
Lossy Image Compression with Quantized Hierarchical VAEs

Zhihao Duan* Ming Lu† Zhan Ma† Fengqing Zhu*

* Purdue University, West Lafayette, Indiana, U.S.
† Nanjing University, Nanjing, Jiangsu, China

duan90@purdue.edu, luming@smail.nju.edu.cn, mazhan@nju.edu.cn, zhu0@purdue.edu *

Abstract

Recent work has shown a strong theoretical connection
between variational autoencoders (VAEs) and the rate dis-
tortion theory. Motivated by this, we consider the problem
of lossy image compression from the perspective of genera-
tive modeling. Starting from ResNet VAEs, which are orig-
inally designed for data (image) distribution modeling, we
redesign their latent variable model using a quantization-
aware posterior and prior, enabling easy quantization and
entropy coding for image compression. Along with im-
proved neural network blocks, we present a powerful and
efficient class of lossy image coders, outperforming previ-
ous methods on natural image (lossy) compression. Our
model compresses images in a coarse-to-fine fashion and
supports parallel encoding and decoding, leading to fast
execution on GPUs. Code is made available online.

1. Introduction

Data (in our context, image) compression and generative

modeling are two fundamentally related tasks. Intuitively,

the essence of compression is to find all “patterns” in the

data and assign fewer bits to more frequent patterns. To

know exactly how frequent each pattern occurs, one would

need a good probabilistic model of the data distribution,

which coincides with the objective of (likelihood-based)

generative modeling. This connection between compres-

sion and generative modeling has been well established,

both theoretically and experimentally, for the lossless set-

ting. In fact, many of the modern image generative models

are also the best-performing lossless image coders [43, 56].

A similar connection can be drawn for the lossy com-

pression setting. In particular, a popular class of image gen-

erative models, variational autoencoders (VAEs) [19], has

been proved to have a rate distortion (R-D) theory interpre-

tation [2, 54]. With a distortion metric specified, VAEs learn

to “compress” data by minimizing a tight upper bound on

*Dr. Z. Ma is partially funded by Microsoft Research Asia.

CelebA
(64x64)

COCO patches
(256x256)

ImageNet
(64x64)

0.010 bpp 0.082 bpp 0.133 bpp 0.303 bpp 0.433 bpp 0.570 bpp 2.140 bpp

0.012 bpp 0.037 bpp 0.065 bpp 0.108 bpp 0.168 bpp 0.233 bpp 2.145 bpp

0.007 bpp 0.023 bpp 0.034 bpp 0.112 bpp 0.162 bpp 0.219 bpp 2.430 bpp

Figure 1: Our QRes-VAE (for quantized ResNet VAE) im-

age coder learns a hierarchy of features and encode/decode

images in a coarse-to-fine fashion. Better viewed by zoom-

ing in. Models are trained separately on each dataset.

their information R-D function [54], showing great poten-

tial for application to lossy image compression. However,

existing best-performing VAEs [45, 11] employ continuous

latent variables, which cannot be straightforwardly coded

into bits, and thus cannot be used for practical image com-

pression. Although several methods have been developed

to turn VAEs into practical coders, e.g., by communicat-

ing samples [14] and post-training quantization [53], neither

achieved satisfactory R-D performance compared to exist-

ing lossy image coders.

Despite the lack of a practical coding algorithm, the po-

tential of VAEs in lossy compression has also been reflected

in the image coding community. Although independently

developed from the perspective of transform coding, many

state-of-the-art lossy image coders resemble a simple VAE

in which the latent variables are first-order Markov [6].

Given that such simple VAEs are shown to be suboptimal

in generative image modeling [39], we hypothesize that a

more powerful VAE architecture, e.g., hierarchical VAEs,

would also achieve a better lossy compression performance.

Motivated by this, we adopt hierarchical VAE architec-

tures that are originally designed for generative image mod-

eling for lossy compression. We redesign the latent vari-

able model to allow easy quantization and practical entropy

coding, in a way similar to existing learned lossy image

coders [6, 30]. Specifically, we start from a popular fam-

198

ily of hierarchical VAEs, ResNet VAEs [20], and introduce

modifications including 1) a uniform posterior, 2) a Gaus-

sian convolved with uniform prior, and 3) revised network

architectures. Our new model, QRes-VAE (for quantized

ResNet VAE), achieves better R-D performance on natu-

ral image compression than existing state-of-the-art coders.

Furthermore, our model compresses images in a coarse-to-

fine manner (Fig. 1) thanks to its hierarchical architecture,

while avoids the slow sequential encoding/decoding as ex-

perienced by (spatially) autoregressive image coders [30].

Our contributions are summarized as follows. We pro-

pose to use a quantization-aware latent variable model for

modern hierarchical VAEs, making practical image coding

feasible. We present a powerful and efficient lossy image

coder that outperforms previous hand crafted and learned

methods. Our method narrows the gap between image com-

pression and generation, at the same time providing insights

into designing better image compression systems.

2. Background and Related Work

In this section, we briefly summarize the preliminaries,

introduce our notation, and review previous works.

2.1. Variational Autoencoder (VAE)

Let X be the random variable representing data (in our

case, natural images), with an unknown data distribution

pdata(·). VAEs [19] model the data distribution by assum-

ing a latent variable model as shown in Fig. 2a, where Z is

the assumed latent variable. In VAEs, there is a prior pZ(·),
a conditional data likelihood (or decoder) pX|Z(·) for sam-

pling, and an approximate posterior (or encoder) qZ|X(·)
for variational inference. Note that we omit the model pa-

rameters for simplified notation.

