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Abstract
In contrast to perturbation-based attacks, patch-based

attacks are physically realizable, and are therefore increas-
ingly studied. However, prior work neglects the possibil-
ity of adaptive attacks optimized for 3D pose. For the first
time, to our knowledge, we consider the challenge of de-
signing and evaluating attacks on image sequences using
3D optimization along entire 3D kinematic trajectories. In
this context, we study a type of dynamic attack, referred to
as “adaptive active attacks” (AAA), that takes into consid-
eration the pose of the observer being targeted. To bet-
ter address the threat and risk posed by AAA attacks, we
develop several novel risk-based and trajectory-based met-
rics. These are designed to capture the risk of attack success
for attacking earlier in the trajectory to derail autonomous
driving systems as well as tradeoffs that may arise given
the possibility of additional detection. We evaluate perfor-
mance of white-box targeted attacks using a subset of Ima-
geNet classes, and demonstrate, in aggregate, that AAA at-
tacks can pose threats beyond static attacks in kinematic set-
tings in situations of predominantly looming motion (i. e., a
prevalent use case in automated vehicular navigation). Re-
sults demonstrate that AAA attacks can exhibit targeted at-
tack success exceeding 10% in aggregate, and for some spe-
cific classes, up to 15% over their static counterparts. How-
ever, taking into consideration the probability of detection
by the defender shows a more nuanced risk pattern. These
new insights are important for guiding future adversarial
machine learning studies and suggest researchers should
consider defense against novel threats posed by dynamic
attacks for full trajectories and videos.

1. Introduction
1.1. Motivation

Deep learning (DL) systems [19] have recently increased
the promise of higher performance and greater autonomy
in a range of AI application areas including image in-

*equal contribution

Figure 1. Our concept focuses on two foci a) developing new pose-
optimized adaptive dynamic patch attacks and b) considering dif-
ferent threat models/requirements for measuring the resulting risk
compared to static patch attacks.

terpretation, vehicular navigation, robotics, and medicine
[18, 15, 28, 27, 25, 29, 7, 4, 20, 32]. Concerns about trust in
AI systems including ethical concerns such as explainabil-
ity, privacy [30, 24, 17], fairness [5, 6], and – the focus of
this paper – adversarial vulnerabilities (adversarial machine
learning or AML) [14, 8] have recently put into question
the deployment of certain autonomous systems. We inves-
tigate new types of AML attacks on image classifiers with
the ultimate objective that such approaches could be used
beneficially to audit the resilience of AI and autonomous
systems toward these types of adversarial approaches.

Most work thus far in AML has focused on perturba-
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Figure 2. 3D patch optimization uses a loss based on an expecta-
tion taken over an ensemble of images and 3D poses that corre-
spond those expected in a trajectory. Then the process does gradi-
ent descent in patch space so as to maximize the expected value of
the probability for the targeted class.

tion attacks which are not physically implementable. Some
work has developed patch-based attacks which are imple-
mentable, but these methods typically perform optimization
in 2D image domains and solely on static patch/background
image attack settings. By contrast, this study’s foci (Fig-
ure 1) are a) to consider 3D settings and developing novel
adaptive attacks along dynamic trajectories, and b) estab-
lishing measures of their associated risk based on different
requirements to characterize success (such as preferences
for attacking earlier in the trajectory).

1.2. Prior Work

AML has led to a wide variety of work in the past few
years, with a continuous arms race between novel meth-
ods for both attacks and defenses. Most adversarial efforts
targeting machine perception have focused on techniques
that optimize attacks for specific full images while con-
straining attack perturbations to be imperceptible to humans
(e. g., [33], [14], [22], [21]). These attacks are typically the
main focus of AML research in the area of visual percep-
tion, despite the clear downside that perturbation-based at-
tacks are only feasible if the adversary has electronic ac-
cess to the vision pipeline. Patch-based attacks are charac-
terized by local confinement of the perturbation to a spe-
cific area of the image and are intended to generalize to
an ensemble of images. In contrast to perturbation meth-
ods, these attacks can be realized in a physical setting and
this category includes both patch- and occlusion-based at-
tacks [3, 11, 9, 31, 35, 16]. We focus here on these attacks
since they are more easily implemented (e. g., by printing
and placing optimized patches or occlusions in a scene).
Given their potential impact on autonomous vehicular sys-
tems, patch attacks are of interest for many applications in

robotics/vehicular autonomy, and for other AI applications
such as software medical devices and robotics.

