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Abstract

We present Dynamic Neural Portraits, a novel approach
to the problem of full-head reenactment. Our method gener-
ates photo-realistic video portraits by explicitly controlling
head pose, facial expressions and eye gaze. Our proposed
architecture is different from existing methods that rely on
GAN-based image-to-image translation networks for trans-
forming renderings of 3D faces into photo-realistic images.
Instead, we build our system upon a 2D coordinate-based
MLP with controllable dynamics. Our intuition to adopt a
2D-based representation, as opposed to recent 3D NeRF-
like systems, stems from the fact that video portraits are
captured by monocular stationary cameras, therefore, only
a single viewpoint of the scene is available. Primarily, we
condition our generative model on expression blendshapes,
nonetheless, we show that our system can be successfully
driven by audio features as well. Our experiments demon-
strate that the proposed method is 270 times faster than re-
cent NeRF-based reenactment methods, with our networks
achieving speeds of 24 fps for resolutions up to 1024×1024,
while outperforming prior works in terms of visual quality.

1. Introduction
Controllable video portrait synthesis is an interesting re-

search topic that captures the attention of both Computer
Graphics and Computer Vision communities. A video por-
trait is defined as a sequence of frames that depict a single
individual performing diverse head movements and facial
expressions. The person’s entire head is contained within
the frame’s borders, along with a small part of the up-
per body, i.e. neck and torso, while the subject usually
stands in front of a static background. Recent attempts to
video portraits synthesis using neural networks have shown
very promising results, based either on Generative Adver-
sarial Networks (GANs) [20] or Neural Radiance Fields
(NeRFs) [31]. The applications of such systems are numer-
ous, ranging from video editing and movie dubbing to tele-
conference, virtual assistance, social media, VR and games.

A number of learning-based solutions for generating

video portraits rely on GAN-based image-to-image trans-
lation models, with an encoder-decoder architecture. For
instance, Deep Video Portraits (DVP) [26] employ a net-
work that learns a mapping from coloured renderings of 3D
faces to realistic portraits. Similarly, Head2Head [27] trans-
lates images of Projected Normalized Coordinate Codes
(PNCCs) [53] into photo-realistic frames, using a video-to-
video framework. The renderings of 3D faces that serve
as conditional input to generative neural networks depend
on expression blendshapes that are obtained after fitting 3D
Morphable Models (3DMMs) [5, 35, 7, 8, 29] to videos.
The fitting step is followed by a physically-based rendering
process, which creates the 2D renderings. On the contrary,
we propose a multi-layer perceptron (MLP) that conditions
synthesis directly on non-spatial data (e.g. expression pa-
rameters), and thus does not require renderings of 3D faces.

More recently, NerFACE [16] capitalised on the photo-
realism achieved by NeRFs [31] and produced synthetic
video portraits of higher quality, in larger resolutions, such
as 512 × 512. Nonetheless, due to ray casting and volume
sampling, image rendering with NerFACE requires several
seconds per frame. Moreover, the authors make the assump-
tion that the tracked head pose parameters coincide with the
camera viewpoints of the scene, which causes significant
inconsistencies in torso synthesis, as in practice the cam-
era is static and therefore only a single viewpoint exists for
the scene. AD-NeRF [22] proposes an audio-driven method
for portrait synthesis and solves the camera problem by tak-
ing advantage of face segmentation maps [28]. They split
the portrait into head, torso and background and devise two
separate NeRF models: one for the head, which uses head
poses as camera viewpoints, and another one for the torso,
that treats head poses as simple inputs to the MLP, while
considering camera viewpoints fixed. However, AD-NeRF
is even slower during inference, as it evaluates two MLPs.

