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Abstract

In many emerging computer vision applications, it is
critical to adhere to stringent latency and power con-
straints. The current neural network paradigm of frame-
based, floating-point inference is often ill-suited to these
resource-constrained applications. Spike-based perception
– enabled by spiking neural networks (SNNs) – is one
promising alternative. Unlike conventional neural networks
(ANNs), spiking networks exhibit smooth tradeoffs between
latency, power, and accuracy. SNNs are the archetype of an
“anytime algorithm” whose accuracy improves smoothly
over time. This property allows SNNs to adapt their compu-
tational investment in response to changing resource con-
straints. Unfortunately, mainstream algorithms for training
SNNs (i.e., those based on ANN-to-SNN conversion) tend
to produce models that are inefficient in practice. To miti-
gate this problem, we propose a set of principled optimiza-
tions that reduce latency and power consumption by 1–2
orders of magnitude in converted SNNs. These optimiza-
tions leverage a set of novel efficiency metrics designed for
anytime algorithms. We also develop a state-of-the-art sim-
ulator, SaRNN, which can simulate SNNs using commodity
GPU hardware and neuromorphic platforms. We hope that
the proposed optimizations, metrics, and tools will facilitate
the future development of spike-based vision systems.

1. Introduction
Over the past decade, the computer vision community

has largely embraced an “accuracy first” philosophy. For
example, “state-of-the-art” usually implies achieving the
highest task accuracy. However, as deep learning has con-
tinued to mature, new performance axes have begun to
emerge. This trend is driven by applications (embodied
perception, autonomous navigation, AR/VR) where latency
and power consumption are as important as accuracy.

Conventional feed-forward neural networks (ANNs) are
often ill-suited to these time- and power-constrained appli-
cations. Not only do ANNs have high computation costs –
requiring billions of operations for a single inference [6] –

but their computation cost also is also inflexible. Regard-
less of the runtime constraints or available computational
resources, a given ANN takes a fixed amount of time and
energy to return a result. In general, ANNs cannot adapt
their resource investment in response to changing circum-
stances. In this paper, we consider spike-based anytime
perception, an alternative approach that supports real-time
modulation of the tradeoffs between accuracy, time, and
power. The primary enabling component is spiking neural
networks (SNNs), a class of brain-inspired models where
neurons exchange information via temporal sequences of
discrete spikes [39]. Each spike denotes an event, and in-
formation is encoded in the frequency and timing of spikes.

Vision, Fast and Slow. SNNs, through time-distributed,
lightweight computation, achieve pseudo-instantaneous in-
formation processing [18]. Their smooth accuracy-latency
tradeoff curve makes them the archetype of an “anytime al-
gorithm” (Figure 1a) [66, 4]. Such hierarchical, fast and
slow reasoning is thought to be a hallmark of human deci-
sion making [30], and could pave the way for a new class
of dynamic control algorithms that identify optimal oper-
ating points at runtime, at the time-granularity of individ-
ual spikes. For instance, a robot navigating a dynamic
environment often needs to make fast decisions (e.g., ob-
stacle avoidance). Such situations require short reaction
times often inaccessible in ANN-based processing. Deep
SNNs provide early (albeit potentially less precise) esti-
mates. These estimates improve when given more process-
ing time, so they can also be used for slow, more deliberate
processes such as long-term path planning.

Minimizing Latency and Power. The discrete nature of
SNN spikes results in non-differentiable network dynam-
ics, making training SNNs a challenge. To date, the most
successful approach – in terms of accuracy on challeng-
ing, large-scale datasets like ImageNet – is ANN conver-
sion [44, 7]. Unfortunately, SNNs trained using ANN con-
version often have high latency and power costs [45]. To
mitigate this problem, we propose a set of optimizations
for converted SNNs. These optimizations target all three
phases of the model’s life cycle: ANN training, SNN con-
version, and SNN inference. Our methods reduce latency
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Figure 1: Spike-Based Anytime Perception. (a) Unlike conventional feed-forward neural networks (ANNs), spiking neural
networks (SNNs) give smooth tradeoffs between accuracy, latency, and power. This property makes them capable of “fast
and slow” anytime perception. (b) We propose novel metrics for latency and power that measure the overall shape of the
accuracy-time and accuracy-power tradeoff curves. (c) We leverage these metrics, along with insights into the mechanics of
SNNs, to achieve significant reductions in latency and power consumption. The red and green curves show accuracy as a
function of time or synaptic events, before and after applying our optimizations to a CIFAR-10 model (see section 7).

and power in converted SNNs by 1–2 orders of magnitude.
We summarize our proposed optimizations below.

