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Abstract

Most action recognition datasets and algorithms assume
a closed world, where all test samples are instances of the
known classes. In open set problems, test samples may
be drawn from either known or unknown classes. Exist-
ing open set action recognition methods are typically based
on extending closed set methods by adding post hoc analy-
sis of classification scores or feature distances and do not
capture the relations among all the video clip elements.
Our approach uses the reconstruction error to determine
the novelty of the video since unknown classes are harder
to put back together and thus have a higher reconstruc-
tion error than videos from known classes. We refer to
our solution to the open set action recognition problem
as “Humpty Dumpty”, due to its reconstruction abilities.
Humpty Dumpty is a novel graph-based autoencoder that
accounts for contextual and semantic relations among the
clip pieces for improved reconstruction. A larger recon-
struction error leads to an increased likelihood that the
action can not be reconstructed, i.e., can not put Humpty
Dumpty back together again, indicating that the action has
never been seen before and is novel/unknown. Extensive
experiments are performed on two publicly available ac-
tion recognition datasets including HMDB-51 and UCF-
101, showing the state-of-the-art performance for open set
action recognition.

1. Introduction

Action recognition has garnered significant interest due
to its potential applications in sports [38], surveillance [17],
smart homes [49], etc. While significant progress has been
made [3, 7, 12, 37, 40, 44] in recognizing activities on ac-
tion recognition datasets such as HMDB-51 [19], UCF-
101 [39], and Kinetics-700 [3], almost all this progress
has been made under a closed world assumption [34] such
that the test data only contains instances of trained classes.
In this closed world setting, the algorithm predicts which
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Figure 1: Humpty Dumpty is trained to minimize the re-
construction error between the extracted relations X in a
video and the reconstructed relations X ′. A large recon-
struction error during inference is indicative of unknown
relations, i.e., an unknown action, in the video. The name-
sake of our approach is the Humpty Dumpty nursery rhyme,
which tells that when “Humpty Dumpty had a great fall”
and broke, analogous to converting the clip into the latent
feature space, “all the King’s horses and all the King’s men
couldn’t put Humpty Dumpty” back together again [4] since
his structure was unknown.

of the known classes a test instance belongs to, and ig-
nores the problem of whether the instance belongs to any
of the unknown classes. The closed world assumption is
not realistic for many real-world problems, where know-
ing all classes is not feasible. Closed world methods can
be adapted to this open set paradigm by predicting that
a test instance is unknown when the maximal prediction
of any known class is sufficiently weak. This is because,
discriminatively-trained, closed world models tend to be in-
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effective at defining boundaries against background data not
included in training [16]. This makes it difficult to tell the
difference between an unusual instance of a known class
and an instance of an unknown class.

To address these challenges, we develop an action recog-
nition algorithm under the open set premise [34] that dis-
tinguishes known activities from unknown activities in the
videos. Thereby, detecting novel activities [11] in videos.
Unknown activities are not present in the training set. While
they might share some semantic or contextual characteris-
tics with known activities, the relations among these char-
acteristics are significantly different. Our approach models
these characteristics, and their relations as nodes and edges
of a graph. It learns to reconstruct the graph for known
activities using a multi-feature graph autoencoder. During
testing, we use the reconstruction error to determine if the
activity occurring in the video is known or unknown.

Recent work in open set action recognition has relied on
thresholding softmax scores [29] or uncertainty in the clas-
sifier prediction [30] obtained from videos associated with
known classes. A common theme among these techniques
is treating the video as a single entity rather than exploit-
ing the semantic relations within the video. Our approach
captures these relations explicitly in a graph. To construct
the graph, we divide the video into non-overlapping clips of
fixed length. We obtain the contextual and semantic infor-
mation for every clip using average pooling and max pool-
ing, respectively, on the clip features. Using different pool-
ing techniques to obtain multi-features or “views” for clus-
tering is a common practice [50]. As shown in Figure 2,
each node in the graph denotes the pooled feature associ-
ated with a clip, while edges correspond to contextual or se-
mantic relations between different clips or within the same
clip. The graph is encoded in a latent space using a graph
convolutional network (GCN), which effectively learns the
common contextual and semantics relationships for known
classes. The graph is then reconstructed during the decod-
ing phase. We rely on the reconstruction error obtained
from the graph autoencoder to estimate open set risk di-
rectly based on these relations.