In this paper, we take a completely different approach
and present Dynamic Neural Portraits, a fast and efficient
framework for reenacting human faces. Our method draws
inspiration from implicit neural representations (INR), as
we leverage neural networks to parameterise video por-
traits. We follow practices from both conditionally inde-
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(a) Image-based rendering of video portraits [26, 27] (b) NeRF-based video portrait rendering [16, 22]

(c) Our paradigm for video portrait rendering

Figure 1. In contrast to traditional GAN-based image-to-image translation approaches to full-head reenactment, such as DVP [26] and
Head2Head [27] (a), or recent NeRF-based video portrait rendering methods, namely NerFACE [16] and AD-NeRF [22] (b), we propose
a novel paradigm for controllable video portrait synthesis, composed of an MLP and a CNN-based decoder (c).

pendent pixel synthesis (CIPS) [2] and neural rendering
with convolutional networks. To be more specific, we per-
form video portrait synthesis using a 2D coordinate-based
MLP with controllable dynamics. That is, we condition an
MLP network on pixel coordinates, expression, pose and
gaze parameters, without relying on renderings of 3D faces.
Nonetheless, instead of directly predicting pixel colours, we
adopt practices from 3D aware GANs [32, 21, 52, 9] and
propose an MLP that produces feature vectors, which are
computed across all 2D spatial locations and up-sampled
with a CNN-based decoder. We optimise our ”hybrid”
MLP-CNN architecture jointly on the task of video portrait
reconstruction. To the best of our knowledge, we are the
first to condition a 2D coordinate-based MLP on expres-
sion, pose and gaze parameters for explicitly controlling
video portraits, without relying on renderings of 3D faces,
GANs, or NeRFs. Moreover, unlike previous methods that
focus exclusively either on expression blendshapes or au-
dio signals as driving data, our work demonstrates how to
leverage both modalities using the same architecture. Our
approach combines high-quality samples with unparalleled
execution performance, 270 times faster than recent NeRF-
based state-of-the-art reenactment methods [16, 22]. The
contributions of this paper can be summarised as follows:

• We propose a new approach to full-head reenactment,
with a generator that consists of a 2D coordinate-based
MLP with controllable dynamics and a CNN decoder.

• We show that our architecture can be driven either by
expression blendshapes or audio-based features.

• Our comprehensive experiments demonstrate that our
method outperforms related state-of-the-art systems,
both in terms of execution speed and image quality.

2. Related work

3D Face Modeling and Face Reenactment. Since their in-
troduction, 3DMMs [5, 35, 7, 8, 29] have been widely used
to represent human faces, as they are strong statistical mod-
els that enable explicit control over the shape and texture of
3D facial meshes. Various 3D face reconstruction meth-
ods depend on 3DMMs to recover 3D faces from visual
data. Such methods are classified either as optimisation-
based [46, 6], as they fit 3DMMs to visual data and estimate
parameters in an analysis-by-synthesis fashion, or learning-
based [18, 15] that rely on neural networks to reconstruct
3D faces. Apart from capturing coarse meshes, the later
have shown very promising results in extracting even local
fine details. Recovering facial shape and expression infor-
mation from video data has been proven very useful for nu-
merous face reenactment methods [17, 42, 43]. The work of
Garrido et al. [17] is one of the first attempts to reenact faces
while relying on 3D face modeling. A succeeding graphics-
based method, namely Face2Face [43], performs real-time
expression transfer from a driving sequence of frames to
a target identity, by re-writing the interior facial region of
the target video. A more recent approach, HeadOn [44],
achieves full-head reenactment that includes pose and gaze
transfer, based on RGB-D video data.
Learning-based Talking Head Synthesis. In contrary
to the graphics-based systems described above, most of
the latest face re-targeting approaches are learning-based
[39, 26, 27]. Suwajanakorn et al. [39] are among the first to
propose an audio-driven neural network for mapping acous-
tic signals to photo-realistic frames with accurate lip mo-
tions. Following up, Neural Voice Puppetry [40] employs a
module for translating audio features into expression blend-
shapes, as an intermediate representation. Regarding video-
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driven methods, Deep Video Portraits (DVP) [26] is one
of the earliest GAN-based approaches to full-head reenact-
ment. It relies on an image-to-image translation network
that receives as inputs synthetic face renderings of a para-
metric 3D face model and generates images of the target
subject. In a similar direction, Head2Head [27, 12] trans-
lates PNCCs [53] into photo-realistic frames, with the help
of a video-based GAN for better temporal stability. De-
ferred Neural Rendering [41] takes a different step, by com-
bining traditional graphics with learnable neural textures,
embedded on the 3D facial mesh. Apart from the afore-
mentioned person-specific approaches, there is a plethora of
person-generic methods, which require only a few frames of
the target identity [48, 37, 38, 4, 19, 50, 49, 23, 13].
Neural Representations for Scenes and Faces. With the
introduction of NeRFs [31], much research has been fo-
cused on neural scene representations [30, 36], with vari-
ous attempts to model human faces. More specifically, Ner-
fies [33] and HyperNeRF [34] have shown incredible re-
sults for reconstructing non-rigid scenes of moving heads.
Despite their impressive generative ability, such systems are
not able to control neither head poses nor facial movements.
In a different direction, NerFACE [16] proposes to control
a dynamic NeRF with the assistance of expression blend-
shapes. In a similar line of work, AD-NeRF [22] proposes
an audio-driven NeRF-like model, based on acoustic fea-
tures extracted with DeepSpeech [24, 1].