• ANN Training: Sparse Representations. Because
they compute in a sparse, event-based manner, SNNs
naturally exploit weight and activation sparsity. By
altering the model representation to improve sparsity,
we substantially reduce the number of synaptic events
and, consequently, the model’s power consumption.

• SNN Conversion: Firing Rate Scaling. We observe
that SNN firing rates can be scaled at the neuron level
without altering the network representation. We use
an off-the-shelf optimizer to fine-tune firing rates for
improved accuracy, latency, and power consumption.

• SNN Inference: High-Entropy Initialization. SNNs
display transient dynamics where firing rates (and thus,
accuracy) evolve over time before achieving steady-
state behavior. We observe that transient dynamics can
be controlled by varying the model initialization. Care-
ful initialization can dramatically reduce latency.

Summary of Contributions. This paper presents three
primary technical contributions. (1) We propose Pareto
metrics, novel performance metrics that integrate the en-
tire accuracy-time or accuracy-power tradeoff curve. See
Figure 1b and section 4. Pareto metrics are more numeri-
cally stable than past threshold-based metrics, which allows
them to be used not only for evaluation but also as tools for
model optimization. (2) We use these metrics, combined
with several insights into the unique dynamics of SNNs, to
design a family of optimizations for improving the latency
and power of ANN-converted SNNs. Rather than improv-
ing the performance of the SNN at just one operating point,
these strategies simultaneously improve the entire tradeoff
curve. See Figure 1c and section 5. (3) We implement
SaRNN, a high-performance simulator for SNNs. SaRNN

outperforms the next fastest simulator, SNN-TB [50], by
an order of magnitude. This speed allows new lines of re-
search, such as large-scale SNN optimization. SaRNN also
supports mapping to neuromorphic platforms such as SpiN-
Naker [19, 48] through the PyNN API [14]. See section 6.
We will make the SaRNN code freely available.
Scope and Limitations. This work considers the task of
image classification on individual frames. An important
next step is to evaluate our methods on time-varying video
data and to consider other tasks (e.g., object detection, se-
mantic segmentation, and tracking).

SNNs are still a nascent technology, while ANNs and
GPUs have been optimized over decades. As such, we do
not attempt any watt-for-watt or second-for-second compar-
isons between ANNs and SNNs. Instead, our goal is to ex-
plore a promising new technological paradigm and make
progress toward eventual wide-scale use. We hope that the
proposed methods, coupled with ongoing advances in neu-
romorphic architectures1 and the emergence of applications
requiring perception with strict latency, computational and
power budgets, will lower the entry barrier into SNN re-
search and spur further research on spike-based perception.

2. Related Work
Efficient Architectures and Pruning. Many ANN archi-
tectures are designed with efficiency in mind. These include
MobiletNet, SqueezeNet, and ShuffleNet [24, 27, 65] for
classification, and SSD, YOLO, and RetinaNet [38, 47, 37]
for object detection. Other algorithms apply pruning to
reduce the number of weights and arithmetic operations

1The last decade has seen significant developments in the design
and manufacture of neuromorphic platforms. Recent examples include
TrueNorth (IBM) [2], Loihi (Intel) [13], SpiNNaker (The University of
Manchester) [19], and BrainScaleS (Heidelberg University) [53].
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[33, 22, 21, 35]. In general, these approaches are comple-
mentary to ours; an SNN derived from an efficient ANN
architecture will inherit the efficiency of the ANN. For ex-
ample, we use the MobileNet [24] architecture in section 7,
which further lowers the power consumption of the opti-
mized SNN by reducing the number of model symapses.
Network Quantization. Binary neural networks, in which
weights or activations take binary values, have some sim-
ilarities to SNNs [11, 46]. There are also models which
use ternary, integer, and reduced-precision floating-point
arithmetic [57, 26]. Like SNNs, these models may require
custom-tailored hardware for maximum efficiency.
Adaptive Inference. There are several methods which, like
SNNs, adaptively modify the inference cost in response to
resource constraints or perceived difficulty. Some use vari-
ations of an adaptive computation graph [58, 61, 56, 62];
others adaptively resize the inputs and feature maps [9, 63].
Unlike these methods, SNNs provide adaptive inference for
free. SNNs do not require the designer to modify the un-
derlying network architecture or make a specific set of as-
sumptions about end-user constraints.
Spiking Neural Networks. Because a spike is a non-
differentiable impulse, standard backpropagation [51] can-
not be used to train SNNs. Many types of SNN training
algorithms have been proposed to circumvent this problem.
Some methods perform backpropagation in the spiking do-
main – by using differentiable proxies [5, 34, 59, 41, 60] or
by modeling neuron state dependencies [64]. Other algo-
rithms emulate the local, unsupervised learning that occurs
in biological brains [40, 3, 55, 42].