We conduct extensive experiments on two benchmark
datasets for action recognition: HMDB-51 [19] and UCF-
101 [39], where 50% of the action labels are designated
as novel for each dataset. We evaluate our method us-
ing the Receiver Operating Characteristic’s Area Under the
Curve (ROC-AUC) and the mean Average Precision (mAP).
Humpty Dumpty achieves about 2% and 3% improvement
in ROC-AUC scores along with 4%, and 1% improvement
in mAP scores over existing open set action recognition
methods [15, 28, 30, 35] on the HMDB-51 and UCF-101
datasets, respectively. Extensive ablation studies also show
the impact of different components of our proposed method.
The main contributions of our work are:

Figure 2: The underlying semantic relations among clips in
a Fencing video. Video clips and the corresponding rela-
tions are partly displayed for more clarity.

• A novel multi-feature graph to represent actions, con-
structed from recognizing similar contextual (average
pooling) and salient (max pooling) relations across
video clips for improved reconstruction;

• A new method for open set action recognition through
open-space risk estimation [34] that uses a graph-
based autoencoder to learn the common semantics and
features of known classes;

• Extensive experiments and ablation studies showing
superior performance over existing methods on two ac-
tion recognition datasets that have been previously es-
tablished as benchmarks for novel action recognition.

2. Related Work
2.1. Open Set Recognition

Open set recognition [34] is originally proposed in the
image recognition domain and has received significant at-
tention [26, 47, 48] in recent years, including GMM [28],
One-Class SVM [35], sparse coding [51], extreme value
theory [23], and CNNs [27]. For example, Mundt et al. [23]
combine model uncertainty with extreme-value theory for
open set recognition using prediction uncertainty on a vari-
ety of classification tasks. Perera et al. [27] learn globally
negative filters from an external dataset and then threshold
the maximal activation of the proposed network to identify
novel objects effectively.

However, limited open set work has been done in the
action recognition domain. Recently, Roitberg et al. [30]
leverage the estimated uncertainty of individual classifiers
in their predictions and propose a voting-based scheme
to measure the novelty of a new input sample for action
recognition. Shi et al. [36] propose an open deep network
to detect new categories by applying a multi-class triplet
thresholding method, and then dynamically reconstructed
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the classification layer by continually adding predictors for
new categories. Furthermore, Busto et al. [2] propose an
open set domain adaptation method for action recognition
where the target domain contains instances of categories
that are not present in the source domain. These methods
focus on modeling the novelty with respect to individual
video clips within a video; which does not account for the
semantic relations across clips. Our method, via its graph
construction, explicitly learns how the spatial-temporal re-
lations within a clip are temporally linked across the video
clips, resulting in improved performance.

Although our approach focuses on open set recognition,
the relations captured by our approach can be used to detect
anomalies in a video. It should be noted that there are funda-
mental differences between anomaly detection and open set
recognition. Anomalies are instance outliers, usually still
within one of the known classes, that generally occur rarely,
whereas unknowns/novelties come from different classes
and can occur frequently during inference [8, 22]. The la-
bel spaces are also different - anomaly detectors produce
frame level output while activity recognition algorithms la-
bel the entire video as an activity. Despite the difference
in formulation, autoencoders [10, 13, 52] have been applied
frequently for detecting anomalies in video.

In addition, zero-shot learning focuses on the shared at-
tributes between the known classes in training and the un-
known classes during testing [8], while the focus of open set
recognition is on determining the novelty of samples. They
differ in the goal of the problem based on the information
available during training and the desired result during test-
ing. Therefore, a direct comparison would not be valid.
There is a key difference in how each problem defines an
unknown class - in zero-shot learning, unknown classes are
specified through some shared side-information (such as at-
tributes), while in open set recognition the unknown classes
are truly not specified in any way during training [8].