3. Method
In this section, we first describe our baseline approach to

the problem of full-head reenactment (Sec. 3.1), that is a 2D
coordinate-based MLP with controllable dynamics. Then,
we couple the MLP with a CNN-based decoder to build our
full model for video portrait synthesis (Sec. 3.2), namely
Dynamic Neural Portraits. Finally, we show an extension of
our system that supports audio-driven synthesis (Sec. 3.3).

3.1. 2D MLP with Controllable Dynamics

Let I be an image of a fixed resolution H × W . We
can represent I with a neural network by training a fully-
connected MLP to reconstruct the image from its 2D coor-
dinates [14]. For the synthesis of each pixel, we pass its
coordinates x = (x, y) through the MLP network, which
returns the colour of the pixel c. We optimise the network
by penalising the distance between the predicted and true
colour. In order to compute the entire image, the MLP is
evaluated at each position (x, y) of the coordinate grid.

The model described above is quite limited, as it learns
only to reconstruct a single static image from its pixel co-
ordinates. We extend the 2D coordinate-based MLP for
handling temporally varying data, such as video portraits
of human faces. Here, we focus on RGB videos captured
by a monocular and stationary camera. A time-varying rep-

resentation can be obtained by conditioning the MLP net-
work on facial information that changes between frames.
Let I1:T be a sequence of frames and p1:T , e1:T be the cor-
responding head pose and facial expression parameters re-
spectively, which have been recovered with a face tracking
system. An intuitive solution for modeling the video por-
trait with a neural network would be to estimate the pixel’s
RGB value from the i-th video frame with the MLP, using
the pixel’s coordinates x and tracked parameters pi, ei, as

c = C(x,pi, ei). (1)

Here, c is the colour at 2D location x ∈ [0, 1]2, pi ∈ R6

is the head pose that is given by rotation (Euler angles) and
translation parameters, and ei ∈ Rnexp are the expression
parameters, which correspond to non-rigid facial deforma-
tions. Please note that the pose parameters pi describe the
rigid motions of the face with respect to the camera and do
not include information regarding torso movements. The
position of the camera remains fixed throughout the frames.

3.2. Dynamic Neural Portraits

Even though the 2D coordinate-based MLP with con-
trollable dynamics is a straightforward approach for mod-
eling video portraits with a single MLP network, in practice
we found that the photo-realism of generated samples and
the rendering speed significantly degrade as we increase the
resolution of videos. As shown in our experiments, we ob-
tain superior results in terms of visual quality by combing
the MLP with a convolutional decoder network. Following
the paradigm of recent 3D aware GANs [32, 21, 52, 9], in-
stead of predicting RGB colour values we propose an MLP
that maps its input to a visual feature vector f ∈ Rnf . Given
the 2D spatial location x along with pose pi, expression ei
and gaze information gi, our MLP now predicts a feature
vector

f = F (γ(x), γ(pi), γ(gi), ei,vi). (2)