The training objective of VAE is to minimize a varia-

tional upper bound on the negative log-likelihood:

L = DKL(qZ|x ‖ pZ) + EqZ|x

[
log

1

pX|Z(x|Z)

]
≥ − log pX(x),

(1)

where x is a an image, qZ|x is a shorthand notation for

qZ|X(· |x), and the minimization of L is w.r.t. the model

parameters of qZ|X(·), pZ(·), and pX|Z(·).
Hierarchical VAEs: To improve the flexibility of VAEs,

the latent variable is often divided into disjoint groups,

Z � {Z1, Z2, ..., ZN} where N is the number of groups, to

form a hierarchical VAE. Many best-performing VAEs [45,

11, 37] follow a ResNet VAE [20] architecture, whose prob-

abilistic model is shown in Fig. 2b. During sampling, each

latent variable Zi is conditionally dependent on all previ-

ous variables Z<i, where i ∈ {1, 2, ..., N} is the index, and

during inference, Zi is also conditionally dependent on X

X

Z ∼ pZ(·)

qZ|X(·) pX|Z(·)

Inference (encoding)

Sampling (decoding)

(a) VAE

X

Z2

Z1

(b) 2-layer ResNet VAE [20]

Figure 2: Probabilistic model of VAEs, where X repre-

sents data, and Z denotes latent variable(s). In this work,

we use a 12-layer ResNet VAE for image compression.

in addition to Z<i. For notational simplicity, we define

qi(·) � qZi|X,Z<i
(·)

pi(·) � pZi|Z<i
(·) (2)

to denote the approximate posterior and prior distributions

for Zi, respectively. We also define Z<1 to be an empty set,

so we have p1(·) � pZ1
(·) and q1(·) � qZ1|X(·).

Discrete VAEs: A number of works have been proposed

to develop VAEs with a discrete latent space. Among them,

vector quantized VAEs (VQ-VAE) [47, 34] are able to gen-

erate high-fidelity images, but they rely on a separately

learned prior and cannot be trained end-to-end. Several

works extend VQ-VAEs to form a hierarchy [51, 50], but

they suffer from the same problem as VQ-VAE. Another

line of work, Discrete VAEs (DVAE) [35, 46, 44], assumes

binary latent variables and use Boltzmann machines as the

prior. However, none of them are able to scale to high reso-

lution images. In this work, we tackle these issues through

test-time quantization.

Data compression with VAEs: VAEs have a very strong

theoretical connection to data compression. When X is

discrete, VAEs can be directly used for lossless compres-

sion [42, 21] using the bits-back coding algorithm [18].

When X is continuously valued, the VAE objective (Eq. 1)

has a rate-distortion (R-D) theory interpretation [2] and has

been used to estimate the information R-D function for nat-

ural images [54]. However, there lacks an entropy coding

algorithm to turn VAEs into practical lossy coders. Various

works [1, 14, 40, 15] have been conducted towards this goal,

but they either require an intractable execution time or do

not achieve competitive performance compared to existing

lossy image coders. In this work, we provide another path-

way for turning VAEs into practical coders, i.e., by using a

quantization-aware probabilistic model for latent variables.

199

2.2. Lossy Image Compression

Most existing lossy image coders follows the transform
coding [16] paradigm. Conventional, handcrafted image

codecs such as JPEG [48], JPEG 2000 [38], BPG [23], VVC

intra [32] use orthogonal linear transformations such as dis-

crete cosine transform (DCT) and discrete wavelet trans-

form (DWT) to decorrelate the image pixels before quan-

tization and coding. Learning-based coders achieve this

in a non-linear way [3] by implementing the transforma-

tions and an entropy model using neural networks. To im-

prove compression efficiency, most previous works either

explore efficient neural network blocks, such as residual

networks [10], self-attention [9], and transformers [28, 57],

or develop more expressive entropy models, such as hierar-

chical [6] and autoregressive models [30, 31, 17].

Interestingly, the learned transform coding paradigm can

be equivalently viewed as a simple VAE [41, 6], where the

encoder (with additive noise), entropy model, and decoder

in transform coding correspond to the posterior, prior, and

conditional data likelihood in VAEs, respectively. Along

this direction, we propose to use a more powerful hierarchi-

cal VAE architecture for lossy image compression.

3. Quantization-Aware Hierarchical VAE
In this section, we first present our overall network ar-

chitecture in Sec. 3.1. Next, we describe our probabilistic

model and loss function in Sec. 3.2. We detail how to imple-

ment practical image coding in Sec. 3.3. Finally, we provide

discussion in Sec. 3.4, highlighting the relationship of our

approach to previous methods.

3.1. Network Architecture

Our overall architecture is similar to the framework of

ResNet VAEs [20, 45, 11], on which we made modifica-

tions to adapt them for practical compression. We briefly

describe our network architecture in this section and refer

readers to the Appendix 6.1 and our code for full imple-

mentation details.

Overall architecture: Fig. 3a overviews the general

framework of ResNet VAE, which consists of a bottom-

up path and a top-down path. Given an input image x,

the bottom-up path produces a set of deterministic features,

which are subsequently sent to the top-down path for (ap-

proximate) inference. In the top-down path, the model starts

with a learnable constant feature and then pass it into a se-

quence of latent blocks, where each latent block adds “infor-

mation”, carried by the latent variables zi, into the feature.

At the end of the top-down path, a reconstruction x̂ is pre-

dicted by an upsampling layer. Our latent blocks behaves

differently for training, compression, and decompression,

which we describe in details in Sec. 3.2 and Sec. 3.3.

Network components: We use patch embedding [12]

(i.e., convolutional layer with the stride equal to kernel size)

for downsampling operations. We use sub-pixel convolu-

tion [36] (i.e., 1x1 convolution followed by pixel shuffling)

for upsampling, which can be viewed as an “inverse” of

the patch embedding layer. Our choices for the downsam-

pling/upsampling layers are motivated by their success in

computer vision tasks [12, 36] as well as their efficiency

compared to overlapped convolutions. The residual blocks

in our network can be chosen arbitrarily in a plug-and-play

fashion. We use the ConvNeXt [27] block as our choice,

since we empirically found it achieves better performance

than alternatives (see ablation study in Sec. 4.4).