Examples of work focusing on such attacks includes [1,
3] which implemented a loss function featuring an expecta-
tion taken over an ensemble of images and a set of possi-
ble geometric transformations including 2D rotation, trans-
lation, and scale [1], black-box attacks [12, 36, 10], or the
study of physical adversarial attacks for vehicle detectors
using a simulator (Carla) as in [34, 23].

1.3. Contributions

In contrast to past studies, we take several steps to-
ward considering threats posed by new adversarial strate-
gies using physically realizable, kinematic-informed, active
attacks that are adaptive. Specifically: a) we seek adversar-
ial patch attacks that are optimized for 3D observers’ pose;
and that can b) adapt dynamically based on external geo-
metric conditions. We focus on the specific case of looming
translations of the observer being attacked by the patch (i. e.,
translations with a non-zero component along the camera
optical axis). We also c) design new metrics to measure at-
tack effectiveness over a kinematic trajectory; and d) com-
pare performance of baseline and adaptive attack systems
to assess their expected risk. Our new metrics allow speci-
fication and measurement of explicit preferences for attacks
that pose maximal risk to autonomous systems by causing
early-on failure to their navigation systems. Each metric
captures a different perspective of attack risk allowing de-
fenders to better understand the specific vulnerabilities of
their vision system to patch attacks along trajectories.

2. Methods

2.1. Patch Optimization

We describe a framework and method for developing
AAAs. As illustrated in Figure 2, a patch is optimized by
applying backpropagation all the way to the patch/image
domain to find maximally attacking perturbations. For-
mally, for a targeted, white-box attack, optimization of
patches is performed such that the patch is optimal in expec-
tation over a range of pose transformations and scene/image
contexts, as in:

argmax
p

EI∼I,T∼T P (yt|AT (p, I);w) (1)

for patch p, image I , transformation T (including both ro-
tation and translation), application method AT (.), targeted
label yt, and predictive model P (.) with parameters w.

In the case of attacks against dynamic observers
(e. g., autonomous vehicles, entities like Unmanned
Aerial/Ground/etc. Vehicles), we consider how a patch at-
tack might be produced to account for aspects of the vehicle
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trajectory. To be more precise, we define a single proba-
bilistic trajectory as a sequence:

Q = {qi = (Ii,qi) = (Ii, t
1
i , . . . , t

M
i ) | (2)

(t1i , . . . , t
M
i ) ∼ T (T 1, . . . , TM |i)}Ni=1,

where Ii ∼ I is the scene image at index i and T (·|i) rep-
resents the joint distribution over M types of patch trans-
formations t1, . . . , tM at index i collected over N steps.
The transformations may be standard rigid motion (i. e., in
SE(3)) or may include other appearance-related transforma-
tions (e. g., colorimetric, textural, etc.).

We assume a common indexing convention across trajec-
tories to ensure that for any trajectory Q, Q[i] is consistent
in some real-world sense. Without loss of generality, we as-
sume i is determined by partitioning a continuous trajectory
along steps of time or distance.

Given this definition, we can now collect a set of trajec-
tories from a fixed real-world scene (where Qj ∈ Ψ for
j ≤ |Ψ|). We consider scenes where some aspects of the
scene are static (e. g., roads, road signs, etc.) while others
are dynamic (e. g., cars on the road, pedestrians, etc.). For
our purposes, we assume that patch attacks will be placed
on static components in the scene (although the following
methods generalize to placement on dynamic elements as
well).

As illustrated in Figure 1, to allow for adaptation, we
instead seek to optimize:

argmax
pi

EI∼Ii,t∼Ti
P (yt|At(pi, Ii)) (3)

where we optimize a discrete set of patches P , with each
patch pi corresponding to a specific interval of the tra-
jectory. This enables creating a dynamic patch sequence
P = [p0, p1, . . . , pN ] which changes as a function of the in-
terval index (e. g., pi = P[i]). Intuitively, the interval index
may correspond to something like the distance of the patch
from the camera.