We adopt the ANN conversion method for SNN train-
ing [45, 44, 7, 16, 43, 25, 50, 54]. The essential idea is
to train an ANN, then copy its weights to an SNN with
the same architecture. ANN conversion has several key ad-
vantages. Compared to other training methods, it achieves
higher accuracy on challenging, large-scale datasets like
ImageNet [52, 45]. It can be applied to modern, deep ar-
chitectures like ResNet [23, 54]. Its neuron model (NL-
IAF, section 3) is computationally simple and does not have
hand-tuned parameters (e.g., a refractory period).

Despite these advantages, SNNs trained via ANN con-
version often require many timesteps and spikes to con-
verge to an accurate solution. Several previous papers
seek to address this problem. Rueckauer et al. [50] pro-
pose several useful optimizations, including improvements
to the weight normalization algorithm and post-spike reset
mechanism. Han et al. [20] propose a similar post-spike
reset mechanism to [50]. We consider these approaches
as a baseline; they correspond to the “before” condition
in our experiments (e.g., Table 1). Sengupta et al. [54]
and Deng and Gu [15] propose weight scaling algorithms
(Spike-Norm and threshold balancing, respectively). We do
not perform a direct comparison against these methods be-

cause they are complementary to ours. The methods we
propose in subsection 5.1 and subsection 5.3 are indepen-
dent of the weight scaling algorithm. The optimization of
subsection 5.2 can be initialized with any starting point (e.g.
the result of Spike-Norm) and will always perform at least
as well as that starting point. See Figure 3b.

3. Background
We adopt the ANN conversion approach of [50]. There

are three steps to this process. (1) Absorb any batch normal-
ization transforms into the model weights. (2) Apply data-
based weight normalization. This involves passing training
data through the ANN and, at each layer, scaling the weights
and biases so that most activations lie in the range [0, 1] (the
range of possible firing rates). See subsection 5.2 for further
details on this step. (3) Copy ANN layers to the SNN, dis-
carding any ReLU activations. We refer the reader to [50]
for a more detailed description of the above steps. Note that
our treatment of the output layer is slightly different from
[50]; see the supplementary material for details.
NL-IAF Neuron Model. ANN neurons with ReLU acti-
vations are converted to SNN neurons which obey the non-
leaky integrate and fire (NL-IAF) model. NL-IAF neurons
operate in discrete time steps. Let t be the current timestep,
j be the neuron index, and Vj,t be the neuron membrane
potential. The neuron fires when the potential exceeds a
threshold (which we assume to be 1). Let the variable Θj,t

indicate whether neuron j fires a spike at time t. Then,

Θj,t =

{
1 if Vj,t ≥ 1

0 else,
(1)

After a spike, the membrane potential is reset by subtraction
[50]. So, if Ij,t is the incoming current at time t,

Vj,t = Vj,t−1 −Θj,t−1 + Ij,t. (2)

Let sj,t be a binary vector (1 for a spike, 0 otherwise) of
incoming spikes at time t, containing one entry for each
synapse. Let wj be a vector of synaptic weights and let bj
be the neuron bias. Then

Ij,t = sj,t ·wj + bj . (3)

In converted SNNs, NL-IAF neurons encode their activa-
tions as an average firing rate. For example, a neuron that
fires on four out of ten timesteps has activation 0.4.