3.2. Probabilistic Model and Training Objective

As we mentioned in Sec. 2, VAEs with continuous latent

variables cannot be straightforwardly used for lossy com-

pression (due to the lack of an entropy coding algorithm).

We also note that a combination of a) uniform quantization

at test time and b) additive uniform noise at training time

allows easy entropy coding, as well as having an elegant

VAE interpretation [5, 6]. Inspired by this, we redesign the

probabilistic model in ResNet VAEs, using uniform poste-

riors to enable quantization-aware training. For the prior,

we use a Gaussian distribution convolved with uniform dis-

tribution, which has enough flexibility to match the poste-

rior [30]. Note that under this configuration, the probabilis-

tic model in each latent block closely resembles the mean

& scale hyperprior entropy model [30].

We now give formal description for our probabilistic

model. In this section, we assume every variable is a scalar

in order to simplify the presentation. In implementation, we

apply all the operations element-wise.

Posteriors: The (approximate) posterior for the i-th la-

tent variable, Zi, is defined to be a uniform distribution:

qi(· |z<i, x) � U(μi − 1

2
, μi +

1

2
), (3)

where μi is the output of the posterior branch in the i-th
latent block (see Fig. 3b). From Fig. 3a and Fig. 3b, we can

see that μi (and thus zi) depends on the image x as well as

previous latent variables z<i.

Priors: The prior distribution for Zi is defined as a

Gaussian convolved with a uniform distribution [6]:

pi(· |z<i) � N (μ̂i, σ̂
2
i) ∗ U(−1

2
,
1

2
)

⇔ pi(zi|z<i) =

∫ zi+
1
2

zi− 1
2

N (t; μ̂i, σ̂
2
i) dt

(4)

where N (t; μ̂i, σ̂
2
i) denotes the Gaussian probability den-

sity function evaluated at t. The mean μ̂i and scale σ̂i are

predicted by the prior branch (see Fig. 3b) in the i-th la-

tent block. Note that the prior mean μ̂i and scale σ̂i are

200

Res. blocks

-th latent
block

Constant

Feature

Feature

Feature

2nd latent
block

1st latent
block

Res. blocks

Bo
tto

m
-u

p Top-dow
n

(a) General framework

Feature

Res. block

Feature

Convs

C

Sample

Posterior

Res. block

Convs

Prior

KL

Convs

-th latent block

(b) Latent block (training)

Feature

Res. block

Feature

Convs

C

Residual
Rounding

Res. block

Convs

PMF
Discretized

Entropy coding

Bits

Convs

-th latent block

(c) Latent block (compress)

Feature

Res. block

Feature

Res. block

Convs

PMF
Discretized

Convs

Entropy
decodingBits

-th latent block

(d) Latent block (decompress)

Figure 3: Overview of our quantized ResNet VAE (QRes-VAE). In (a), we show the general framework of ResNet

VAEs [20]. In our implementation, we use a 12-layer (i.e., 12 latent blocks) architecture for QRes-VAE. The gray blocks

represent neural networks, ↑ and ↓ denote upsampling and downsampling operations, respectively, c© denotes feature con-

catenation, and +© denotes addition. The latent blocks behave differently for training, compression, and decompression,

which are illustrated in (b), (c), and (d), respectively. See Sec. 3 for detailed description.

dependent only on z<i, but not on image x. Sampling from

pi(· |z<i) can be done by:

zi ← μ̂i + t · (σ̂iw + u), (5)

where w ∼ N (0, 1) and u ∼ U(− 1
2 ,

1
2) are random noise,

and t ∈ [0, 1] is a temperature parameter to control the noise

level. When t = 1, zi is an unbiased sample from the prior

pi(· |z<i), and when t = 0, zi is simply the prior mean.

Data likelihood: For lossy compression, the form of the

likelihood distribution pX|Z(·) depends on which distortion

metric d(·) is used. In general, we define

pX|Z(x|z) ∝ e−λ·d(x̂,x), (6)

where λ is a scalar hyperparameter that we can manually

set, and x̂ is the final output of the top-down path network

(see Fig. 3a). Notice that x̂ depends on all latent variables

z � {z1, ..., zN}. In image compression, d(·) is often cho-

sen to be the mean squared error (MSE), in which case the

data likelihood forms a (conditional) Gaussian distribution.

Training objective: Given an image x, our training ob-

jective is then to minimize the loss function of VAE (Eq. 1),

which can be written as:

L = DKL(qZ|x ‖ pZ) + EqZ|x

[
log

1

pX|Z(x|Z)

]
,

= EqZ|x

[
N∑
i=1

log
1

pi(zi|z<i)
+ λ · d(x, x̂)

]
+ constant,

(7)

where the expectation w.r.t. Z ∼ qZ|x is estimated by draw-

ing a sample at each training step. The detailed derivation

of Eq. 7 is given in the Appendix 6.2. We can see that the

first term in Eq. 7 corresponds to a continuous relaxation of

the test-time bit rate (up to a constant factor log2 e), and the

second term corresponds to the distortion of reconstruction,

where we can tune λ to balance the trade-off between rate

and distortion. Note that the model parameters should be

optimized independently for each λ. That is, we use sepa-

rately trained models for different bit rates.

3.3. Compression

In actual compression and decompression, the overall

framework (i.e., Fig. 3a) is unchanged, except the latent

variables are quantized for entropy coding. Similar to the

Hyperprior model [6], we quantize μi instead of sampling

from the posterior, and we discretize the prior to form a dis-

cretized Gaussian probability mass function.

