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Abstract

Autonomous driving and assistance systems rely on an-
notated data from traffic and road scenarios to model and
learn the various object relations in complex real-world
scenarios. Preparation and training of deploy-able deep
learning architectures require the models to be suited to
different traffic scenarios and adapt to different situations.
Currently, existing datasets, while large-scale, lack such di-
versities and are geographically biased towards mainly de-
veloped cities. An unstructured and complex driving layout
found in several developing countries such as India poses a
challenge to these models due to the sheer degree of varia-
tions in the object types, densities, and locations. To facili-
tate better research toward accommodating such scenarios,
we build a new dataset, IDD-3D, which consists of multi-
modal data from multiple cameras and LiDAR sensors with
12k annotated driving LiDAR frames across various traf-
fic scenarios. We discuss the need for this dataset through
statistical comparisons with existing datasets and highlight
benchmarks on standard 3D object detection and tracking
tasks in complex layouts. Code and data available 1.

1. Introduction
Intelligent vehicles and autonomous driving systems

have come a long way and keep becoming more sophisti-
cated over time, owing to the rapid progress in the deep
learning and computer vision. However, the core compo-
nent for all these increments is the availability of high-
quality annotated data. Recently, many works have fo-
cused on data selection and quality improvement [34, 8,
47], building high-quality and large-scale datasets, and ap-
proaches built using these resources, which improve the
state of autonomous driving [48, 16].

Existing datasets are usually collected in well-structured
environments with proper traffic regulations and relatively-

1https://github.com/shubham1810/idd3d_kit.git

Figure 1. Some examples from the dataset showing different traffic
scenarios, LiDAR data with annotations, and a sample of LiDAR
point clouds projected on camera data.

evenly distributed traffic. In such situations, crowd behavior
demonstrates low diversity and average densities. In south-
east Asian countries, such as India, the traffic densities and
inter-object behaviors are much more complex. Such com-
plexities have been studied in the past [39, 5, 4], but ex-
tensive data coverage and multi-modal systems are still un-
available for such scenes. It hence may not be entirely ap-
plied to cases where the distribution of object categories and
types varies greatly.

In this paper, we propose a dataset on complex unstruc-
tured driving scenarios with multi-modal data, highlighting
the capabilities of 3D sensors such as LiDAR for better
scene perception in unstructured and sporadically chaotic
traffic conditions. In the proposed dataset, we highlight a
significantly different distribution of object types and cat-
egories compared to existing datasets collected in Euro-
pean or similar settings [24, 13, 38], due to the different
nature of traffic scenes in Indian roads. Furthermore, the
categories and annotations available in the proposed dataset
vary greatly from existing datasets. Specifically, they cover
objects in scenes that usually appear in still-developing
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Figure 2. Samples from the dataset highlighting different (a) RGB images and (b) LiDAR Bird-Eye-View (BEV) along with bounding box
annotations. The samples visualized above are taken from different sequences of the dataset.

cities, for example, Auto-rickshaws, hand carts, concrete
mixer machines on roads, and animals on roads.

We provide data collected in Indian road scenes, from
high-quality LiDAR sensors and six cameras that cover
the surrounding area of the ego-vehicle to enable sensor-
fusion-based applications. We provide annotations for
15.5k frames in the dataset, which spans 10 primary cat-
egories (and 7 additional miscellaneous categories), which
we use for model training and evaluation. Along with the
annotations, we also provide extra unlabelled raw data from
the sensors to facilitate further research, especially into
self- and unsupervised learning over such traffic scenes. A
unique feature of the proposed dataset, which stems from
the unstructured environment, is the availability of highly
complex trajectories. We show samples from the dataset
which emphasize such cases and display experiments on ob-
ject detection and tracking, which is possible due to avail-
ability of instance specific labels for each object bounding
box per sequence.

Our main contributions can be summarised as follows:
(i) We propose the IDD-3D dataset for driving in unstruc-
tured traffic scenarios for Indian roads with 3D informa-
tion, (ii) high-quality annotations for 3D object bounding
boxes with 9DoF data, and instance IDs to enable tracking,
(iii) Analysis over highly unstructured and diverse environ-

ments to accentuate the usefulness of proposed dataset, and
(iv) provide 3D object detection and tracking benchmarks
across popular methods in literature.