4. Pareto Metrics
In this section, we define novel metrics for latency and

power consumption. Consider an anytime algorithm with a
smooth accuracy versus time curve as shown in Figure 1b.
One way to measure latency is as the number of time steps
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required for accuracy to cross a threshold [43]. However,
there are two problems with a threshold-based metric. First,
it is sensitive to the choice of threshold – due to the asymp-
totic nature of accuracy convergence. For example, a net-
work with asymptotic accuracy 80% may take only 100
time steps to reach 79% accuracy, but another 1000 steps
to reach 79.5%. Second, a threshold metric does not vary
smoothly with the network dynamics. A model can take 8
or 9 steps to cross a threshold, but not 8.5. This makes it
difficult to use a threshold metric to fine-tune the network
parameters because the metric value may not change in re-
sponse to small parameter perturbations.

Instead of operating on a single predetermined accu-
racy, we propose metrics that compute the average time and
power over all possible accuracies. Consider a monotoni-
cally increasing accuracy-time curve. Now, consider a hori-
zontal line between the y-axis and one point along this curve
(Figure 1b). The length of this line gives the time required
to reach one specific accuracy. By extension, the area be-
tween the y-axis and the curve gives the average time (up
to a constant) required to reach all accuracies. Note that we
can equivalently (and more conveniently) compute the area
left of the curve as the area above the curve (assuming an
upper boundary equal to the maximum accuracy). With this,
we propose the following metrics for latency and power:
Pareto Latency. Let a1, a2, . . . , aT be the instantaneous
accuracy over T inference time steps, and let amax be the
asymptotic accuracy. We define Pareto latency as

Pl =

T∑
t=1

(amax − at). (4)

Pareto Power. We define an analogous metric for power
consumption. Instead of considering accuracy versus time,
this metric computes the area above an accuracy versus
synaptic events curve. Note that there is a subtle distinc-
tion between a spike and a synaptic event; when a neuron
spikes, one synaptic event is triggered for each of its outgo-
ing synapses. Let e1, e2, . . . , eT be the number of synaptic
events at each time step. We define Pareto power as

Pp =

T∑
t=1

et (amax − at). (5)

Pareto latency and power are defined such that they can
be applied to a broad class of anytime algorithms – beyond
just ANN-converted SNNs. For example, they could be
used with SNNs with alternate neuron models or training
strategies. Although we define them in terms of accuracy,
these metrics could easily be reformulated using any perfor-
mance measure (e.g., the mAP metric for object detection).
Note that, in the specific case of ANN-converted SNNs, we
replace amax (the asymptotic accuracy) with aANN, the ac-
curacy of the ANN before conversion.

5. Minimizing Latency and Power

In this section, we develop methods for improving Pareto
latency and power while maintaining high accuracy. There
are three stages in the life cycle of a converted SNN: (1)
ANN training, (2) SNN conversion, and (3) SNN inference.
Past work on converted SNNs has focused mostly on stage
2 (specifically, weight scaling). We advocate a more holis-
tic approach that considers all three phases. We show that
there is significant untapped potential in optimizing ANN
training and SNN inference dynamics.

5.1. ANN Training: Sparse Representations

Because SNNs compute in an event-based manner, spar-
sity in an SNN translates directly to reduced power con-
sumption. We consider two sources of sparsity: activations
and weights. If there is high activation sparsity, more neu-
rons have zero activations and do not spike. If there is high
weight sparsity, each spike triggers fewer synaptic events.

Conversion involves scaling the weights and activations
of the network (subsection 5.2). While this does change the
values of the weights and activations, it does not change
their sparsity (zero multiplied by any scalar is zero). There-
fore, conversion preserves the sparsity of the ANN. We
leverage this observation by fine-tuning the ANN with acti-
vation and weight sparsity penalties La and Lw.

Activation Sparsity. We use batch normalization (BN), a
common component in modern ANNs, in our formulation
of La [28]. The BN transform is defined such that its out-
put distribution D has mean β and variance γ2, where β
and γ are learned parameters. Because β controls the mean
activation, decreasing its value increases the number of neg-
ative activations. Assuming the BN is followed by a ReLU
function (a common design pattern), these negative activa-
tions are then truncated to zero (Figure 2a). During conver-
sion, the linear batch normalization transform is absorbed
into the weights of the preceding layer [50]. As a result,
each weighted–BN–ReLU layer group collapses to a single
NL-IAF layer in the SNN. Therefore, sparsity in the ReLU
output translates to sparsity in the NL-IAF output.