The compression process is detailed in Fig. 3c, in which

the residual rounding operation is defined as follows:

z ← μ̂i +
μi − μ̂i�, (8)

where
·� is the nearest integer rounding function. That is,

we quantize μi to its nearest neighbour in the set {μ̂i + n |
n ∈ Z}, denoted by zi, which we can encode into bits using

the probability mass function (PMF) Pi(·):
Pi(n) � pi(μ̂i + n|Z<i), n ∈ Z. (9)

201

It can be shown that Pi(·) is a valid PMF, or specifically,

a discretized Gaussian [6]. Note that each of our latent

block produces a separate bitstream, so a compressed im-

age consists of N bitstreams, corresponding to the N latent

variables z1, z2, ..., zN . In the implementation, we use the

range-based Asymmetric Numeral Systems (rANS) [13] for

entropy coding.

Decompression (Fig. 3d) is done in a similar way. Start-

ing from the constant feature, we iteratively compute Pi(·)
for i = 1, 2, ..., N . At each step, we decode zi from the i-th
bitstream using rANS and transform zi using convolution

layers before adding it to the feature. Once this is done for

all i = 1, 2, ..., N , we can obtain the reconstruction x̂ using

the final upsampling layer in the top-down decoder.

3.4. Relationship to Previous Methods

Our hierarchical architecture (same as ResNet VAEs)

may seem similar to the Hyperprior [6] model at the first

glance, but they are in fact fundamentally different in many

aspects. The inference (encoding) order in the Hyperprior

framework is the first order Markov, while our inference

is bidirectional [20]. Similarly, the sampling order of latent

variables in the Hyperprior model is also first order Markov,

while in our model, X̂ depends on all latent variables Z.

A nice property of the ResNet VAE architecture is that, if

sufficiently deep, it generalizes autoregressive models [11],

which are widely adopted in lossy image coders and gives

strong compression performance. Note that this conclusion

is not limited to spatial autoregressive models. Other types

of autoregressive models, such as channel-wise [31] and

checkerboard [17] models, can also be viewed as special

cases of the ResNet VAE framework.

From the perspective of (non-linear) transform cod-

ing [3], our model transforms image x into z � {z1, ..., zN}
and losslessly code z instead, so z can be viewed as the

transform coefficients (after quantization). Note that z con-

tains a feature hierarchy at different resolutions, in contrast

to many transform coding frameworks where only a sin-

gle feature is used. Since zi is only a quantized version

of the posterior mean μi, we can also view {μ1, ..., μN} as

the transform coefficients (before quantization). Unlike ex-

isting methods, there is no separate entropy model in our

method, and instead, our top-down decoder itself acts as the

entropy model for all the transform coefficients z.

4. Experiments
4.1. Implementation

We build two models based on our QRes-VAE architec-

ture as described in Sec. 3.1, one with 34M parameters and

the other with 17M parameters. We use the larger model,

QRes-VAE (34M), for natural image compression, and we

use the smaller one QRes-VAE (17M) for additional ex-

periments and ablation analysis. Data augmentation, expo-

nential moving averaging, and gradient clipping are applied

during training. We list the full details of architecture con-

figurations in the Appendix 6.1 and training hyperparame-

ters in the Appendix 6.3.

4.2. Datasets and Metrics

COCO: We use the COCO [24] train2017 split, which

contains 118,287 images with around 640× 420 pixels, for

training our QRes-VAE (34M). We randomly crop the im-

ages to 256× 256 patches during training.

Kodak: The Kodak [22] image set is a commonly used

test set for evaluating image compression performance. It

contains 24 natural images with 768× 512 pixels.

CLIC: We also use the CLIC1 2022 test set for evalu-

ation. It contains 30 high resolution natural images with

around 2048× 1365 pixels.

CelebA (64x64): We train and test our smaller model,

QRes-VAE (17M), on the CelebA [26] dataset for ablation

study and additional experiments. CelebA is a human face

dataset that contains more than 200k images (182,637 for

train/val and 19,962 for test), all of which we have resized

and center-cropped to have 64× 64 pixels.

Metrics: As a standard practice, we use MSE as the dis-

tortion metric d(·) during training, and we report the peak

signal-to-noise ratio (PSNR) during evaluation:

PSNR � −10 · log10 MSE. (10)

We measure data rate by bits per pixel (bpp). To compute

the overall metrics (PSNR and bpp) for the entire dataset,

we first compute the metric for each image and then aver-

age over all images. We also use the BD-rate metric [8] to

compute the average bit rate saving over all PSNRs.

4.3. Main Results for Lossy Image Compression

We compare our method to open-source learned image

coders from public implementations. We use VVC in-

tra [32] (version 12.1), the current best hand crafted codec

and a common lossy image coding baseline, as the anchor

for computing BD-rate for all methods. Thus, our reported

BD-rates represent average bit rate savings over VVC intra.

Evaluation results are shown in Fig. 4. We observe that

at lower bit rates, our method is on par with previous best

methods, while at higher bit rates, our approach outper-

forms them by a clear margin. We attribute this bias to-

wards high bit rates to the architecture design of our model.

We reconstruct the image from a feature map that is 4×
down-sampled w.r.t. the original image, which can preserve

more high-frequency information of the image. In con-

trast, most previous methods aggressively predict the image

1http://compression.cc/

202

Figure 4: Lossy compression performance on Kodak (left) and CLIC 2022 test set (right). Our approach is on par with

previous methods at low bit rates but outperforms them by a clear margin at higher bit rates. BD-rates are shown in Table 1.