2. Related Work
Data plays a huge role in machine learning systems, and

in this context, for autonomous vehicles and scene percep-
tion. There have been several efforts over the years in this
area to improve the state of datasets available and towards
increasing the volumes of high-quality and well annotated
datasets.

2D Driving: One of the early datasets towards visual per-
ception and understanding driving has been the CamVid
[2] and Cityscapes [9, 10] dataset, providing annotations
for semantic segmentation and enabling research in deeper
scene understanding at pixel-level. KITTI [14, 15] dataset
provided 2D object annotations for detection and tracking
along with segmentation data. However, fusion of multi-
ple modalities such as 3D LiDAR data enhances the perfor-
mance for scene understanding benchmarks as these pro-
vide a higher level of detail of a scene when combined with
available 2D data. This multi-modal sensor-fusion based
direction has been the motivation for the proposed dataset
to alleviate the discrepancies in existing datasets for scene
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Dataset 3D Scenes Cameras Lidar Images Classes 3D Boxes Traffic Diversity
KITTI [15] 15k 2 yes 15k 3 80k Low
nuScenes [3] 40k 6 yes 1.4M 23 1.4M Mid
Apolloscape [17] 20k 6 yes 0 6 475k Low
KAIST [7] 8.9k 2 yes 8.9k 3 0 Low
Waymo Open [38] 230k 5 yes 1M 4 12M Mid
ONCE [26] 1M (16k) 7 yes 7M 5 417k Mid
Cityscapes-3D [13] 20k - no 490k 8 - Low
A* 3D [29] 39k 1 yes 39k 7 230k Mid
Ours 15.5k* 6 yes 93k 10 (17**) 223k* High

Table 1. A comparison with existing popular 3D autonomous driving datasets. Our dataset showcases the highest diversity with the highest
average number of bounding boxes per frame and a wide distribution. The statistical distribution is further studied in the following sections.
(*) Number reported on train-val-test set, experiments/statistics reported on train-val set. (**) The 17 classes are total of the 10 primary
and 7 additional classes.

Figure 3. Distribution of class labels in the proposed dataset. (a) The primary 10 classes are shown here along with the 3 super-categories
(Vehicle, Pedestrian, and Rider) which are considered to make the proposed dataset more consistent with labels from existing datasets.
(b) The additional 7 classes annotated in the dataset are shown in log-scale separately since they are currently not used for training the
models. The Rider class covers both riders and non-riders on two-wheeler motor vehicles. We do not consider the Miscellaneous classes
for evaluation of the dataset currently.

perception and autonomous driving.

Driving Datasets: Recent datasets such as nuScenes [3],
Argoverse [5], Argoverse 2 [42] provide HD maps for road
scenes. This allows for improved perception and planning
capabilities and towards construction of better metrics for
object detection such as in [38]. These large scale datasets
cover a variety of scenes and traffic densities and have en-
abled systems with high safety regulations in the area of
driver assistance and autonomous driving. However, the
drawback for a majority of these datasets arises from the
fact that the collection happens in well-developed cities
with clear and structured traffic flows. The proposed dataset
bridges the gaps of varying environments by introducing

more complex environments and extending the diversity of
driving datasets.

Complex environments: There have been multiple ef-
forts to build datasets for difficult environments such as
variations in extreme weather [30, 35], night-time driving
conditions [11], and safety critical scenarios [1]. There
have been recent works which make use of different sen-
sors such as fisheye lenses to cover a larger area around
the ego-vehicle [46, 24] and event camera [33] for train-
ing models with faster reaction times. However, most of
these datasets have been collected in environments with
little to no changes in the traffic patterns and consis-
tency in the background objects. Some works in literature
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Figure 4. Samples of scenes of interest in our dataset (LiDAR and RGB samples) which especially differentiate our proposed dataset
from those available in literature. (Clockwise from top-left) (a) Complex traffic scenarios with vehicles orientations in a wide variety of
directions, (b) Perspective view of a scene with ego-vehicle on elevated flyover with ground level visible and another highway over the
vehicle path with pillars, (c) humans in the middle of traffic (shown in red boxes) and jaywalking near moving vehicles, resulting in a
safety critical scenario, (d) An example with very high density traffic scenario. Such case are abundant in the proposed dataset (rather than
special cases when compared to other popular datasets) and hence require special attention for such unstructured environments. Refer to
supplementary material for more examples.