Assume there is a ReLU activation after the BN layer.
The expected fraction of activations not truncated to zero is∫ ∞

0

D(x;β, γ) dx. (6)

Fixing γ = 1 (which does not reduce representational
power with ReLU activations) and assuming D is a normal
distribution, this integral simplifies to

1

2

(
erf
(

β√
2

)
+ 1

)
. (7)

As this quantity decreases, sparsity increases.
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Figure 2: ANN Training: Sparse Representations

Let nk be the number of neurons corresponding to the
kth model β value. In the BN after a convolution, nk is
the number of pixels per channel; in the BN after a fully-
connected layer, nk is 1. We define

La =
1∑
k nk

∑
k

nk

2

(
erf
(
βk√
2

)
+ 1

)
. (8)

La is proportional to the expected number of nonzero ac-
tivations across the entire network. By adding a training
penalty on La, we encourage activation sparsity. To our
knowledge, this formulation of La using batch normaliza-
tion represents a new general method for improving activa-
tion sparsity, and likely has applications beyond SNNs.
Weight Sparsity. For Lw we use an L1 (lasso) penalty to
encourage weight sparsity. Some weights (i.e., those in a
convolution) are repeated over many neurons, and we scale
the weight penalty terms accordingly. Let mk be the num-
ber of neurons corresponding to the kth weight wk. In a
convolution, mk is the number of pixels per channel; in a
fully-connected layer, mk is 1. We define

Lw =
1∑
k mk

∑
k

mk|wk|. (9)

After training, we remove all weights with magnitude less
than some ϵ ≈ 10−4. Note that this strategy is similar to
conventional weight pruning; the primary difference is the
use of the scaling terms mk.
Sparsity Fine-Tuning. We apply the above loss terms dur-
ing an ANN fine-tuning phase before SNN conversion. We
first train an ANN normally or load pre-trained weights. We
then train for additional epochs with a modified loss. Let
LANN be the loss used during initial ANN training (e.g., a
cross-entropy loss). We define the modified loss as

L′
ANN = LANN + λaLa + λwLw. (10)

Minimizing this loss encourages an ANN representation
with fewer nonzero activations and weights. λa and λs are
tradeoff-scaling parameters; see the supplementary material
for details on how we chose their values.

5.2. SNN Conversion: Firing Rate Scaling

A spiking NL-IAF neuron can only fire once per time
step, so its maximum activation is 1. In contrast, a ReLU
neuron can have activation [0,∞). Data-based normaliza-
tion [16, 50] – applied during ANN to SNN conversion –
re-scales the ANN weights so that most activations lie in
the range [0, 1]. Careful scaling is vital for achieving ac-
curate and efficient models. Neurons with low firing rates
may take many time steps to send their first spike, while
neurons with firing rates above 1 saturate and encode an in-
correct value. More complex and subtle behaviors arise in
networks of many interacting neurons.

Neuron-Level Scaling. Existing methods for data-based
normalization jointly scale all activations in a layer [16, 50,
54]. They assume that scaling at a finer granularity would
destroy the original ANN representation. We show that
this assumption is questionable, that indeed it is possible to
scale activations for individual neurons without altering the
ANN representation. Neuron-level scaling is more flexible
and is especially useful when there are significant variations
in activation distributions within a layer. In this case, layer-
level scaling will “over-suppress” neurons with large mean
activations and “under-excite” neurons with small mean ac-
tivations. Neuron-level scaling resolves this issue by scaling
each neuron based on its specific activation distribution.

To scale the activation of neuron j by a factor ηj , we mul-
tiply its incoming weights and bias by ηj . We then isolate
the change by multiplying the neuron’s outgoing weights by
1/ηj . See Figure 3a. The net result of this isolated scaling
is that only the activation of neuron j changes. In this way,
we preserve the ANN representation and output.

There are two important details to consider. First, be-
cause of weight sharing, “neuron-level scaling” can only be
done at the channel level in convolutions. Because different
pixels in the same channel have similar activation distribu-
tions, this is not a significant problem. Second, the 1/ηj
isolation only works if layer i + 1 has adjustable weights.
This requirement is not met in unweighted pooling layers
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ANN Normalization
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(b) Formal Optimization. Formal optimization over H = {ηj}
gives a value of LSNN at least as low as existing heuristic meth-
ods [50, 54].