2.2. Graph Convolution Networks

Increasing research attention has been devoted to gener-
alizing neural networks [1,9,18,21,33,46] to work on arbi-
trarily structured graphs. The early prominent research [1]
developed a graph convolution based on spectral graph the-
ory. Kipf and Welling [18] developed a framework for
unsupervised learning on graph-structured data based on
the variational auto-encoder. In the work of Salehi and
Davulcu [33], the masked self-attentional layers are lever-
aged to attend over their neighbourhoods’ features for a
more discriminative representation. Gilmer et al. [9] pro-
pose message passing neural networks to exploit discrimi-
native features from graph molecules. Wang et al. [46] ap-
ply graph networks to point clouds by developing the Edge-
Conv layer. Recently, Li et al. [21] adapted residual/dense
connections, and dilated convolutions to train deeper graph

convolutional networks. Inspired by [33], we introduce a
self-attention encoding scheme in the graph autoencoder to
enhance the multi-features by weighting the nodes based-on
information from neighboring nodes, achieving better graph
reconstruction ability.

2.3. Action Recognition

In recent years, deep learning based methods [3, 12, 40]
have dominated the field of video action recognition com-
pared with traditional methods [20, 32, 43]. Among these
approaches, 3D CNNs [12,41] have been effective in encod-
ing the temporal information in the video. Tran et al. [40]
proposed temporal feature learning using deep 3D convo-
lutional networks (C3D). 3D ResNets [12] extended 2D
ResNets [14] blocks and obtained better performance than
the shallower C3D network. I3D [3] is a two-stream in-
flated 3D Convolutional Neural Network that uses RGB and
Optical Flow to considerably improve the state-of-the-art in
action recognition. Feichtenhofer et al. [6] proposed the
SlowFast network for video recognition, including a Slow
pathway to capture spatial semantics, and a Fast pathway to
capture motion at fine temporal resolution. Moreover, Fe-
ichtenhofer developed another X3D [5] backbone, which is
progressively expanded from a tiny spatial ResNet network.

Since 3D CNNs model the temporal extent of a video
using convolution operations, they have a fairly limited
temporal range due to memory constraints on a GPU.
Xi et al. [24] combined 3D CNN with LSTM for action
recognition. During graph construction, we use appearance
similarity and temporal threshold to create an edge among
the video clips. Wang et al. [45] used a non-local self-
attention layer to calculate temporal similarity for action
recognition. Our approach extracts temporal features from
each non-overlapping video clip associated with the video.
Unlike other approaches, we also then define contextual and
semantic relations across these clips.

3. Approach

As discussed above, our task is open set action recogni-
tion. Given a set of labeled videos with LK known classes
available for training, and a set of unlabeled videos that
contains a mixture of LK known classes along with LU
unknown classes that appear only during testing, our goal
is to classify the unlabeled video xj as either “known” if
xj ∈ LK or “unknown” if xj ∈ LU by exploiting under-
lying semantic relations obtained from the training videos.
To this end, our network represents intra-clip and inter-clip
semantic relations associated with a video, and reconstructs
the topographical information present in the graph. As il-
lustrated in Figure 3, our model consists of three compo-
nents: action feature extraction, video graph construction,
and multi-feature graph autoencoder.
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Figure 3: Architecture of the Humpty Dumpty approach, including the (a) action feature extraction, (b) video graph construc-
tion, and (c) multi-feature graph autoencoder, as well as the two losses (i) reconstruction and (ii) known-class classification.
The reconstruction error is used during evaluation to determine how the novelty of a given video. AVG and MAX stand for
average pooling and max pooling layers respectively.

3.1. Overview

As shown in Figure 3(a), we split the video into C clips
such that the clips have no temporal overlap and each clip
has n image frames. For each clip c ∈ C, we extract
the feature vectors associated with all the n frames in c.
To obtain the multi-feature representation, we employ two
kinds of pooling layers: maximal pooling and average pool-
ing. The maximal pooling layer encodes the salient features
present in the video clip, while the average pooling layer en-
codes the context information for the video clip. The multi-
features are used to build the video graph, where each node
represents the pooled feature obtained from a video clip and
each edge connects two nodes with sufficient temporal and
appearance similarity.