[39, 36, 19, 41] explore such situations where the label dis-
tributions can vary significantly, however these are either
limited to mostly 2D modalities, or off-road environments.
In this work, the proposed dataset enhances the availabil-
ity of data for enabling research for autonomous driving in
unconstrained traffic environments.

Object Detection and Tracking: Several popular meth-
ods have been explored in recent literature which handle the
task of 3D object detection for the cases of driving scenar-
ios [49, 44, 43, 21, 45]. In our work, we specifically talk
about 3D object detection from point clouds, while we do
note the effectiveness of multi-modal approaches as well

[6, 31, 37]. We have used approaches such as SECOND
[43] which voxelize the input point cloud and apply 3D con-
volution, which leads to discrete geometric representations
of the data. CenterPoint [45] approach which assigns cen-
ters is known to perform well for smaller objects due to the
fine level of details for each point feature. We also explore
PointPillars [21] for an analysis of pillar based approaches
where the data is projected to Bird-Eye-View mode and then
treated as an image. We highlight the performance of each
in the experiments section and draw our inferences specific
to the proposed dataset.

Many methods have been proposed towards 3D Multi-
Object Tracking (MOT) in literature which have been
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Figure 5. Figure showing (a) sensors on the vehicle (cameras, LiDAR) and their respective orientations, (b) image of the vehicle used along
with the sensor rig. Please note that the real-world car image has been edited to preserve anonymity.

shown to perform well across a multitude of datasets in dif-
ferent scenarios. There are various ways to model the track-
ing task such as using the Bird-Eye View [25], approaches
based on multi-sensor fusion [20], and simple tracking
based on distance metrics and methods like Kalman filter
[28]. In this work, we utilise the method presented in [28]
using the detections from our trained models on IDD-3D
and present the evaluations based on popular MOT metrics
such as the ones presented in [40].

Figure 6. Class-wise distribution of some common prominent
classes (Car, MotorcycleRider, Pedestrian, TourCar) with respect
to number of frames is visualized to show traffic and crowd den-
sity in proposed dataset. Distributions for all classes is shown in
supplementary material.

3. Proposed Dataset

In the following sections we discuss and highlight the
qualities of the proposed dataset, including the design
choices and method for data collection, annotations and
analysis of the dataset over interesting scenarios.

Figure 7. (a) Distribution showing distances of all bounding boxes
from the ego-vehicle. The short distance of vehicles and pedestri-
ans provides motivation for the proposed dataset to facilitate mod-
eling of shorter reaction times. (b) Cumulative distribution of the
distances further highlight the differences in distance distributions,
showing that most of the objects in the proposed dataset are close
to the ego-vehicle compared to existing popular datasets.

Figure 8. Distributions of number of bounding boxes per LiDAR
frame. The number of objects in a scene is usually higher in the
frames present in the proposed dataset. We filter the boxes specif-
ically based on the distance of less than 30m based on data shown
in fig 6. (a) Shows statistics with KITTI dataset, and (b) shows the
same without KITTI dataset to highlight the sparsity in the KITTI
dataset. We note the heavier tail of our distribution indicating a
greater density of objects close to the ego-vehicle.

3.1. Data Acquisition

The data collection for the proposed dataset was covered
in two driving sessions with over 5 hours of collected data
during daytime. Afterwards, we manually sample scenes
of interest in sequences of 100 frames at 10fps making 150
sequences, each of 10s. The data collection has been per-
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formed in different regions of Hyderabad, India. We now
provide details about the configuration and data preparation
in the following.

Sensors (Hardware configuration): The proposed
dataset encompasses data from multiple sensors which
include six RGB cameras and one LiDAR (Ouster OS1)
sensor. The details about the sensors and data processing
used are mentioned in Table 1 in supplementary material.
The position and orientation of the sensors on the acquisi-
tion vehicle is shown in Fig. 5 along with the real-world
image of the vehicle.