We observed that we acquire more accurate eye movements
by adding eye gaze angles gi ∈ R2 as an extra input to
our MLP network. Moreover, we noticed that introducing
per-image learnable latent variables vi as inputs, a tech-
nique which has been previously adopted in NeRF meth-
ods [30, 33, 34, 16], improves the stability of our network,
since it enables the MLP to learn variations among frames
that are not modeled by the pose and expression parameters
(e.g. torso movements, illumination changes, small back-
ground motions). Furthermore, following established prac-
tices from NeRF-based systems and CIPS [2], we adopt po-
sitional encoding for the MLP inputs, and more specifically
on the position x, pose pi and gaze gi vectors, which are
low-dimensional. The standard encoding function

γ(x) = [x, sin(2πx), cos(2πx), . . . ,

sin(2N−1πx), cos(2N−1πx)]⊤
(3)
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Figure 2. An overview of Dynamic Neural Portraits framework during training. As opposed to previous full-head reenactment methods that
rely on image-to-image translation networks, our model is made up of an MLP encoder and a CNN decoder. Instead of facial expression
parameters, we can drive synthesis using audio features, recovered from acoustic signals.

proposed in [31] is applied to all values of x, pi and gi,
mapping each number x ∈ R to a higher dimension em-
bedding γ(x) ∈ R2·N+1. Replacing the original inputs
with their embeddings allows our model to achieve high fre-
quency details in the generated images.

The MLP network described above learns to estimate a
feature vector f for each spatial location of the image plane
independently, while considering head pose, facial expres-
sion and eye gaze information. In order to render frame i,
we first evaluate the MLP network at each spatial position
x ∈ X of the coordinate grid that corresponds to resolu-
tion Hf × Wf , while keeping all other inputs fixed. After
that, we accumulate the resulting features in a visual fea-
ture map Fi ∈ RHf×Wf×nf . Then, we employ a decod-
ing network D, which receives the feature map and per-
forms up-sampling, in order to synthesise the output frame
Ĩi = D(Fi) at the target resolution H × W . An overview
of our proposed framework is shown in Fig. 2. More details
on the architecture of networks are available in the supple-
mentary material.
Objective Function and Optimisation. We train our pro-
posed model on the task of reconstruction. Given the gen-
erated image Ĩi and the corresponding ground truth frame
Ii, we define the reconstruction loss as the L2-distance be-
tween the predicted and true image. We experimented with
L1, perceptual [47] and adversarial [20] losses, but all of
them produced substantially inferior results. However, we
found that we can improve our method’s performance by
adding an extra output layer to the MLP, which predicts the
colour c ∈ R3 side-by-side with visual features f , and min-
imise the distance of the predicted colour from the true one.
To that end, we accumulate the colour outputs for all 2D
spatial locations in Ci ∈ RHf×Wf×3, and penalise the L2-
distance from the ground truth image I′i down-scaled to res-

olution Hf × Wf , in order to match the resolution of Ci.
The overall loss term for frame i is given as

L = Lrec + L′
rec = ||Ĩi − Ii||22 + ||Ci − I′i||22 (4)

We optimise the MLP network and CNN-based decoder
jointly, in an end-to-end fashion.