During the learning stage, a graph autoencoder is trained
to reconstruct the graph obtained in the previous step. As
with typical autoencoder methods, each training video pro-
vides its own groundtruth in the form of its graph. During
the encoding phase, we apply a graph convolutional net-
work (GCN) to map the video graph to a latent space. Fur-
thermore, we employ self attention [42] to capture the most
discriminative relations present in the graph. To learn to dis-
tinguish between known classes, we add a fully connected
layer upon the latent space to classify the known instances
in LK classes. In the decoding phase, the adjacency matrix
is reconstructed by applying GCN over the latent space fol-
lowed by a Sigmoid layer. During training, we minimize
the reconstruction error between the original graph and the
reconstructed graph. During inference (testing), the recon-
struction error is used to measure the novelty of a video.

3.2. Multi-Feature Graph Autoencoder

The graph autoencoder is the crucial component of our
approach. Inspired from the recent successes of relational

modeling using a graph autoencoder [18], we use it to re-
construct temporal clip similarities based on the underlying
relations.

Video Graph Construction. Given the multi-feature rep-
resentation of all the clips in a video, we construct an undi-
rected unweighted graph G = (V, E) to represent pair-wise
relations among the video clips. Using the 3D backbone
B, the pooled features obtained from a video clip are repre-
sented by the nodes and the semantic relations present be-
tween these features are represented by the edges, as shown
in Figure 3(b). Formally, the nodes are a set of pooled fea-
tures, i.e., V = {vi | ∀vi = δavg(B(ci)) ∪ δmax(B(ci)), ci ∈
C} where δmax, and δavg denotes the maximal and average
pooling operations respectively. C is defined as the number
of pooled node features within a video. The edge ei,j ∈ E
between nodes vi and vj is obtained using appearance sim-
ilarity fa(vi, vj) and temporal distance ft(vi, vj) based on

ei,j = ⊮(fa(vi, vj) ≤ θa, ft(vi, vj) ≤ θt), (1)

where ⊮(·) = 1 if the argument is true and 0 otherwise, and
θa and θt are the thresholds for the appearance and tempo-
ral distance respectively. Thus the video graph can model
the short-term temporal consistency and semantic similar-
ity. We use a binary adjacency matrix A to represent the
edges of the graph when graph convolution is applied on
the graph G. The value 1/0 at row i and column j of A indi-
cates that there is an/no edge between node vi and vj . The
ground-truth adjacency matrix A is calculated as

A(i, j) =

{
1 if ei,j = 1,

0 otherwise.
(2)

In our experiments, we use the euclidean distance between
the features associated with node vi and vj to calculate

3374



the appearance similarity fa(vi, vj). The temporal distance
ft(vi, vj) is the absolute difference (counted by the num-
ber of frames) between the center frames for clips ci and
cj . The node features f are aggregated in a C × D matrix
F , where D is the dimension of the clip feature. Since the
graph is undirected, the adjacency matrix is symmetric, i.e.,
A(i, j) = A(j, i).

Self-attention Graph Encoder. To learn the underlying
semantic relations captured by the graph G, we use a multi-
feature graph autoencoder. As shown in Figure 3(c), the
graph encoder learns a layer-wise transformation using the
graph convolution (GC) over the the adjacency matrix A
and the feature matrix F as follows.

Z l+1 = GC(Z l,A;W l), (3)

where Z l and Z l+1 are the input and output of the graph
convolution at layer l and Z0 = F ∈ RC×D, the original
graph constructed as above. W l is the filter parameters of
the corresponding graph convolutional layer in the network.
For clarity, the index of layer l is omitted in the following.

To enhance the discriminative representation of graph
data, we further introduce the graph attention layer [42] to
perform self-attention encoding. The input of the graph at-
tention layer is a set of node features Z = {z1, z2, · · · , zC};
the output is a new set of node features with different car-
dinality Z ′ = {z′1, z′2, · · · , z′C}. We use K attention heads
without sharing weights to obtain a diverse set of represen-
tations associated with the node features Z . The node fea-
tures zi are computed by aggregating the features associated
with node vi and its neighbouring nodes. The aggregated
feature are averaged over the attention heads to generate the
updated feature z′i of node vi, i.e.,

z′i = σs

( 1

K

K∑
k=1

∑
j∈Nvi

∪vi

αk
ijWkzj

)
, (4)

where σs denotes a non-linear softmax activation function.
Nvi denotes the neighbouring nodes of node vi, and Wk

is the corresponding input linear transformation’s weight
matrix. αk

ij denotes normalized attention coefficients com-
puted by the k-th attention head, which are computed as