Estimated Latency (CPU)* Latency (GPU)* BD-rate ↓
Impl.† Parameters end-to-end FLOPs Encode Decode Encode Decode Kodak CLIC

QRes-VAE (34M) (ours) - 34.0M 23.3B 1.124s 0.558s 0.109s 0.076s -4.076% -4.067%

Wang 2022 Data-Depend. + [49] Off. 53.0M 523B - - - - -0.821% -

Xie 2021 Invertible Enc. [52] Off. 50.0M 68.0B 2.780s 6.343s 2.607s 5.531s -0.475% -2.433%

Qian 2021 Global Ref. [33] Off. 35.8M 32.1B 341s 352s 35.3s 47.6s 6.034% 8.133%

Minnen 2020 Channel-wise [31] TFC 116M 38.1B 0.524s 0.665s 0.136s 0.124s 0.580% 6.852%

Cheng 2020 LIC [10] CAI 26.6M 60.7B 2.231s 5.944s 2.626s 5.564s 2.919% 3.300%

Minnen 2018 Joint AR & H [30] CAI 25.5M 29.5B 5.327s 9.337s 2.640s 5.566s 10.61% 13.64%

Minnen 2018 M & S Hyper. [6, 30] CAI 17.6M 28.8B 0.241s 0.442s 0.043s 0.033s 21.03% 27.06%

Balle 2017 Factorized [5] CAI 7.03M 26.7B 0.204s 0.411s 0.040s 0.032s 67.81% 89.77%

*Latency is the time to code/decode the first Kodak image (W, H=768,512), including entropy coding. CPU is Intel 10700K, and GPU is Nvidia 3090.
†We use implementations from authors’ official releases (Off.), TensorFlow Compression (TFC) [4], and CompressAI (CAI) [7].

Table 1: Computational complexity and BD-rate w.r.t. VVC intra [32] (VTM version 12.1). FLOPs are for 256 × 256
input resolution. Note some values cannot be obtained using author released implementations. Our method outperforms

previous methods in terms of BD-rate and at the same time maintains a relatively low computational complexity.

from a 16× down-sampled feature map, which may be too

“coarse” to preserve fine-grained pixel information.

In Table 1, we compare the BD-rate and computational

complexity of our method against previous ones. For all

methods, we use the highest bit rate model for measuring

complexity, which represents the worst case scenario. Be-

cause parameter counts and FLOPs are poorly correlated

with the actual encoding and decoding latency, we mainly

focus on the CPU and GPU execution time for comparison.

Our method outperforms all previous ones in terms of

BD-rate on both datasets. Furthermore, our model runs

orders of magnitude faster than the spatial autoregressive

models [30, 10, 33, 33], both on CPU and GPU. Since

our approach is fully convolutional and can be easily paral-

lelized, our encoding/decoding latency can be drastically re-

duced by 10× when a powerful GPU is available, requiring

less than 0.1 seconds to decode a 768×512 image. Note that

there are indeed a few baseline methods, such as the Hyper-

prior [6] and Factorized model [5], execute faster than our

method. However, this speed difference does not exceed an

order of magnitude (e.g., our 0.558s vs. 0.411s [5] for CPU

decoding) and is acceptable given that our method achieves

significant better compression efficiency (e.g., our -4.076%

vs. 67.81% [5] for the Kodak dataset in terms of BD-rate).

Another noticeable difference is that for most previous

methods encoding is faster than decoding, while for our

QRes-VAE (34M) this trend is reversed. Since in most im-

age compression applications, encoding is done only once

but decoding is performed many times, our ResNet VAE-

based framework shows great potential for real-world de-

ployment. For example, our model takes 1.124s/0.558s

for encoding/decoding on CPU, in contrast to, e.g., the

Channel-wise model [31], which takes 0.524s/0.665s. This

paradigm of higher encoding cost but cheaper decoding of

203

0.008 bpp 0.060 bpp 0.098 bpp 0.250 bpp 0.335 bpp 0.431 bpp 0.542 bpp 0.822 bpp 1.017 bpp 1.148 bpp 1.326 bpp 1.429 bpp

0.007 bpp 0.075 bpp 0.121 bpp 0.263 bpp 0.360 bpp 0.477 bpp 0.631 bpp 1.049 bpp 1.335 bpp 1.508 bpp 1.757 bpp 1.967 bpp

Original

Original

0.0 bpp

0.0 bpp

(a) QRes-VAE (17M), trained on CelebA, λ = 1024. Image resolution is 64× 64.

0.007 bpp 0.022 bpp 0.034 bpp 0.106 bpp 0.168 bpp 0.232 bpp 0.592 bpp 0.906 bpp 1.201 bpp 2.125 bpp 2.957 bpp 3.290 bpp Original0.0 bpp

0.007 bpp 0.022 bpp 0.032 bpp 0.117 bpp 0.174 bpp 0.235 bpp 0.558 bpp 0.840 bpp 1.052 bpp 1.987 bpp 2.682 bpp 2.951 bpp Original0.0 bpp

(b) QRes-VAE (34M), trained on COCO patches, λ = 1024. Image resolution is 256× 256.

Figure 5: Examples of progressive decoding. We decode only the low-dimensional latent variables from the bitstream, and

we sample the remaining ones with temperature t = 0 (i.e., simply using the prior mean). Note that the leftmost images

(annotated by 0.0 bpp) can represent the “average image” in the training dataset. Better viewed by zooming in.

our model is due to the bidirectional inference structure of

ResNet VAEs, in which the entire network (both the bottom-

up and top-down path) is executed for encoding, but only

the top-down path is executed for decoding.

4.4. Ablative Analysis

To analyze the network design, we train our smaller

model, QRes-VAE (17M), with different configurations on

the CelebA (64x64) training set and compare their resulting

losses on the test set.

Number of latent blocks. We first study the impact of

the number of latent blocks, N , by varying it from 4 to 12

and compare their testing loss. For fair comparison, we ad-

just the latent variable dimensions (i.e., number of chan-

nels of z) to keep the same total number of latent variable

elements. We also adjust the number of feature channels

to keep approximately the same computational complexity.