3.3. Audio-driven Portrait Synthesis

Our choice to inject the driving signals (i.e. pose, expres-
sion and gaze parameters) into our system through an MLP
network enables to easily adapt our method to other driving
modalities, such as acoustic signals. Unlike previous works
[22, 16, 40, 26], which focus exclusively either on expres-
sion blendshapes or audio data as driving signals, we show
that the same architecture can be used effectively for both
modalities. More specifically, we can replace the expres-
sion blendshapes with an audio feature vector αi as input
to the MLP network, in case the audio stream is available.
We extract high-level features from acoustic signals with
the widely-adopted DeepSpeech model [24, 1]. As a first
step, we assign a 29-dimensional vector estimated by Deep-
Speech to every video frame. Then we create a window of
vectors with size w = 16 around each frame, taken from its
neighboring (past and future) time steps. In this way each
frame i is coupled with a DeepSpeech feature Ai ∈ R16×27.
We follow a similar approach with AD-NeRF [22] and
utilise a 1D-convolutional network Naud that learns to com-
pute per-frame latent codes ai ∈ Rna from Ai. Next, we
employ a self-attention network Natt, as proposed in [40]
and [22], which operates as a temporal filter on subsequent
audio codes ai−u+1:i+u and mixes them up with the assis-
tance of predicted attention weights wi−u+1:i+u, to form
the final audio feature vector αi =

∑i+u
j=i−u+1 wjaj . We

set u = 4, which results in a window of 2u = 8 time steps.
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4. Experiments

Dataset. Our networks are optimised on monocular RGB
videos, of various resolutions: 2562, 5122 and 10242. We
train a new model for each video portrait (different individ-
ual). As a pre-processing step, we crop frames around the
target face and compute pose, expression and gaze parame-
ters. We experiment with videos from 5K to 20K frames. In
the supplementary material we provide more details of the
adopted video database and face tracking systems.

4.1. Comparison with State-of-the-Art

Reconstruction. First, we carry out a comparison with
Deep Video Portraits (DVP) [26] and NerFACE [16], the
best-performing person-specific reenactment methods, as
well as First Order Motion Model (FOMM) [38], a repre-

sentative of person-generic models. We evaluate the gen-
erative performance of methods on the task of reconstruc-
tion, also know as self-reenactment. We assess the fidelity
of reconstruction quantitatively, with the assistance of L1-
distance between generated and ground truth test frames,
as well as with Learned Perceptual Image Patch Similar-
ity (LPIPS) [51], which tests the perceptual similarity be-
tween images. Moreover, we determine photo-realism with
Fréchet Inception Distance (FID) [25] and Fréchet Video
Distance (FVD) [45] metrics, which appear to correlate well
with human perception. The results displayed in Table 1 in-
dicate that our method outperforms all baselines, for three
different video portraits. Please note that the reported num-
bers refer to the average scores, computed across all test
frames for each video portrait. An exception to that are
FID [25] and FVD [45] metrics, as they are computed on

ground truth ours NerFACE [16] DVP [26] FOMM [38]
Figure 3. Visual comparison with baselines on the task of reconstruction. Our method consistently generates more realistic samples with
finer details than its counterparts. For the evaluation of FOMM [38], images had to be further cropped. Please zoom in for details.
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Method Portrait L1 (↓) LPIPS (↓) FID (↓) FVD (↓)

FOMM
ID. 1 8.79 0.095 25.48 331.0
ID. 2 7.60 0.084 37.24 338.3
ID. 3 9.48 0.130 24.72 254.10

DVP
ID. 1 6.95 0.152 49.35 195.4
ID. 2 9.08 0.079 37.58 464.3
ID. 3 8.01 0.123 51.30 196.7

NerFACE
ID. 1 6.19 0.136 74.22 278.3
ID. 2 10.98 0.143 74.02 357.7
ID. 3 6.28 0.067 34.64 81.17

Ours
ID. 1 6.45 0.094 23.76 169.8
ID. 2 5.21 0.071 24.60 222.1
ID. 3 5.15 0.051 23.94 78.06

Table 1. Numerical comparison with FOMM [38], DVP [26] and
NerFACE [16] for three different portraits on the task of recon-
struction (self-reenactment).

pairs of videos. All scores suggest that our approach pro-
duces superior samples in terms of visual quality and photo-
realism. This observation is confirmed visually in Fig. 3. As
can be seen, our method generates more crispy images with
finer details and more consistent eye gaze. For a better vi-
sualisation of our results, we urge the reader to refer to our
supplementary video.