αk
ij =

exp
(
σl(α

T (Wkzi ++ Wkzj))
)∑

j∈Nvi
∪i exp

(
σl(αT (Wkzi ++ Wkzj))

) , (5)

where ++ is the concatenation operation, and σl is the
leaky ReLU activation function. The weight vector αT =
γ(Wkzi,Wkzj) measures the importance of node vj’s fea-
tures to node vi, which is calculated by a single-layer feed-
forward neural network γ. As shown in Figure 3, we only
use the self-attention layer in the first graph convolutional
layer of the graph encoder.

Graph Decoder. After encoding the graph, we obtain the
hidden embedding Z for graph reconstruction. As shown in
Figure 3(c), we use another graph convolutional layer to re-
fine Z with higher cardinality. Followed by the dropout op-
eration, we use the graph decoder to learn the similarity of
each row in the hidden embedding to obtain the output adja-
cency matrix. Similar to the work of Kipf and Welling [18],
we use the inner product to calculate the cosine similarity
between each feature in the hidden embedding since it is
invariant to the magnitude of features. In other words, by
applying the inner product on the hidden embedding Z and
ZT , we can learn the similarity of each node in Z and gen-
erate a reconstructed adjacency matrix Â as

Â = Sigmoid(ZZT ). (6)

3.3. Training and Inference

The network is trained by minimizing the discrepancy
between the ground-truth adjacency matrix A and the re-
constructed adjacency matrix Â.

Loss Function. To train the proposed network, we use
two loss terms - (i) classification loss Lc and (ii) reconstruc-
tion loss Lr. The classification loss penalizes the network
for misclassifying known class samples. The reconstruc-
tion loss penalizes the network for poor reconstruction of
the original adjacency matrix. The overall loss function is
defined as

L = Lc + Lr

=
1

N

N∑
i=1

ℓc(P(xi), yxi ;Zxi) +
1

N

N∑
i=1

ℓr(Axi , Âxi),

(7)
where P(xi) and yxi

are the softmax probability and the
ground-truth class label of sample xi respectively. Zxi

is
the corresponding latent representation. The function ℓc is
cross-entropy for the classification loss and the function ℓr
is binary cross-entropy for the reconstruction loss.

Adjacency Matrix Re-construction. Since the length of
every video varies in the dataset, we use the normalized re-
construction score S(xi) of the graph G(xi) to measure the
novelty degree of the corresponding sample xi, i.e.,

S(xi) = β · ℓr(Â(xi),A(xi)), (8)

where Â and A are the estimated and ground-truth adja-
cency matrix respectively. ℓr is the binary cross-entropy
function. To adjust to different sizes of adjacency, we use
β =

N2
V−NE
NE

as the normalization ratio. NV and NE denote
the number of nodes and edges in graph G respectively.
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Figure 4: Normalized Reconstruction Score (NRS) S(xi) histograms for the known and unknown classes on the testing set.
The x-axis indicates the normalized reconstruction score while the y-axis indicates the counts of instances. The red line
denotes the max F1 score threshold for the dataset.

Inference. To determine the open-space risk associated
with a video, we compute the multi-feature representation
of every video in the test set. These representations are
passed through the graph autoencoder to determine the re-
construction error associated with the video. Given the
ground-truth adjacency matrix computed by Equation (2),
we can estimate the reconstruction error to measure the de-
gree of novelty by empirically setting the threshold. As
shown in Figure 4, the video is regarded as “unknown” if
the reconstruction error is above the threshold.

4. Experiments

The proposed method is implemented using Pytorch [25]
and all experiments are conducted on a workstation with an
NVIDIA Titan X GPU card.