The transformation t itself is sampled from the joint dis-
tribution over transformations consistent with a fixed, spe-
cific interval i of the trajectory (i. e., Ti). To perform the
optimization, we sample batches of background images of
size nb and optimize patches according to the ith interval.
The patch is optimized in expectation to perform well over
scene contexts and transformations consistent with specific
intervals of the trajectory.

We compare opposing approaches along the spectrum,
on one end static attacks which are obtained by considering
a single unique interval and patch for the entire trajectory
(i. e., M = 1), and on the other, very dynamic attacks with
multiple intervals (i. e., M ≥ 2).

2.2. Metrics

In order to characterize the overall success of patch at-
tacks along trajectories, and to impart a notion of risk mea-
surement to the autonomous system, we introduce the fol-
lowing novel metrics:

Average Attack Risk (R(c)) Taken across the entire at-
tack trajectory:

R(c) = El∼U(0,lmax)

[
Ac(l)

]
(4)

This is defined for a given target class c in the set of
classes C, where l ∈ [0, lmax], denotes the time or spatial
interval (or cell index as we shall use) that the trajectory
spans, and where Ac(l) denotes attack accuracy or success
rate for target class c at cell distance l. In practice, we inte-
grate over all the trajectory intervals to compute this metric.
Note that R can be interpreted as a type of area under
the curve measure where the x-axis is a distance/time index.

Mean Average Attack Risk (MR)
We also measure aggregate performance computed over

a set C of targeted classes.

MR = Ec∈C
[
R(c)

]
(5)

here the expectation is taken over all classes c ∈ C, where
l ∈ [0, lmax] for all intervals of the trajectory, and where
Ac(l) the accuracy for class c at point l.

Max Average Attack Risk (XR)
Since the attacker is opportunistic and may have the pick

of target class label, we also measure risk via maximal per-
formance over all classes as an better measure assessing risk
of a targeted attack:

XR = argmax
c∈C

[
R(c)

]
(6)

Re-Weighted Risk Metrics (Rr, XRr and MRr)
Further recognizing that there is increased value for the

attacker (and risk for the attacked observer) to successfully
and persistently attack earlier in the trajectory, we consider
the re-weighted version of the previous metrics. To make
this risk measurement approach more concrete, consider the
fact that there is a distance past which braking effectiveness
is reduced or non-beneficial to bring the car to a complete
stop. Therefore, considering an attack that changes a stop
sign detection into a 60 mph speed limit sign (or another
class that would not lead the navigation system to apply
breaking), then attacking early and consistently would dis-
allow early braking which would have maximal benefit for
the attacker and risk for the attacked vehicle.

Therefore, we redefine the re-weighted average attack
accuracy taken across the entire attack trajectory as now:
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Rr(c) = El∼U(0,lmax)

[
w(l)Ac(l)

]
(7)

for a weighting functionw(l) designed to emphasize greater
distances and which is normalized to integrate to 1 over l ∈
(0, lmax] (w(l) is assumed here linearly decreasing in range
[1, 0] throughout the trajectory).

Likewise we can generalize MR and XR from before
as:

MRr = Ec∈C
[
Rr(c)

]
(8)

and

XRr = argmax
c∈C

[
Rr(c)

]
(9)

Changing the expression for w(l) gives flexibility to tune
the metric to particular trajectories or scenarios of interest.

Detection-weighted Risk (DRr(c))
Lastly, to account for the possibility that a defender

can detect patch attacks along the trajectory, the detection-
weighted attack accuracy can be formulated as:

DRr(c) = El∼U(0,lmax)

[
w(l)P¬D(l)Ac(l)

]
(10)

where P¬D = 1 − PD is the probability that the defender
does not detect the patch attack. If PD(l) = β is con-
stant for all positions along the trajectory (an optimistic
case for the defender), then the risk reduces to DRr(c) =
(1−β)Rr(c). It is then obvious that in this setting this equa-
tion only re-scales the original risk. Intuitively, any non-
zero detection rate will naturally decrease the attack risk as
we would expect.

2.3. Optimization

To determine the merits of dynamic patch attacks opti-
mized for a trajectory in 3D space, we perform experiments
with the following common characteristics. As in [13], we
evaluate the patch attack effectiveness over a range of train-
ing/testing transformations. However, unlike that work,
we do not vary the range of transformations introduced
throughout the training time of the overall attack. Rather,
we investigate the effects of subdividing the attack into in-
creasingly narrow intervals, with a separate phase of the at-
tack optimized for each interval.