Figure 3: SNN Conversion: Firing Rate Scaling

and the output layer. We solve this problem for average
pooling layers by replacing them with equivalent depthwise
convolutions. We use layer-level scaling before max pool-
ing and the model output.
Formal Optimization. Existing methods for weight nor-
malization [16, 50, 54, 15] are, in some sense, heuristics for
estimating the optimal activation scaling factors. Denote
the set of all factors in a network H = {ηj} as the scaling
set. Instead of using heuristics, we formally optimize the
loss function over the scaling set. This approach allows us
to explicitly tune tradeoffs between accuracy, latency, and
power by adjusting the loss function. In contrast, heuristic
methods can only tune these tradeoffs indirectly by adjust-
ing low-level parameters of the scaling algorithm. Further-
more, assuming we initialize with the scaling set produced
by some heuristic method, formal optimization is guaran-
teed to perform at least as well as the heuristic (Figure 3b).

We optimize the following loss function:

LSNN(H) = λeMe(H) + λlPl(H) + λpPp(H). (11)

Pl and Pp are the Pareto latency and power. Me is the min-
imum of the SNN error 1 − at over all time steps (like Pl

and Pp, it could easily be formulated using a metric other
than accuracy). The λ are tradeoff parameters for accuracy
(λe), latency (λl), and power (λp). See the supplementary
material for details on how we select the λ values. We eval-
uate LSNN by simulating the SNN over the training dataset,
thereby capturing all the subtle dynamics of the model.

Because spikes are not differentiable, we use an off-the-
shelf derivative-free optimizer (DFO) to minimize LSNN.
DFO algorithms estimate the shape of the function by
querying objective function values, and do not require com-
puting gradients. We use the Subplex DFO algorithm [49]
as implemented in the NLopt package [29]. We achieve the
best results with a three-phase optimization: (1) model-level
scaling with one global η, (2) layer-level scaling with one η
per layer, (3) and neuron-level scaling with one η per neu-
ron. Subsequent phases requires more optimizer iterations
due to the increasing dimensionality of the search space.

5.3. SNN Inference: High-Entropy Initialization

In this section, we consider improvements to SNN infer-
ence. Specifically, we examine the choice of initial neuron
membrane potential V0. The equation for Vj,t (Equation 2)
is defined recursively in terms of Vj,t−1, but it does not
specify a starting value Vj,0. Unlike firing rate scaling (sub-
section 5.2), there is little existing work on neuron initial-
ization, with most authors simply setting Vj,0 = 0. Through
both theoretical analysis and experiments, we show that this
is a sub-optimal choice.
Theoretical Analysis. We now show that a zero initializa-
tion represents a state of artificially low entropy. Consider
the subset of neurons with nonzero firing rates during an in-
ference. Define V̄t as the mean of Vj,t over this subset. For
t > 0, firing neurons will have Vj,t throughout the range
[0, 1], and therefore for V̄t > 0. In other words, it is un-
likely that a model would spontaneously arrive in a state
where V̄t ≈ 0. Yet, V̄t = 0 is the state we force the model
into when initializing globally with Vj,0 = 0.

What, then, is a more natural value for Vj,0? Consider
a neuron j with constant incoming current Ij ∈ (0, 1) and
Vj,0 ∈ [0, 1]. Using the NL-IAF equations, we can derive

Vj,t = Vj,0 + Ijt− ⌊Vj,0 + Ijt⌋. (12)

We claim that the most natural initialization is the mean of
this Vj,t over an infinite number of time steps and all possi-
ble Ij ∈ (0, 1). That is, the value of the quantity∫ 1

0

lim
T→∞

(
1

T

T−1∑
t=0

(Vj,0 + Ijt− ⌊Vj,0 + Ijt⌋)

)
dIj .

(13)
Numerical evaluation shows that this expression has a value
of 0.5 for all values Vj,0 ∈ [0, 1].