As discussed in the related work, few novelty detection
methods have been used for video action recognition1. Ac-
cording to [30], we compare our model to several base-
line novelty detection methods. The One-Class SVM [35]
with an RBF kernel can model the videos of one (or all)
known class(es), where the upper bound on the fraction
of training errors n is set to 0.1. The Gaussian Mixture
Model (GMM) [28] generatively represents the videos in
sub-spaces with 8 components, indicating novelty for any
sample with sufficiently low probability. Softmax probabil-
ities [15] of the I3D network [3] use the score output for a
rejection thresholding to determine the novelty degree. Un-
certainty [30] is calculated by a Bayesian neural network
(BNN) posterior distribution with different network param-
eters. Informed Democracy [30] exploits the uncertainty of
the output neurons in a voting scheme for novelty detection.

1Since there are no available source codes for the open set action recog-
nition methods [2, 36], we cannot compare them in our experiment.

Datasets. We use HMDB-51 [19] and UCF-101 [39] to
evaluate our method. HMDB-51 is a video dataset with
6, 766 manually annotated videos and 51 action classes.
Each class includes at least 101 clips, each with duration
of at least 1 second. It was collected from digitized movies
and YouTube. UCF-101 is another large video dataset with
13, 320 clips and 101 action classes. The clip length varies
from 1.06 second to 71.04 second. The videos are col-
lected from user-uploaded videos over the Internet. Fol-
lowing the work in [30], each dataset is split evenly into
known/unknown classes. For a fair comparison, we use
the same dataset splits as Roitberg et al. [30] and formulate
open set action recognition as a binary classification prob-
lem. That is, we split HMDB-51 in 26/25 known/unknown
classes and UCF-101 in 51/50 known/unknown classes.
Without determining the specific threshold, we use area un-
der curve (AUC) values of the receiver operating character-
istic (ROC), precision-recall (PR) curves and F1 scores to
evaluate compared methods.

Implementation Details. The evaluation datasets contain
many short clips with durations of several seconds. The
network is optimized using Adam with a learning rate of
1e − 5 for 300 epochs. The similarity thresholds in Equa-
tion (2) are determined empirically and set to θa = 30 and
θt = 2n = 32. The number of heads for self-attention en-
coding is set to K = 4.

4.1. Result Analysis

As presented in Table 1, it can be seen that our method
outperforms existing approaches considerably. Our method
achieves an ROC-AUC gain of 3.17% and 1.90% on the
HMDB-51 and UCF-101 datasets, respectively. Mean-
while, the corresponding standard deviation is smaller than
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Values reported as µ± σ HMDB-51 [19] UCF-101 [39]
ROC-AUC mAP ROC-AUC mAP

One-class SVM [35] 54.09(±3.0) 77.86(±4.0) 53.55(±2.0) 78.57(±2.4)
Gaussian Mixture Model [28] 56.83(±4.2) 78.40(±3.6) 59.21(±4.2) 79.50(±2.2)

Softmax Confidence [15] 67.58(±3.3) 84.21(±3.0) 84.28(±1.9) 93.92(±0.7)
Uncertainty [30] 71.78(±1.8) 86.81(±2.5) 91.43(±2.3) 96.72(±1.0)

Informed Democracy [30] 75.33(±2.7) 88.66(±2.3) 92.94(±1.7) 97.52(±0.6)

Humpty Dumpty (ours) 78.50(±0.8) 91.39(±0.9) 94.84(±1.2) 98.38(±0.3)

Table 1: Open set recognition results (mean and standard deviation over ten dataset splits).

that in existing methods. This can be attributed to two rea-
sons. First, we focus on modeling the temporal semantic
relations among video clips instead of the appearance infor-
mation of individual video clips. Second, the self-attention
encoding scheme can capture the common representation
among multi-features far more robustly.

In Figure 4, we show the reconstruction score distribu-
tions for known and unknown classes on the testing sets
of the above two datasets. The mean reconstruction scores
of unknown classes are larger than that of known classes,
5.26 vs. 2.57 (Figure 4a). However, there exists some over-
lap between known and unknown distributions, resulting in
weaker performance on HMDB-51. In contrast, the ma-
jority of reconstruction scores of known testing videos in
UCF-101 is less than 1.00 (Figure 4b). This could be be-
cause we have fewer training samples on HMDB-51 than
UCF-101. Figure 5 shows some qualitative results obtained
at different values of reconstruction error, where we chose
the threshold exclusively for the qualitative visualization.