We define a range of camera distances [a, b] over which
to consider the effectiveness of the patch at train and test
time. The trajectory for which the attacks are optimized
is defined along the z-axis within this range of distances.
This distance range is intended to cover all patch scales that
might be of interest: from the closest attack that might rea-
sonably occur, to a distance great enough that developing

salient features in the limited pixels allocated to the patch
becomes difficult. At sufficient distances, roll, yaw, and
pitch rotations become negligible.

In order to investigate the role of increased subdivision
of a dynamic patch attack, we divide the range into N in-
tervals, and define the train and test time support for the
patch (as in Eq. 3), T ∼ Uψ,θ,z , where the set of trans-
formations is drawn uniformly random from ranges ψ ∈
[±0◦], θ ∈ [±0◦], and z ∈ [(a + b−a

N × (i − 1)), (a +
b−a
N ×(i))] for i ∈ {1, 2, . . . , N} (for yaw, roll, and distance

respectively). Here, Uψ,θ,zi denotes a multivariate uniform
distribution sampled according to the intervals specified by
ψ, θ, zi. Thus, each ith patch is unique to a specific interval
of the trajectory. Taken as a group, the N patches constitute
a dynamic attack capable of acting over the entire camera
distance range.

3. Experiments

For each experiment setting, we run the optimization and
evaluation in a white-box setting against a ResNet-50 model
trained on ImageNet, which represents a best case scenario
from the patch attack scenario (i. e., where full knowledge
of the architecture and weights is available to the attacker).

In our case, the range of camera distances is chosen to
mimic the realism of a vehicle approaching an intersection.
Although we may refer to distances in terms of meters, this
is merely a convenience unit where the interpretation of
a given distance measure is internal to the PyTorch3D li-
brary [26].

After optimization, each patch is tested against the same
range of transformations under which it was trained, with
each test transformation applied to patches inserted into a
test set consisting of a random sample of images drawn
from the same source as the train set. Patch coordinates
are randomized during optimization and at attack time un-
less specified otherwise. Field of view (FoV) of the camera
is kept at a constant 60.0 ◦.

3.1. Experiment Setting 1: Attacking Over An En-
semble of Classes

Question: In this experiment, we seek to assess the effi-
cacy of a generalized dynamic patch attack vs. a static one.
Therefore we ask: what is the impact on risk of adaptive
attacks compared to that of a single static patch attacks?

Approach: This question relates to whether the patch
optimization process produces patterns that depend heav-
ily on scale or can be effective from a variety of apparent
distances. To address this question, we optimized a set
of patches following our core experimental protocol with
patch roll fixed at 0 ◦, patch yaw fixed at 0 ◦, and loca-
tion randomized. Patches were trained for 8 epochs, each
epoch consisting of 200 batches of 32 images sampled from
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Figure 3. Performance results for setting 1 and obtained with attacks subdivided into different numbers of intervals (separated by the dotted
lines shown). Performance is shown on the Y axes and is computed as attack effectiveness as a function of the camera distance testing was
performed at (X axes). Top, middle and bottom rows show aggregation of results grouping together the high-, mid-, and low- performing
target classes.

the ILSVRC 2012 validation set. We performed experi-
ments for four levels of subdivision with respect to the at-
tack; namely, we optimize patches with train time support
T ∼ Uψ,θ,zi,j , where ψ ∈ [±0◦], θ ∈ [±0◦], and zi,j ∈
[(a+ b−a

Nj
×(i−1)), (a+ b−a

Nj
×(i))] for i ∈ {1, 2, . . . , Nj},

where Nj ∈ {1, 4, 8, 12}. All experiments were evaluated
over the distance range z ∈ [2, 20], approximated by 61
test points 0.3 meters apart. At each test point, the attack
was evaluated using the patch whose train time support con-
tained the point.

Results: Results are captured in Figures 3 and 4 and
Tables 1 and 2.