We refer to an initialization with Vj,0 = 0.5 as high-
entropy initialization. In Figure 4 we show experimen-
tally that a change of initialization from 0 to 0.5 leads to
a dramatic reduction in latency. Neurons initialized with
Vj,0 = 0.5 converge more quickly to their steady-state fir-
ing rates. This speedup has a cascading effect on latency as
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Figure 4: High-Entropy Initialization. A high-entropy
initialization of V0 = 0.5 gives much lower latency than the
naive initialization V0 = 0. See section 7 for model details.
The y-axis units are “Pareto latency relative to a model with
V0 = 0.” Results are averages over the entire test dataset.

we move deeper in the network because layer i + 1 cannot
fire accurately until the output of layer i has mostly con-
verged to the correct value.
Optimization of Initialization. So far, we have assumed
a single Vj,0 for all neurons j. However, it is possible to
vary the initialization over individual neurons. Varied ini-
tialization may be beneficial, for example, if one layer has
a large bias that causes it to fire prematurely. Motivated
by this, we extend the optimization of subsection 5.2 to in-
clude initialization. Define V0 (without subscript j) as the
set {Vj,0}. We use the same loss function LSNN, but express
it as a function a function of V0, LSNN(H,V0). At each of
the three optimization phases, we double the dimensionality
of the search space, adding one value of Vj,0 for each value
of ηj . We initialize with Vj,0 = 0.5 for all j.

6. SNN Simulation
Without a high-performance SNN simulator, the for-

mal optimization described in subsection 5.2 and subsec-
tion 5.3 takes an impractical amount of time. We found
that existing SNN simulators – both general-purpose sim-
ulators (NEURON [8]) and those specialized for converted
ANNs (SNN-TB [50]) – were not up to the task. We im-
plemented a new simulator, SaRNN, which far outperforms
existing simulators on converted ANNs. SaRNN (Spiking
as Recurrent Neural Network) implements SNNs as Ten-
sorFlow RNNs [1]. TensorFlow compiles the RNN into a
static computation graph, preventing inefficient calls to the
Python interpreter. We fuse both spiking simulation and
operation counting (for evaluating Pp) into the RNN update
loop. See the supplementary material for more details.

MPI [10] (Message Passing Interface) is a widely-used
standard for distributed computing. SaRNN supports MPI
through the mpi4py Python package [12], allowing simu-
lation and optimization to be divided between many com-
pute nodes. SaRNN also allows simulation with other back-
ends (including SpiNNaker [19, 48]) through the PyNN
API [14]. Source code will be made publicly available.

Latency (Pl) Power (Pp)
100

101

102

103

Im
pr

ov
em

en
t F

ac
to

r Dense MNIST
Conv MNIST
CIFAR-10
CIFAR-100

Figure 5: Results on MNIST and CIFAR. The combined
effect of applying our methods to several models. The y-
axis units are “factor of improvement in Pl and Pp relative
to an unoptimized model.” See supplementary for detailed
results. Results are averages over the entire test dataset.

7. Experiments
Results on MNIST and CIFAR. We train four ANNs:
dense MNIST [32], convolutional MNIST, and convolu-
tional CIFAR-10/100 [31]. See the supplementary material
for details on architectures and training. In general, we pre-
fer simple, generalizable training (e.g., SGD and minimal
data augmentation) over maximum accuracy. Even so, our
models achieve competitive accuracy: 98.36% and 99.55%
on MNIST, 89.39% on CIFAR-10, and 85.15%/85.15%
top-1/top-5 on CIFAR-100.

After initial ANN training we perform sparsity fine-
tuning, then convert the models to SNNs and optimize
LSNN(H,V0). We run the three optimization phases (global,
layer, and neuron) for 100, 1000, and 10 000 iterations, re-
spectively. We then compare the final models against un-
modified baselines (models without the optimizations of
section 5). We simulate the MNIST models for 50 time
steps and the CIFAR models for 1000 time steps. Figure 5
shows the improvement factors for Pl and Pp. Latency
is reduced by approximately one order of magnitude, and
power is reduced by approximately two orders of magni-
tude. Although we only explicitly optimize Pl and Pp, we
also see substantial improvements on traditional threshold-
based metrics; see supplementary for these results.
Addition and Ablation. To understand the relative contri-
butions of the three techniques in section 5, we individu-
ally add (to the baseline) and ablate (from the final model)
the three techniques in section 5. We use the convolutional
MNIST model. See Figure 6 for results. We make two ob-
servations. First, on its own, sparsity fine-tuning (compo-
nent 1) decreases power but increases latency. However, the
drop in latency vanishes when sparsity fine-tuning is com-
bined with optimization over LSNN(H,V0) (components 2
and 3). This indicates a complementary relationship, with
optimization mitigating any potential downsides of sparsity
fine-tuning. Second, although component 2 (firing rate scal-
ing) individually causes an improvement over the baseline,
it has little effect when used along with components 1 and
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Table 1: Results on ImageNet. We observe significant im-
provements in both Pp and peak accuracy.