4.2. Ablation Studies

We further study the influence of three important com-
ponents of our method: (a) multi-feature representation, (b)
self-attention encoding, and (c) graph autoencoder. The ab-
lation studies are conducted on a single split of HMDB-51.

Effectiveness of multiple features. To investigate the im-
portance of the multiple feature representation, we test the
system using only the average or the maximal pooling layer
of the backbone (denoted as “AVG” and “MAX” in Fig-
ure 3(a)) to calculate the features of clips. From Table 2, the
“MAX” variant performs similarly compared to the “AVG”
variant. Moreover, using both features performs best by a
comfortable margin in terms of all three metrics, a 2.1 gain
in ROC-AUC, 1.1 gain in mAP and 0.67 gain in max F1.
We conclude that the multiple features are partly comple-
mentary in capturing semantic information in videos.

Effectiveness of self-attention encoding. To verify the
effectiveness of self-attention encoding, we enumerate the

Pooling Features F1 Max ROC-AUC mAP

MAX 87.81 76.89 91.07
AVG 87.39 76.61 91.06

Multi-Feature 88.06 79.01 92.16

Table 2: Open set recognition results in terms of multiple
features.

#K F1 Max ROC-AUC mAP

1 87.88 76.38 91.04
2 88.07 77.76 91.38
4 88.06 79.01 92.16
6 88.14 78.93 92.04

Table 3: Open set recognition results in terms of different
heads of self-attention encoding.

number of heads of self-attention encoding K = {1, 2, 4, 6}
in Equation (4). K = 1 implies that our method uses the
convolutional graph layer instead of self-attention encoding
to capture the relations among video clips. From the re-
sults shown in Table 3, the ROC-AUC and AP scores in-
crease with K before the optimal performance (K = 4)
is achieved. This result indicates that self-attention encod-
ing can model the temporal semantic relations among video
clips effectively. However, the effect is not large and it is
difficult for more heads of self-attention encoding to im-
prove the performance. For K = 6, we achieve slightly in-
ferior ROC-AUC and mAP scores even though our F1 score
improves. Due to better performance on both ROC-AUC
and mAP scores, we set K = 4 in our primary results.

Effectiveness of graph autoencoder. To investigate the
effectiveness of the graph autoencoder, we compare our
method to two well-known open set algorithms, the Ex-
treme Value Machine (EVM) [31] and Auto-encoder [52],
which are trained on the same multiple features as that in
Humpty Dumpty. As shown in Table 4, we find a sharp de-
cline in two metrics using EVM, i.e., 69.24 vs. 79.01 in
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Figure 5: Qualitative results on the HMDB-51 and UCF-101 datasets, where the videos are randomly selected. The color of
the box denotes if our method correctly (green box) or incorrectly (red box) identified whether the clip is from a known or
unknown class.

Open Set Algorithms F1 Max ROC-AUC mAP

EVM [31] 87.49 69.24 86.51
Auto-encoder [52] 86.93 44.39 73.27

Humpty Dumpty (ours) 88.06 79.01 92.16

Table 4: Open set recognition results of EVM, Autoencoder,
and our method.

ROC-AUC score, 86.51 vs. 92.16 in mAP score. This indi-
cates that the hidden embedding in our graph autoencoder
along with reconstruction error is more effective than the
Weibull distribution used by EVM [31].

Additionally, although our graph autoencoder and the
standard autoencoder share similar concepts such as an en-
coder, decoder, and reconstruction, the standard autoen-
coder learns an approximation to the identity function such
that the output features are similar to the original features,
but it fails to capture the underlying relations among differ-
ent features. In contrast, our graph autoencoder exploits
contextual and semantic relations among video clips and

then reconstructs the adjacency matrix of the video graph,
resulting in much better performance.

5. Conclusion

In this work, we propose a new multi-feature graph
autoencoder, Humpty Dumpty, to address open set ac-
tion recognition. These results show that multiple features
help the autoencoder learn a more robust reconstruction for
known classes by exploiting salient and context informa-
tion from the video. A self-attention step helps focus the
network on the most important nodes, though too many
self-attention heads have diminishing returns. Finally, we
show that Humpty Dumpty can achieve state-of-the-art per-
formance for open set action recognition on two datasets.
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