Discussion: Tables 1 and 2 suggest that both for the
weighted and unweighted metrics, adaptive patch attacks
outperform their static counterpart. Drilling down to the
specific metrics R(c) for all classes c, adaptation clearly
confers a benefit, but the benefit varies depending on the
number of intervals used. In aggregate (i. e., MR), how-
ever, more adaptation produces a more successful attack. In
these results, in Figure 3, we can see a common increase
in overall attack success as the number of attack intervals
increases. The attackness increases later in the trajectory

Table 1. Metrics R(c), XR and MR for Experiment 3.1
Number of Attack Steps 1 4 8 12

R(football helmet) 0.53 0.62 0.6 0.64
R(gas mask) 0.61 0.66 0.66 0.69
R(paper towel) 0.56 0.52 0.57 0.61

R(mop) 0.6 0.62 0.61 0.66
R(basketball) 0.6 0.74 0.69 0.73
R(stretcher) 0.48 0.41 0.56 0.56

R(guenon monkey) 0.45 0.46 0.56 0.55
R(wood rabbit) 0.27 0.34 0.45 0.45
R(brambling) 0.43 0.39 0.56 0.58
R(black swan) 0.44 0.6 0.61 0.61

R(academic gown) 0.24 0.34 0.36 0.35
R(tobacco shop) 0.24 0.3 0.33 0.36

R(T-shirt) 0.25 0.33 0.35 0.36
R(seawall) 0.16 0.23 0.28 0.28
R(alp) 0.11 0.19 0.2 0.19
XR 0.61 0.74 0.69 0.73
MR 0.4 0.45 0.49 0.51

when looming closer to the patch. The presence of certain
discontinuities (“ravine”) exist for specific intervals in some
of the plots, in which the effectiveness of the optimized path
over said interval is significantly lower than those on either
side. This is likely due to the fact that the optimization is
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Figure 4. AAA patches shown from closest to furthest location for 12-step attacks and for classes Brambling, guenon monkey, basketball,
football, gas mask and mop target classes for experiment setting 1. Distance flows left to right (and time in reverse of that).
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Figure 5. Performance results obtained for setting 2 and obtained for adaptive attacks subdivided into different numbers of intervals
(separated by the dotted lines shown). Performance is shown on the Y axes and is computed as attack effectiveness as a function of the
camera distance testing was performed at (X axes). Top, middle and bottom rows show aggregation of results grouping together the high-,
mid-, and low- performing target classes.
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Table 2. Metrics Rr(c), XRr and MRr for Experiment 3.1
Number of Attack Steps 1 4 8 12
Rr(football helmet) 0.36 0.45 0.42 0.48

Rr(gas mask) 0.45 0.50 0.51 0.54
Rr(paper towel) 0.40 0.33 0.37 0.43

Rr(mop) 0.46 0.44 0.42 0.49
Rr(basketball) 0.48 0.63 0.56 0.60
Rr(stretcher) 0.31 0.26 0.38 0.37

Rr(guenon monkey) 0.29 0.29 0.38 0.36
Rr(wood rabbit) 0.13 0.18 0.26 0.26
Rr(brambling) 0.28 0.27 0.40 0.41
Rr(black swan) 0.29 0.45 0.45 0.45

Rr(academic gown) 0.11 0.17 0.18 0.18
Rr(tobacco shop) 0.12 0.14 0.16 0.18

Rr(T-shirt) 0.12 0.16 0.18 0.18
Rr(seawall) 0.06 0.10 0.13 0.13
Rr(alp) 0.04 0.08 0.08 0.07
XRr 0.48 0.63 0.56 0.60
MRr 0.26 0.30 0.32 0.34

done independently for each interval and that in some cases
the patch optimization may be locked into a local maximum
and is likely interval and class-dependent since we are aim-
ing for targeted attacks. In general thought, it appears that
this effect is limited, and performance curves, by and large,
are smooth.

3.2. Experiment Setting 2: Attacking Over a Spe-
cific Class (Traffic Signs)

Question: In this experiment, we seek to better under-
stand the the performance of dynamic patch attacks under
more realistic attack conditions. As such, we ask: what is
the risk of a dynamic patch attack trained to attack specifi-
cally against a single class (here street signs)? And what ef-
fect does transforming the background realistically (chang-
ing the apparent distance of the surroundings in accordance
with the distance of the patch) have on the efficacy of the at-
tack?