Metric Before After

max{at} 41.59% 49.68%
Pl 1568 416
Pp 1.02× 1010 1.38× 109

3. We suspect that optimized initialization (component 3) is
“picking up the slack” when component 2 is removed.
Results on ImageNet. To show the scalability of the
proposed techniques and SaRNN to modern, large-scale
datasets, we apply our methods to an ImageNet [52] model.
We use the MobileNet architecture due to its high efficiency
and relatively simple architecture [24]. We use an input
resolution of 160 × 160. See the supplementary material
for training details – as before, we aim for reproducibil-
ity and generalizability over maximum accuracy. Our ANN
achieves 49.09%/74.92% top-1/top-5 accuracy.

Due to the larger image and model sizes, SNN simula-
tion on ImageNet takes considerably longer than on MNIST
or CIFAR. To reduce optimization time, we eliminate the
neuron-level optimization phase and shorten the layer-level
phase from 1000 to 500 iterations. Instead of simulating the
entire training dataset on each iteration, we use a 1000-item
subset. With these changes, SNN optimization takes only
four days (less time than is required for ANN training).

See Table 1 for SNN evaluation results. We simulate
the model for 5000 time steps. Like [54], we report results
on the entire ImageNet validation set. Note that the peak
accuracy of the final SNN is higher than the original ANN.
Results on SpiNNaker. To show that our results general-
ize beyond simulation to real neuromorphic platforms, we
evaluate our methods on SpiNNaker hardware [19, 48]. The
SpiNNaker neuron model has three differences from NL-
IAF. (1) Neurons reset to zero after spiking instead of by
subtraction. (2) Spikes take one time step to traverse a
synapse. (3) Neurons have a refractory period of one time
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Figure 6: Ablation and Addition. The effect of each
proposed optimization on the convolutional MNIST model.
Components 1, 2, and 3 correspond to subsection 5.1, sub-
section 5.2, and subsection 5.3, respectively.

Table 2: Results on SpiNNaker. Due to limitatins of the
PyNN API, Pp is expressed here in terms of spiking events.

Metric Before After

max{at} 84.00% 97.80%
Pl 31.7 9.54
Pp 4.17× 103 1.01× 103

step. We implement these behaviors in SaRNN and opti-
mize under these dynamics, thereby ensuring that our im-
provements generalize to SpiNNaker.

Table 2 shows results for the dense MNIST model. We
simulate the model for 100 time steps. Because of the added
delays for synaptic transmission, it takes some minimum
time (about six time steps) for a signal to propagate from
the input to the output. We suspect that this is the reason
for the smaller improvement in Pl compared to the results
in Figure 5. The low “before” accuracy is caused by the
zero reset and refratory period described in the previous
paragraph. Our optimization strategies recover an accuracy
close to that of the original ANN.

8. Discussion
Limitations and Future Work. This paper considers the
task of image classification. However, our metrics, opti-
mizations, and simulator are compatible with other tasks
given minor modifications (i.e., replacing accuracy in Pl

and Pp with another metric). In the future, we hope to show
results on other tasks like object detection.

The experiments in this paper involve static, single-
frame inputs. However, one promising application of
SNNs is in event-based processing (with event-based [36]
or single-photon [17] sensors). SNNs allow inference to
be simultaneous with event-based image data collection. In
this case, there are two time scales to consider: one for input
events and another for SNN updates. We would likely need
two latency metrics, one for input latency and another for
computational latency. The methods in this paper reduce
computational latency but do not consider input latency.

Neuromorphic Hardware. Limiting the SaRNN simula-
tor to a single, computationally efficient model type helps
it achieve high performance. We believe designers should
consider a similar approach for neuromorphic architectures.
Current neuromorphic platforms like Intel’s Loihi support a
broad range of model types and biologically realistic train-
ing mechanisms [13]. While this may be useful for re-
searchers, it results in high transistor and power costs. We
hope to eventually see the emergence of simpler, more effi-
cient architectures specialized for NL-IAF models.
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