Method CSIM (↑)
Expression Pose Gaze

Dist. (↓) Dist. (↓) Dist. (↓)

FOMM [38] 0.840 13.28 6.31◦ 9.42◦

HeadGAN [13] 0.755 14.17 3.26◦ 6.35◦

DVP [26] 0.861 11.95 4.93◦ 8.37◦

Ours 0.885 10.69 2.57◦ 4.74◦

Table 2. Numerical comparison with FOMM [38], HeadGAN [13]
and DVP [26] on the task of cross-identity reenactment.

Reenactment. We further validate our model’s perfor-
mance on the task of cross-identity motion transfer (reen-
actment) in a quantitative way. This task involves passing
on the head pose, facial expression and eye gaze from a
driving actor to another target person, while preserving the
identity of the later, as the two subjects are now different.
We compare our approach with DVP [26], FOMM [38] and
HeadGAN [13]. To that end, we use the source and tar-
get video portraits provided by the authors of DVP. For
the numerical comparison, we measure the target’s iden-
tity preservation with Cosine Similarity (CSIM), based on
identity embeddings extracted with the assistance of Arc-
Face [11]. Moreover, we use DECA [15] to regress pose
and expression parameters, both from the driving and gen-

driver ours DVP [26] HeadGAN [13] FOMM [38]
Figure 4. Visual comparison with baselines on reenactment. Our approach transfers pose, expression and gaze more reliably than both
person-specific DVP [26] and person-generic methods HeadGAN [13] and FOMM [38]. Please note that for the correct evaluation of
HeadGAN and FOMM, images had to be cropped closer to the face.
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Method Portrait L1 (↓) LPIPS (↓) FID (↓) FVD (↓)

AD-NeRF
Obama 4.11 0.083 16.67 225.7

May 5.13 0.143 47.31 272.2

Ours
Obama 4.04 0.054 9.12 110.3

May 5.72 0.087 26.72 96.1

Table 3. Numerical comparison with AD-NeRF [22] on audio-
driven video reconstruction.

ground truth ours AD-NeRF [22]
Figure 5. Visual comparison with AD-NeRF [22] on audio-driven
reconstruction. We generate more accurate lips motions and higher
quality details compared to AD-NeRF. Please zoom in for details.

erated frames. Then, we compute the L1-distance between
expression parameters, as well as the head rotation distance
in degrees. Finally, we use the gaze estimator from [10] to
regress gaze vectors, and calculate their angular distance.
In Table 2, we show that our method achieves better scores
than all three baselines, across all metrics related to success-
ful reenactment. In Fig. 4, we showcase examples of frames
where our method transfers pose, expression and gaze more
accurately than DVP [26], HeadGAN [13] and FOMM [38].
Audio-driven reconstruction. Except for conditioning our
MLP network on expression blendshapes, we demonstrate
the generative performance of our system when driven by
acoustic signals. For that, we conducted a side-by-side
comparison with AD-NeRF [22], the state-of-the-art model
on this task. As shown in Table 3, our quantitative analysis
reveals that our approach performs better than AD-NeRF,
both in terms of reconstruction and image quality. Our find-
ings can be observed also visually in Fig. 5.
Execution Speed. Owing to its lightweight architecture,
our method is able to render frames in a resolution up to
1024×1024, in 24 fps. For lower resolutions (e.g. 256×256
and 512 × 512) our pipeline operates in speeds faster than
real time. In comparison to recent NeRF-based state-of-
the-art methods [16, 22], our system achieves a significant
speed-up, generating images nearly 270 times faster, which
makes it much more efficient for real-world applications. In
Table 4, we report the execution times of different meth-
ods, measured on NVIDIA’s Tesla V100 PCIe 32 GB. For
DVP* [26] we use the numbers recorded by its authors.

Method
256× 256 512× 512 1024× 1024
time (fps) time (fps) time (fps)

AD-NeRF [22] - 9630 (0.10) -
NerFACE [16] - 8465 (0.12) -

DVP* [26] 65 (15.4) 196 (5.1) -
HeadGAN [13] 41 (24.5) - -

FOMM [38] 21 (47.2) - -
Ours 11 (90.9) 31 (32.3) 42 (24.2)

Table 4. Comparison of the execution time between our genera-
tive model and related methods. Time is reported in milliseconds
(msec). Please note that all reported numbers refer to the forward
pass time of models during inference, without considering data
pre-processing.