Approach: These questions address whether the patch
optimization process allows patches to specialize against a
specific ground truth class to be defeated, as well as whether
a “zoomed out” background image is easier to attack at
higher camera distances. To address these settings, we opti-
mized a set of patches following the experimental protocol
of Section 2, with patch roll fixed at 0 ◦, patch yaw fixed
at 0 ◦, and location randomized. Patches were trained for 8
epochs, each epoch consisting of 32 batches of 32 images
labeled as “street sign” from the ILSVRC 2012 training set.
When each patch was inserted into an image, in addition
to the patch, the image itself was also rendered using Py-
Torch3D at a camera distance corresponding to that of the
patch. Similarly to Experiment 3.1, we conducted experi-
ments for four levels of subdivision with respect to the at-
tack; namely, we optimized patches with train time support
T ∼ Uψ,θ,zi,j , where ψ ∈ [±0◦], θ ∈ [±0◦], and zi,j ∈

[(a+ b−a
Nj

×(i−1)), (a+ b−a
Nj

×(i))] for i ∈ {1, 2, . . . , Nj},
where Nj ∈ {1, 4, 8, 12}. All experiments were evaluated
over the distance range z ∈ [2, 20] meters, approximated by
61 test points 0.3 meters apart. At each test point, the at-
tack was evaluated using the patch whose train time support
contained the point.

Results: Results are captured in Figure 5 and Tables 3
and 4 for the metrics both unweighted and weighted.

Table 3. Metrics R, XR and MR for Experiment 3.2
Number of Attack Steps 1 4 8 12

R(football helmet) 0.8 0.86 0.8 0.87
R(gas mask) 0.61 0.58 0.62 0.57
R(paper towel) 0.68 0.71 0.62 0.71

R(mop) 0.83 0.72 0.73 0.66
R(basketball) 0.78 0.8 0.84 0.9
R(stretcher) 0.55 0.53 0.66 0.68

R(guenon monkey) 0.66 0.71 0.62 0.65
R(wood rabbit) 0.5 0.56 0.61 0.6
R(brambling) 0.81 0.69 0.81 0.8
R(black swan) 0.59 0.71 0.8 0.78

R(academic gown) 0.2 0.38 0.34 0.37
R(tobacco shop) 0.42 0.51 0.54 0.49

R(T-shirt) 0.48 0.55 0.58 0.57
R(seawall) 0.28 0.37 0.38 0.4
R(alp) 0.25 0.32 0.34 0.33
XR 0.83 0.86 0.84 0.90
MR 0.56 0.6 0.62 0.63

Table 4. Metrics Rr , XRr and MRr for Experiment 3.2
Number of Attack Steps 1 4 8 12
Rr(football helmet) 0.71 0.79 0.70 0.80

Rr(gas mask) 0.43 0.38 0.43 0.37
Rr(paper towel) 0.52 0.54 0.43 0.54

Rr(mop) 0.73 0.56 0.57 0.48
Rr(basketball) 0.68 0.68 0.79 0.85
Rr(stretcher) 0.37 0.38 0.48 0.51

Rr(guenon monkey) 0.49 0.55 0.42 0.46
Rr(wood rabbit) 0.32 0.37 0.42 0.41
Rr(brambling) 0.72 0.55 0.69 0.67
Rr(black swan) 0.44 0.60 0.68 0.66

Rr(academic gown) 0.09 0.20 0.16 0.18
Rr(tobacco shop) 0.25 0.32 0.35 0.30

Rr(T-shirt) 0.31 0.38 0.41 0.40
Rr(seawall) 0.13 0.19 0.19 0.21
Rr(alp) 0.11 0.16 0.17 0.15
XRr 0.73 0.79 0.79 0.85
MRr 0.42 0.44 0.46 0.47

Discussion: Tables 3 and 4 suggest that for the weighted
and unweighted risk metrics, adaptive patch attacks outper-
form their static counterpart. Similar to the previous exper-
iments we see improvements with increased adaptation (in-
tervals). This is also echoed in Tables 3 and 4 albeit the fact
that some targeted classes do not exhibit an improvement
with adaptation (e. g. gas mask and mop), but the major-
ity of the targeted classes do. The fact that the targeted
classes share little semantic/visual similarity with the at-
tacked class only reinforces the strength of the attack. Using
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Figure 6. Comparison of patch classes ”basketball” (left set) and ”paper towel” (right set) over the 4 phase trajectory attack, which are
notable for their significantly different behavior when optimized over the [11,15.5] distance range.

