80.4
Supervised 72.3 93.6 78.3 61.9 66.7 61.0 82.8 74.9 91.5 94.5 94.7 79.3

Table 9: Linear classifier trained on popular many-shot recognition datasets. SCE is Top-1 on 7 datasets and in average.

Method K = 16 K = 32 K = 64 full
MoCov2 [10] 76.14 79.16 81.52 84.60
PCLv2 [35] 78.34 80.72 82.67 85.43
ReSSL [60] 79.17 81.96 83.81 86.31
SwAV [5] 78.38 81.86 84.40 87.47
WCL [59] 80.24 82.97 85.01 87.75
SCE (Ours) 79.47 83.05 85.47 88.24

Table 10: Transfer learning on low-shot image classifica-
tion on Pascal VOC2007 [21]. All methods have been pre-
trained for 200 epochs. SCE is Top-1 when using 32-64 or
all images per class and is second for 16 images per class.

Method AP Box APMask

Random 35.6 31.4
Relative-Loc [17] 40.0 35.0
Rotation-Pred [23] 40.0 34.9
NPID [54] 39.4 34.5
MoCo [26] 40.9 35.5
MoCov2 [10] 40.9 35.5
SimCLR [7] 39.6 34.6
BYOL [24] 40.3 35.1
SCE (Ours) 41.6 36.0
Truncated-Triplet [50] 41.7 36.2
Supervised 40.0 34.7

Table 11: Object detection and Instance Segmentation on
COCO [36] training a Mask R-CNN [27]. SCE is Top-2 on
both tasks, slightly below Truncated-Triplet [50] and better
than supervised training. Results style: best, second best.

craft [38], Caltech-101 [22], Standford Cars [33], CIFAR-
10 [34], CIFAR-100 [34], DTD [14], Oxford 102 Flowers
[40], Food-101 [3], Oxford-IIIT Pets [43], SUN397 [55]
and Pascal VOC2007 [21]. These datasets cover a large va-
riety of number of training images (2k-75k) and number of
classes (10-397). For all datasets we study the Top-1 classi-
fication accuracy except for Aircraft, Caltech-101, Pets and
Flowers for which we report the mean per-class accuracy
and the 11-point MAP for VOC2007.

We report the performance of SCE in comparison with
state-of-the-art methods in Tab. 9. SCE outperforms on 7
datasets all approaches. In average, SCE is above all state-
of-the-art methods as well as the supervised baseline, mean-
ing SCE is able to generalize to a wide range of datasets.

Object detection and instance segmentation. We per-
formed object detection and instance segmentation on the
COCO dataset [36]. We used the pretrained network to ini-
tialize a Mask R-CNN [27] until the C4 layer. We follow the
protocol proposed by [50] and report the Average Precision
for detection APBox and instance segmentation APMask.

We report our result in Tab. 11 and observe that SCE
is the second best method after Truncated-Triplet [50] on
both metrics, by being slightly below their reported results
and above the supervised setting. Therefore our proposed
SCE is able to generalize to object detection and instance
segmentation task beyond what the supervised pretraining
can (+1.6 p.p. of APBox and +1.3 p.p. of APMask).

5. Conclusion
In this paper we introduced a self-supervised soft con-

trastive learning approach called Similarity Contrastive Es-
timation (SCE). It contrasts pairs of asymmetrical aug-
mented views with other instances while maintaining rela-
tions among instances. The similarity distribution that de-
fines relations is computed on one view and sharpened to
remove noisy relations. SCE leverages contrastive learning
and relational learning and improves the performance over
optimizing only one aspect. We showed that it is competi-
tive with the state of the art on the linear evaluation protocol
on ImageNet, for fewer pretraining epochs, and to general-
ize to several downstream tasks. We proposed a simple but
effective initial estimation of the true distribution of simi-
larity among instances. An interesting perspective would be
to propose a finer estimation of this distribution.

6. Societal impact
SCE as a self-supervised method for computer vision

trains deep neural networks architectures that often have an
economical and environmental negative impacts. But, SCE
can be trained with small batches and few epochs to limit
these impacts. We released our code and pretrained weights
to limit duplicate pretraining and support the community.
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Stéphane Deny. Barlow twins: Self-supervised learning via
redundancy reduction. In Proceedings of the 38th Inter-
national Conference on Machine Learning, pages 12310–
12320, 2021.

[58] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful
image colorization. In 14th European Conference on Com-
puter Vision, pages 649–666, 2016.

[59] Mingkai Zheng, Fei Wang, Shan You, Chen Qian, Chang-
shui Zhang, Xiaogang Wang, and Chang Xu. Weakly super-
vised contrastive learning. In 2021 IEEE/CVF International
Conference on Computer Vision, pages 10022–10031, 2021.

[60] Mingkai Zheng, Shan You, Fei Wang, Chen Qian, Chang-
shui Zhang, Xiaogang Wang, and Chang Xu. Ressl: Rela-
tional self-supervised learning with weak augmentation. In
Advances in Neural Information Processing Systems 34: An-
nual Conference on Neural Information Processing Systems,
pages 2543–2555, 2021.

2716