4.2. Ablation study

Next, we evaluate our design choices and validate the
significance of different components that make up our
model. We conduct quantitative and qualitative experiments
for six variations of our system. To that end, we test all vari-
ations on the task of reconstruction, for two separate por-
traits (Biden and Obama). We start with a 2D coordinate-
based MLP with controllable dynamics, described in Sec-
tion 3.1, which is used as the baseline model (A) of our ab-
lation study. In order to demonstrate the advantages of our
proposed architecture, we further experiment with a CNN-
based decoding network only, without the MLP network
(B). Then, we couple the MLP with the decoding network,
which leads to variation (C). We form the next variations
by first adding the learnable latent variables input (D), then
including the reconstruction loss term L′

rec (E) and finally
the gaze input (F), ending up with our full model as pre-
sented in Section 3.2. Our numerical analysis presented in
Table 5 reveals the importance of each component, espe-
cially the huge impact of the MLP network when coupled
with a CNN-based decoding network. As can be observed,
the latent variables increase FVD scores as they help to sta-
bilise movements between frames. Furthermore, according
to LPIPS, the L′

rec loss improves the perceptual similarity
with ground truth data. Finally, the gaze input corrects eye
motions, something that becomes more apparent when in-
specting our supplementary video. In Fig. 6, we illustrate
some examples of the visual differences between samples
generated by variations (A), (B) and our full model (F).

5. Discussion
3D multi-view consistency. Theoretically, our method is
not 3D aware. Nonetheless, for the purposes of portrait
reenactment this is not essential for achieving consistent
results in various head poses. Given that training videos
are captured by stationary cameras, they provide access to
a single view of the scene. This makes 3D NeRF-based
methods an over-parametrisation for such data, which end
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ground truth 2D MLP contr. dyn. (A) CNN-based decoder (B) our full model (F)
Figure 6. Qualitative results of our ablation study. Our full model (F) improves the quality of frames synthesised by our baseline (A) (2D
coordinate-based MLP with controllable dynamics) or the unaided CNN-based decoder (B) by a noteworthy margin.

Variation Portrait L1 (↓) LPIPS (↓) FID (↓) FVD (↓) Gaze Dist. (↓)

(A):
2D coordinate-based MLP with Biden 5.33 0.072 10.69 197.2 -
controllable dynamics (baseline, Section 3.1) Obama 3.74 0.077 14.33 132.9

(B): CNN-based decoder
Biden 6.67 0.089 11.51 263.8 -
Obama 4.27 0.068 12.78 127.4

(C): MLP + decoder
Biden 5.55 0.061 8.76 114.2 -
Obama 3.58 0.060 9.37 103.4

(D): (C) + latent codes
Biden 5.68 0.062 8.38 92.05 -
Obama 3.10 0.047 9.37 83.1

(E): (D) + L′
rec

Biden 5.14 0.057 9.80 100.9 2.69
Obama 2.80 0.041 9.97 82.1 2.31

(F):
(E) + gaze input Biden 5.03 0.054 9.42 107.2 1.86
(full model, Section 3.2) Obama 2.86 0.041 9.33 79.3 2.18

Table 5. Quantitative results of our ablation study on two separate video portraits (Biden and Obama), of resolution 512× 512.

up violating 3D consistency for upper torso and producing
severe shoulder trembling [16]. We argue that 3D modeling
would require a video portrait captured by a moving camera
from multiple viewpoints, as demonstrated most recently by
RingNeRF [3]. For videos captured by stationary cameras,
our 2D model is able to generate frames with consistent ap-
pearance in diverse head poses and surpass 3D NeRF-based
methods [16, 22] in visual quality and inference speed.