targeted classes with visual/semantic features shared with
the attacked class (e.g., other street signs) would have made
it easier to increase the dynamic attack’s effectiveness. We
also note a discontinuous behavior similar with the previ-
ous experiment setting. The pattern of increasing overall
effectiveness is somewhat present in the low and medium-
ranked effectiveness patch tiers (second and third rows of
Figure 5, but not for the top ranked patches. Overall, how-
ever, the R(c) and MR scores for this experimental setting
are higher than those for the first, with a “broadening to
the left” of the time/distance interval for which the attack
succeeds suggesting that the consistent truth class of ”street
sign” and / or the introduction of backgrounds transformed
in a manner similar to the patch are conducive to a more
effective attack.

4. Additional Discussion, Limitations and Fu-
ture Work

While experiments demonstrate clear improvements of
dynamic patch attacks over static ones, we do so only for
rigid transformations in SE(3) and excluding other transfor-
mations which lend additional realism to the patch insertion
(e. g., lighting or colorimetric variation). We only evaluate
our method digitally, and for looming conditions, therefore
future work should consider more extensive evaluation in
real-world and extended kinematic settings.

We recognize that fabricating these dynamic attacks
for real-world testing comes with technical challenges and
costs, and this work provides quantitative justification for
pursuing testing beyond simulation. Since the attack itself is
assumed to be stationary relative to the attack observer, this
allows the use of dynamic monitors (e.g., electronic bill-
board), a mosaic of static patches, or other view-dependent
display types (e.g., auto-stereoscopic/holographic images).
Additionally, by aligning the attack intervals with distance,
the physical implementation does not require highly-precise
or complex coordination with the observer’s motion along
the trajectory. Even so, new methods for monocular depth
estimation [2] now achieve sufficient accuracy that a sin-
gle device with a camera and display could be enough for
both estimating the vehicle/observer’s distance/orientation
and choosing the appropriate patch attack to display.

Also, future work should broaden risk evaluation to con-
sider more stringent threat settings from the attacker per-

spective. For example, one such setting could entail that a)
the attacker be required to be consistently successful along
the entire trajectory in order to disrupt the navigation sys-
tem; or b) the defender has the additional opportunity to de-
tect patches via some type of change detection and that any
such detection would trigger a defense from the defender to
adopt a more cautious navigation policy. In that case the
advantage of the attacker relative to the defender could be
expressed as the following risk:

RA = P (attack ∧ not detected) = (PA) ∗ (P¬D)
N−1

(11)
where N is the number of unique patches along the trajec-
tory. This establishes a trade-off for the attacker regarding
using more dynamic attack patches vs. a single static one.
Considering our results and even a modest success rate of
change detection (e. g., 0.05), the relative advantage shifts
away from a dynamic patch back towards a static one. This
indicates that in urban scenarios with much change (pedes-
trians, other movers) and changing illumination conditions,
AAA may pose more risk since overall success of change
detection mechanisms may be more muted. Also, just as
a dynamic patch requires additional optimization require-
ments, the defender must also then develop a change-based
defense to realize these benefits. In sum, future work should
carefully consider threat settings to assess the actual risks of
attacks, and consider how development/computational bud-
gets for dynamic attacks and multi-layer defenses weigh on
the overall viability of both approaches.

5. Conclusion
This study takes several steps towards designing and as-

sessing risks of novel types of dynamic patch attacks set in
kinematic settings, and optimized/adaptive to changing ge-
ometric scenarios. We conduct a sensitivity analysis on at-
tack effectiveness as a function of the pose of the patch with
respect to the camera and introduce new metrics to measure
risk-based attack effectiveness over a kinematic trajectory.
We demonstrate improvements of greater than 10% in at-
tack success over baseline static patch attacks. Critically,
we show that evaluation of risk should be nuanced and de-
pends on assumptions made and threat settings, opening the
door and informing future development of perception sys-
tems robust to dynamic attacks.
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