Data processing: For each driving sequence, all cali-
brations are performed through popular methods such as
[18, 27]. We preserve the raw data from the sensors in ros-
bag format [32]. The current release of the dataset con-
sists of 15.5k total frames out of which 12k frames are from
train-val set.

Data Privacy: We ensure that all the faces and license
plates in the dataset are blurred by first using automated ap-
proaches (such as [12, 22]) and then performing a manual
quality inspection. For the automated approaches, we run
the object detection pipeline and then perform a NMS based
matching to find any missing boxes in between frames. The
missing boxes are interpolated, and finally, we blur the re-
gions in the images for data protection.

3.2. Dataset Analysis

Labels and Annotations We provide 3D bounding box
annotations for 15.5k (train-val-test) LiDAR frames with
223k 3D bounding boxes. We have used the annotation
tool [23] for labeling data across 17 categories, shown in
Fig. 3. Each object in a sequence contains a unique ID
which enables tracking and re-identification. Furthermore,
we provide class specific object distribution based on num-
ber of frames for some of the prominent categories in Fig.
6. We note that out of the 17 available classes (primary
and additional), we are using 10 primary classes currently
for training and validation is performed on 10 classes and 3
super-classes (Vehicle, Pedestrian, and Rider).

Data Statistics : We first highlight the bounding box dis-
tance distribution in IDD-3D and the comparison with ex-
isting popular datasets [3, 15, 26] in figure 7. In Fig. 7 (a)
we show that IDD-3D consists of most of the annotations
close to the ego-vehicle, caused by the low gaps between
vehicles causing occlusion for LiDAR rays for longer dis-
tances. Nonetheless, it is crucial to highlight this feature of
the proposed dataset because split-second decisions are im-
portant for safety, especially when other objects are close to

the ego-vehicle. We also show better data density compared
to KITTI, which is on a comparable scale to IDD-3D. Ad-
ditionally, it can be seen that in the range of 0-25m (where
most of the proposed dataset’s annotations exist), we show
higher densities than both ONCE and nuScenes as shown in
fig. 8(b).

Interesting cases: While existing datasets provide high
diversity in type of traffic scenarios, these are usually re-
stricted to controlled and well-structured environments with
only a few anomalies. In IDD-3D, we show a large amount
of diversity in the situations and also highlight some cases
which could be of interest for progress in driving behaviour
modeling such as the samples shown in Fig. 4. For ex-
ample, we see safety critical cases where multiple pedes-
trians are seen jaywalking while vehicles are on the roads.
Existing datasets claim high density traffic when there are
20-30 object bounding boxes in one frame, whereas in our
samples we show 50-60 or more objects existing in the
same frame, and in close proximity. Considering the dif-
ferent variations of scenes in the proposed dataset, the ap-
plications for surveillance, road-safety, traffic quality, and
crowd-behaviour are immense and show potential to be dis-
parate from the data patterns from other datasets.

4. Experiments and Benchmarks
We present an extensive analysis of IDD-3D with exist-

ing methods to highlight the diversity and usefulness data.
We first discuss the experimental setup and then based on
the evaluations, report the understanding about the dataset
properties and behaviour of different approaches.

Proposed Dataset: We use 10 primary categories which
are highlighted in Fig. 3, however, since most datasets in
literature ordinarily provide a few categories as common la-
bels (For example, Car, truck, Van as Vehicle), we com-
bine our class labels into three categories, namely Vehi-
cle, Pedestrian, and Rider as super-categories. The net-
work architectures are trained on 10 categories (Car, Bus,
Truck, Scooter, Van, Motorcycle, Pedestrian, Motorcy-
cleRider, ScooterRider, TourCar). We transform the anno-
tations to a simpler format for the 3D object detection task a
7-dimensional vector as (x, y, z, w, h, l, α), where (x, y, z)
represent the object location, (w, h, l) represent the dimen-
sions of the bounding box and α represents the yaw angle.