Large changes in head pose. The reenactment results we
presented are mainly frontal. This is attributed to the train-
ing data, which consist mostly of frontal poses. Actually,
both 2D and 3D-based methods are limited by the head pose
variation that exists in the training video. We observed that
all systems struggle to synthesise poses out of the training
data span. In Fig. 7, we illustrate the training frame with
the most extreme head pose, in terms of yaw angle. Next
to it, we show the most extreme pose synthesised by Ner-
FACE [16] and our method, without a substantial drop in
quality. Our approach achieves higher photo-realism.

Ethical considerations. Generative models that offer ex-
plicit control on movements of faces could be potentially
used for unethical purposes. For example, they could be
used to synthesise videos of politicians acting in a provoca-
tive way. We would like to clarify that the intention of this

max yaw (training) NerFACE [16] ours
Figure 7. Evaluation of larger changes in head pose.

paper is to make advancements realistic full-head reenact-
ment for benevolent applications. We do not condone using
our work to produce fake news or deceive the public.

6. Conclusion
We described Dynamic Neural Portraits, a novel method

for controllable video portrait synthesis. In contrast to pre-
vious attempts, our approach does not require renderings of
3D faces to drive synthesis and does not rely on GANs or
NeRFs. Our experiments demonstrate the superiority of our
model in terms of visual quality and run-time performance,
compared to state-of-the-art video or audio-driven systems.
Acknowledgement. The work of Stefanos Zafeiriou was partially
funded by the EPSRC Fellowship DEFORM: Large Scale Shape
Analysis of Deformable Models of Humans (EP/S010203/1).

4080



References
[1] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anub-

hai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper,
Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep
speech 2: End-to-end speech recognition in english and man-
darin. In International conference on machine learning,
pages 173–182. PMLR, 2016.

[2] Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb
Sterkin, Victor Lempitsky, and Denis Korzhenkov. Image
generators with conditionally-independent pixel synthesis.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14278–14287, 2021.

[3] ShahRukh Athar, Zexiang Xu, Kalyan Sunkavalli, Eli
Shechtman, and Zhixin Shu. Rignerf: Fully controllable neu-
ral 3d portraits. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 20364–
20373, 2022.

[4] Hadar Averbuch-Elor, Daniel Cohen-Or, Johannes Kopf, and
Michael F Cohen. Bringing portraits to life. ACM Transac-
tions on Graphics (TOG), 36(6):1–13, 2017.

[5] Volker Blanz and Thomas Vetter. A morphable model for
the synthesis of 3d faces. In Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, pages 187–194, 1999.

[6] James Booth, Epameinondas Antonakos, Stylianos
Ploumpis, George Trigeorgis, Yannis Panagakis, and
Stefanos Zafeiriou. 3d face morphable models” in-the-
wild”. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 48–57, 2017.

[7] James Booth, Anastasios Roussos, Allan Ponniah, David
Dunaway, and Stefanos Zafeiriou. Large scale 3d mor-
phable models. International Journal of Computer Vision,
126(2):233–254, 2018.

[8] Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun
Zhou. Facewarehouse: A 3d facial expression database for
visual computing. IEEE Transactions on Visualization and
Computer Graphics, 20(3):413–425, 2013.

[9] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient
geometry-aware 3d generative adversarial networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16123–16133, 2022.

[10] Zhaokang Chen and Bertram E Shi. Appearance-based gaze
estimation using dilated-convolutions. In Asian Conference
on Computer Vision, pages 309–324. Springer, 2018.

[11] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
4690–4699, 2019.

[12] Michail Christos Doukas, Mohammad Rami Koujan, Vik-
toriia Sharmanska, Anastasios Roussos, and Stefanos
Zafeiriou. Head2head++: Deep facial attributes re-targeting.
IEEE Transactions on Biometrics, Behavior, and Identity
Science, 3(1):31–43, 2021.

[13] Michail Christos Doukas, Stefanos Zafeiriou, and Viktoriia
Sharmanska. Headgan: One-shot neural head synthesis and
editing. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 14398–14407, 2021.

[14] Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye
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