We train models with different N on CelebA (64x64) and

compare their testing loss in Table 2. All models use λ = 32
(recall that λ is the scalar parameter to adjust R-D trade-off).

We observe that with the same number of parameters and

FLOPs, deeper model is better, but the improvement is neg-

ligible when N ≥ 10. We conclude that N = 12 achieves a

good balance between complexity and performance, which

we choose as the default setting for our models.

Choice of residual network blocks: As we mentioned

in Sec. 3.1, the choice of the residual blocks in our network

is arbitrary, and different network blocks can be applied in

a plug-and-play fashion. We experiment with three choices:

1) standard convolutions followed by residual connection

as in Very Deep VAE [11], 2) Swin Transformer block [25],

and 3) ConvNext block [27]. Again, for fair comparison,

N 4 6 8 10 12

parameters 16.7M 16.9M 16.8M 16.9M 16.7M

FLOPs (64x64) 1.12B 1.20B 1.22B 1.24B 1.26B

Test loss (λ = 32) 0.2368 0.2186 0.2121 0.2079 0.2078
Δ - -0.0182 -0.0065 -0.0042 -0.0001

Table 2: Ablation analysis on the number of latent blocks

N in QRes-VAE (17M), trained on CelebA64. Δ is the loss

decrement by increasing N by 2. Deeper model is better,

but the amount of improvement decreases as N increases.

Res. block choice Convs [11] Swin [25] ConvNeXt [27]

parameters 17.2M 17.0M 16.7M

FLOPs (64x64) 1.40B 1.38B 1.26B

Test loss (λ = 4) 0.0783 0.0790 0.0757
Test loss (λ = 32) 0.2072 0.2077 0.2078

Table 3: Ablation analysis on the choice of the residual

block in QRes-VAE (17M), trained on CelebA64 . Over-

all, ConvNext [27] blocks give a better performance.

we adjust the number of feature channels to keep a similar

computational complexity. We observe that at λ = 32, the

three choices achieve about the same testing loss. However,

when λ = 4, which corresponds to a lower bit rate, the

ConvNext block clearly outperforms the alternatives. We

thus use the ConvNext block as our residual block since it

achieves a better overall performance.

4.5. Additional Experiments

To further analyze our model, we provide a number

of additional experiments in the Appendix, including bit

rate distribution (Appendix 6.6), generalization to different

204

Image 1 Image 2

CelebA

CelebA
64

COCO

COCO

Interpolation

(a) Latent space interpolation

Unconditional sampling

(b) Unconditional sampling

Input Inpainting

(c) Image inpainting

Figure 6: Analysis of the latent space. Image resolution is 64 × 64. A lower λ represents a model with lower bit rate. We

note that our QRes-VAE learns a semantically meaningful latent space when trained on CelebA with a small λ while failed

in other settings. Despite the weakness when considered as a generative model, our model takes a step towards unifying

compression and generative modeling. See text for detailed discussion.

resolutions (Appendix 6.7), MS-SSIM [55] training (Ap-

pendix 6.8), and lossless compression (Appendix 6.9). We

refer interested readers to these sections for more details.

4.6. Latent Representation Analysis

In this section, we show visualization results to analyze

how QRes-VAE represents images in the latent space.

Progressive decoding: We show examples for progres-

sive image decoding in Fig. 5. In Fig. 5a, we can observe

that our method is able to reconstruct the gender, face orien-

tation, and expression of the original face image given only

a small subset of bitstreams (< 0.1 bpp), which correspond

to low-dimensional latent variables. This suggests that the

low-dimensional latent variables can encode high-level, se-

mantic information, while the remaining high-dimensional

latent variables mainly encode low-level, pixel informa-

tion. We also note a similar fact for natural image patches

(Fig. 5b): the low-dimensional latent variables encode the

global image structure with only a small amount of bits.

However, due to the complexity of the natural image distri-

bution, semantic information is much harder to parse.

Latent space interpolation. We encode different im-

ages into latent variables (without additive uniform noise),

linearly interpolate between their latent variables, and de-

code the latent interpolations. Results are shown in Fig. 6a.

We observe that when trained on CelebA with λ = 1 (i.e.,

the lowest bit rate), our model learns a semantically mean-

ingful latent space, in the sense that a linear interpolation in

the latent space corresponds to a semantic interpolation in

the image space. However, when λ = 64, latent space in-

terpolation becomes equivalent to pixel space interpolation,

indicating that the latent representation mainly carries pixel

information. A similar pixel space interpolation pattern can

be observed from the results of our COCO model, suggest-

ing that the COCO model does not learn to extract semantic

information, but instead the pixel information.

Unconditional sampling. Our model can uncondition-

ally generates images in the same way as VAEs, and the

samples could give a visualization of how well our model

learns the image distribution. If it learns well, the sam-

ples should look similar to real face images (for the CelebA

model) or natural image patches (for the COCO model).

The results are shown in Fig. 6b. We observe that the

CelebA model generates blurred images when λ = 1 and ar-

tifacts when λ = 64, indicating that the model learns global

structure but not the pixels arrangements. Similarly, the

COCO model generates samples with some global consis-

tency, but still being different from natural image patches.

Image inpainting. We also show results on image in-

painting in Fig. 6c (the algorithm used is similar to [29] and

is given in our code). The visualization of inpainting, again,

reflects how well our model learns the image distribution.

We obtain a similar conclusion as in previous experiments

that our model succeeds in learning the image distribution

when trained on the simpler, human face images, while the

reconstruction quality degrades for natural image patches.

5. Conclusion
In this paper, we propose a new lossy image coder based

on hierarchical VAE architectures. We show that with a

quantization-aware posterior and prior model, hierarchi-

cal VAEs can achieve state-of-the-art lossy image com-

pression performance with a relatively low computational

complexity. Our work takes a step closer towards seman-

tically meaningful compression and a unified framework

for compression and generative modeling. However, like

most learned lossy coders, our method requires a separately

trained model for each bit rate, making it less flexible for

real-world deployment. This could potentially be addressed

by leveraging adaptive quantization as used in traditional

image codecs, which we leave to our future work.