3D Object detection: We discuss about some of the pop-
ular datasets which have been considered for comparison
with the proposed dataset and highlight their strengths and
weaknesses in the complex setting of the presented driving
scenarios. For fair comparison, we train network architec-
tures proposed in [43, 45, 21] for 3D object detection and
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SuperCategory Categories/Methods CenterPoint
CenterPoint
(nuScenes) SECOND

SECOND
(KITTI) PointPillar

Vehicle

Car 65.28 66.97 69.89 68.50 67.77
Bus 59.09 78.47 59.12 49.69 43.70

Truck 68.79 72.18 65.11 68.09 63.68
Van 9.58 12.71 1.27 15.77 0.14

TourCar 76.94 77.40 74.81 77.02 72.80

Pedestrian Pedestrian 28.60 22.49 19.54 23.74 22.72

Rider

Motorcycle 23.65 25.28 21.69 22.79 16.97
Scooter 42.36 38.05 26.98 23.73 16.81

MotorcycleRider 59.29 61.48 53.39 48.90 46.52
ScooterRider 66.33 64.65 52.27 50.62 41.60

mAP 49.99 51.97 44.31 44.89 39.27
Table 2. Results on IDD-3D with popular methods. We report AP scores across different categories on the validation set. This table shows
the results on each training class. The scores are reported with different thresholds for each class (Vehicles @ 0.5, Rider @ 0.4, Pedestrian
@ 0.3) and all objects are considered till 30m distance, please see supplementary material for more details and full table.

Approach Pre-Training Vehicle Rider
Overall 0-10m 10-25m >25m Overall 0-10m 10-25m >25m

CenterPoint nuScenes 73.85 87.57 70.98 30.48 71.03 84.24 69.54 23.42
CenterPoint - 71.20 88.84 67.62 26.32 69.51 83.66 67.49 19.76
SECOND KITTI 72.51 88.60 68.99 28.07 71.60 83.25 70.98 24.32
SECOND - 73.01 88.71 67.82 29.46 72.05 85.44 70.89 26.28
PointPillar - 68.61 87.64 64.59 26.30 69.66 82.56 68.60 25.64

Table 3. Experimental results on proposed dataset with different popular methods. We report AP scores across different categories on the
validation set. This table shows the results on Vehicle and Rider categories from the proposed dataset.

show the results in Tables 2, 3 and 4. We report the mAP
scores for the 3 combined categories (Vehicle, Pedestrian,
and Rider) in Tables 3 and 4, and further report mAP scores
in four sub-levels, i.e. overall AP score for each training
class in Table 2. The scores reported in Table 2 are for a
distance up to 30m in the dataset, and the distances in the
super-classes are divided as upto 30m (denoted as Overall),
0-10m, 10-25m, and 25+m. The small distance buckets are
considered due to the data distribution (as shown in Fig. 7)
in the proposed dataset.

3D Object Tracking: A notable property of the proposed
dataset is the existence of the instance IDs for each 3D
bounding box. In this work, we also show results on 3D ob-
ject tracking and report important metrics such as AMOTA,
AMOTP [40] in Table 5. We use SimpleTrack [28] for the
task of object tracking and report the results based on the
detections from Centerpoint [45] due to the highest mAP
score on the detection task. The MOT scores are reported
for all 10 primary classes and the overall categories.

Datasets : We use KITTI [15, 14] dataset and nuScenes
[3] for pre-training of 3D object detection methods to fur-
ther fine-tune on our proposed dataset. We note that cross-

dataset training may not be fruitful in this scenario given the
significantly different distribution of the categories and in-
put data in the given datasets. The existing datasets usually
utilise information such as LiDAR intensity, elongation, and
timestamp information as input to the model, which is dif-
ferent from the proposed dataset. However, considering
the wide research available based on these datasets, it is
imperative that we highlight how using the existing mod-
els trained on these datasets as pre-training backbones usu-
ally enhances the performances. For this purpose, we con-
sider using the models [43, 45] for pre-training by using the
weights for the common layers and fine-tune for better per-
formance.