205

References
[1] Eirikur Agustsson and Lucas Theis. Universally quantized

neural compression. Advances in Neural Information Pro-
cessing Systems, 33:12367–12376, Dec. 2020.

[2] Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon,

Rif A. Saurous, and Kevin Murphy. Fixing a broken elbo.

Proceedings of the International Conference on Machine
Learning, 80:159–168, Jul. 2018.

[3] J. Ballé, P. A. Chou, D. Minnen, S. Singh, N. Johnston, E.

Agustsson, S. Hwang, and Toderici G. Nonlinear transform

coding. IEEE Journal of Selected Topics in Signal Process-
ing, 15(2):339–353, Feb. 2021.

[4] Johannes Ballé, Sung Jin Hwang, and Eirikur Agusts-

son. TensorFlow Compression: Learned data compression.

http://github.com/tensorflow/compression, 2022.

[5] J. Ballé, V. Laparra, and E. Simoncelli. End-to-end opti-

mization of nonlinear transform codes for perceptual quality.

Picture Coding Symposium, pages 1–5, Dec. 2016.

[6] J. Ballé, D. Minnen, S. Singh, S. Hwang, and N. Johnston.

Variational image compression with a scale hyperprior. In-
ternational Conference on Learning Representations, Apr.

2018.

[7] Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay

Pushparaja. Compressai: a pytorch library and evalua-

tion platform for end-to-end compression research. arXiv
preprint arXiv:2011.03029, Nov. 2020.

[8] Gisle Bjontegaard. Calculation of average psnr differences

between rd-curves. Video Coding Experts Group - M33, Apr.

2001.

[9] T. Chen, H. Liu, Z. Ma, Q. Shen, X. Cao, and Y. Wang. End-

to-end learnt image compression via non-local attention op-

timization and improved context modeling. IEEE Transac-
tions on Image Processing, 30:3179–3191, Feb. 2021.

[10] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto. Learned image

compression with discretized gaussian mixture likelihoods

and attention modules. Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

7936–7945, Jun. 2020.

[11] Rewon Child. Very deep vaes generalize autoregressive mod-

els and can outperform them on images. International Con-
ference on Learning Representations, Apr. 2021.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image

is worth 16x16 words: Transformers for image recognition

at scale. International Conference on Learning Representa-
tions, May. 2021.

[13] Jarek Duda. Asymmetric numeral systems: entropy coding

combining speed of huffman coding with compression rate

of arithmetic coding. arXiv preprint arXiv:1311.2540, Dec.

2013.

[14] Gergely Flamich, Marton Havasi, and José Miguel

Hernández-Lobato. Compressing images by encoding their

latent representations with relative entropy coding. Advances
in Neural Information Processing Systems, 33:16131–16141,

Dec. 2020.

[15] Gergely Flamich, Stratis Markou, and José Miguel

Hernández-Lobato. Fast relative entropy coding with a* cod-

ing. Proceedings of the International Conference on Ma-
chine Learning, Jul. 2022.

[16] V.K. Goyal. Theoretical foundations of transform coding.

IEEE Signal Processing Magazine, 18(5):9–21, Sep. 2001.

[17] Dailan He, Yaoyan Zheng, Baocheng Sun, Yan Wang, and

Hongwei Qin. Checkerboard context model for efficient

learned image compression. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 14766–14775, Jun. 2021.

[18] Geoffrey E. Hinton and Drew van Camp. Keeping the neu-

ral networks simple by minimizing the description length of

the weights. Proceedings of the Sixth Annual Conference on
Computational Learning Theory, page 5–13, 1993.

[19] D. Kingma and M. Welling. Auto-encoding variational

bayes. International Conference on Learning Representa-
tions, Apr. 2014.

[20] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen,

Ilya Sutskever, and Max Welling. Improved variational in-

ference with inverse autoregressive flow. Advances in Neural
Information Processing Systems, 29, Dec. 2016.

[21] Friso Kingma, Pieter Abbeel, and Jonathan Ho. Bit-swap:

Recursive bits-back coding for lossless compression with hi-

erarchical latent variables. Proceedings of the International
Conference on Machine Learning, 97:3408–3417, Jun 2019.

[22] Eastman Kodak. Kodak lossless true color image suite.

http://r0k.us/graphics/kodak/.

[23] J. Lainema, F. Bossen, W. Han, J. Min, and K. Ugur. Intra

coding of the hevc standard. IEEE Transactions on Circuits
and Systems for Video Technology, 22(12):1792–1801, Dec.

2012.

[24] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. Proceedings of the European Con-
ference on Computer Vision, pages 740–755, Sep. 2014.

[25] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,

Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-

former: Hierarchical vision transformer using shifted win-

dows. IEEE/CVF International Conference on Computer Vi-
sion, pages 9992–10002, Oct. 2021.

[26] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. Proceedings of the
IEEE International Conference on Computer Vision, pages

3730–3738, Dec. 2015.

[27] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-

enhofer, Trevor Darrell, and Saining Xie. A convnet for the

2020s. arXiv preprint arXiv:2201.03545, 2022.

[28] Ming Lu, Peiyao Guo, Huiqing Shi, Chuntong Cao, and

Zhan Ma. Transformer-based image compression. Data
Compression Conference, pages 469–469, Mar. 2022.

[29] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher

Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting

using denoising diffusion probabilistic models. Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 11461–11471, Jun. 2022.

206

[30] D. Minnen, J. Ballé, and G. Toderici. Joint autoregres-

sive and hierarchical priors for learned image compres-

sion. Advances in Neural Information Processing Systems,

31:10794–10803, Dec. 2018.

[31] D. Minnen and S. Singh. Channel-wise autoregressive en-

tropy models for learned image compression. Proceedings
of the IEEE International Conference on Image Processing,

pages 3339–3343, Oct. 2020.

[32] J. Pfaff, A. Filippov, S. Liu, X. Zhao, J. Chen, S. De-Luxán-

Hernández, T. Wiegand, V. Rufitskiy, A. K. Ramasubramo-

nian, and G. Van der Auwera. Intra prediction and mode

coding in vvc. IEEE Transactions on Circuits and Systems
for Video Technology, 31(10):3834–3847, Oct. 2021.

[33] Yichen Qian, Zhiyu Tan, Xiuyu Sun, Ming Lin, Dongyang

Li, Zhenhong Sun, Li Hao, and Rong Jin. Learning accurate

entropy model with global reference for image compression.

International Conference on Learning Representations, May

2021.

[34] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Gener-

ating diverse high-fidelity images with vq-vae-2. Advances
in Neural Information Processing Systems, 32, Dec. 2019.

[35] Jason Tyler Rolfe. Discrete variational autoencoders. In-
ternational Conference on Learning Representations, Apr.

2016.

[36] W. Shi, J. Caballero, F. Huszár, J. Totz, A. Aitken, R. Bishop,

D. Rueckert, and Z. Wang. Real-time single image and

video super-resolution using an efficient sub-pixel convolu-

tional neural network. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1874–

1883, Jun. 2016.

[37] Samarth Sinha and Adji Bousso Dieng. Consistency regu-

larization for variational auto-encoders. Advances in Neural
Information Processing Systems, 34, Dec. 2021.

[38] A. Skodras, C. Christopoulos, and T. Ebrahimi. The jpeg

2000 still image compression standard. IEEE Signal Pro-
cessing Magazine, 18(5):36–58, Sep. 2001.

[39] Casper Kaae Sø nderby, Tapani Raiko, Lars Maalø e,

Søren Kaae Sø nderby, and Ole Winther. Ladder variational

autoencoders. Advances in Neural Information Processing
Systems, 29, Dec. 2016.

[40] Lucas Theis and Noureldin Y Ahmed. Algorithms for the

communication of samples. Proceedings of the Interna-
tional Conference on Machine Learning, 162:21308–21328,

Jul 2022.

[41] L. Theis, W. Shi, A. Cunningham, and F. Huszár. Lossy im-

age compression with compressive autoencoders. Interna-
tional Conference on Learning Representations, Apr. 2017.

[42] James Townsend, Thomas Bird, and David Barber. Practi-

cal lossless compression with latent variables using bits back

coding. International Conference on Learning Representa-
tions, May 2019.

[43] James Townsend, Thomas Bird, Julius Kunze, and David

Barber. Hilloc: lossless image compression with hierarchical

latent variable models. International Conference on Learn-
ing Representations, Apr. 2020.

[44] Arash Vahdat, Evgeny Andriyash, and William Macready.

Dvae#: Discrete variational autoencoders with relaxed boltz-

mann priors. Advances in Neural Information Processing
Systems, 31, Dec. 2018.

[45] Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical vari-

ational autoencoder. Advances in Neural Information Pro-
cessing Systems, 33:19667–19679, Dec. 2020.

[46] Arash Vahdat, William Macready, Zhengbing Bian, Amir

Khoshaman, and Evgeny Andriyash. Dvae++: Discrete vari-

ational autoencoders with overlapping transformations. In-
ternational Conference on Machine Learning, pages 5035–

5044, Jul. 2018.

[47] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu.

Neural discrete representation learning. Advances in Neural
Information Processing Systems, 30, Dec. 2017.

[48] G. Wallace. The jpeg still picture compression standard.

IEEE Transactions on Consumer Electronics, 38(1):xviii–

xxxiv, Feb. 1992.

[49] Dezhao Wang, Wenhan Yang, Yueyu Hu, and Jiaying Liu.

Neural data-dependent transform for learned image com-

pression. arXiv preprint arXiv:2203.04963, 2022.

[50] Matthew Willetts, Xenia Miscouridou, Stephen Roberts, and

Chris Holmes. Relaxed-responsibility hierarchical discrete

vaes. Neural Information Processing Systems Workshop on
Bayesian Deep Learning, 2021.

[51] Will Williams, Sam Ringer, Tom Ash, David MacLeod,

Jamie Dougherty, and John Hughes. Hierarchical quantized

autoencoders. Advances in Neural Information Processing
Systems, 33:4524–4535, Dec. 2020.

[52] Yueqi Xie, Ka Leong Cheng, and Qifeng Chen. Enhanced in-

vertible encoding for learned image compression. Proceed-
ings of the ACM International Conference on Multimedia,

page 162–170, Oct. 2021.

[53] Yibo Yang, Robert Bamler, and Stephan Mandt. Variational

bayesian quantization. Proceedings of the International Con-
ference on Machine Learning, 119:10670–10680, Jul. 2020.

[54] Yibo Yang and Stephan Mandt. Towards empirical sandwich

bounds on the rate-distortion function. International Confer-
ence on Learning Representations, Apr. 2022.

[55] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image quality assessment: from error visibility to struc-

tural similarity. IEEE Transactions on Image Processing,

13(4):600–612, Apr. 2004.

[56] Mingtian Zhang, Andi Zhang, and Steven McDonagh. On

the out-of-distribution generalization of probabilistic image

modelling. Advances in Neural Information Processing Sys-
tems, 34:3811–3823, Dec. 2021.

[57] Renjie Zou, Chunfeng Song, and Zhaoxiang Zhang. The

devil is in the details: Window-based attention for image

compression. Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 17492–

17501, Jun. 2022.

207