Result Analysis : We note that the performance of the ar-
chitectures for both 10 categories and the 3 super-categories
is consistent and aligns with our claims. It is clear that the
number of annotated instances plays a major role for bet-
ter mAP scores, for example, classes such as Car achieve a
high mAP compared to classes such as Van or Scooter. An-
other major factor appears to be the object size, wherein
larger and denser objects are easier to model and detect
compared to smaller instances. An example of the varia-
tions in mAP scores based on sizes is the differences be-
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Approach Pre-Training Pedestrian mAP
Overall 0-10m 10-25m >25m Overall 0-10m 10-25m >25m

CenterPoint nuScenes 22.49 33.85 19.47 4.48 55.79 68.56 53.33 19.46
CenterPoint - 28.60 44.89 24.39 3.48 56.43 72.46 53.17 16.52
SECOND KITTI 23.74 33.67 21.05 5.58 55.95 68.51 53.67 19.32
SECOND - 19.54 27.18 17.61 6.44 54.87 67.11 52.11 20.73
PointPillar - 22.72 29.34 20.45 5.45 53.66 66.52 51.21 19.13

Table 4. Experimental results (continued) on proposed dataset with different popular methods. We report AP scores across different
categories on the validation set. This table shows the results on Pedestrian category and the mAP score from the proposed dataset.

Category AMOTA AMOTP Recall MOTAR MOTP MOTA lgd tid faf

Bus 0.831 0.679 0.812 0.907 0.589 0.736 3.045 2.659 13.805
Car 0.641 0.726 0.667 0.787 0.518 0.521 3.422 2.035 44.806
Motorcycle 0.202 0.826 0.242 0.941 0.356 0.228 2.000 2.000 2.321
MotorcyleRider 0.507 0.735 0.496 0.801 0.320 0.390 5.027 2.585 36.410
Pedestrian 0.254 0.912 0.319 0.737 0.363 0.225 9.918 6.731 34.557
Scooter 0.250 0.494 0.323 1.000 0.092 0.323 0.000 0.000 0.000
ScooterRider 0.540 0.536 0.581 0.742 0.258 0.427 3.868 2.274 35.251
TourCar 0.796 0.433 0.848 0.821 0.351 0.692 2.877 1.034 48.866
Truck 0.701 0.635 0.675 0.903 0.403 0.607 5.108 2.676 17.796
Van 0.000 1.677 0.275 0.000 0.563 0.000 14.500 0.000 75.163

Overall 0.472 0.765 0.524 0.764 0.381 0.415 4.977 2.199 30.898
Table 5. Experimental results for 3D object tracking for the 10 primary classes present in the proposed dataset. We use SimpleTrack [28] for
the task of tracking using detections from CenterPoint [45] in the presented table. For the abalation study, please refer to the supplementary
material.

tween the Pedestrian and Bus/Truck categories, even though
Pedestrian category consists of the maximum bounding box
instances. From Table 2, we see that CenterPoint approach
generally performs better than SECOND or PointPillars for
the proposed dataset, this could be due to the nature of the
approach where it deals directly with point clouds to pre-
dict object centers instead of voxelizing the points (SEC-
OND) or projecting the point to BEV (PointPillars). We
also provide results on the super-classes for the same ar-
chitectures over different distance ranges and show similar
performances for all approaches.

For the object tracking results presented in Table 5, we
notice a correlation between the detection scores and track-
ing scores (AP and AMOTA/MOTA) for classes such as
Pedestrian and Car. We highlight that the detection as
well as tracking models perform adequately on the pro-
posed dataset achieving an overall AMOTA score of 0.472
(higher better), while we also note that a similar configura-
tion achieves an overall AMOTA of 0.668 on the nuscenes
dataset (from the leaderboard). The complexity of the pro-
posed dataset is especially highlighted in the results of the
Pedestrian class, where the low scores prove complex mo-
tion present in the dataset. We provide further results in the
supplementary section along with the tracking results using
SECOND and PointPillars models for completeness, with
the corresponding visualizations.

5. Conclusion

In this work, we presented IDD-3D, a dataset for un-
structured driving scenarios with complex road situations is
presented with thorough statistical and experimental anal-
ysis. Through this dataset, and the future release, we aim
to solve the problem of generalizability across geographi-
cal locations and provide more diverse information in driv-
ing datasets and road scene analysis. We show interesting
cases which cover a manifold of cases but also show some
safety-critical situations which are frequent in several cities.
We justify our claims for the proposed dataset through a set
of experiments for 3D object detection and tracking using
state-of-the-art approaches which were available as open-
source implementations. The future works for the dataset
shall extend these tasks to a vast number of applications,
further enhancing the applicability of the proposed dataset
to autonomous driving applications.
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